

VS FORTRAN Version 2 IBM

Reference Summary
Release 6

 SX26-3751-07

VS FORTRAN Version 2 IBM

Reference Summary
Release 6

 SX26-3751-07

 Note!

Before using this information and the product it supports, be sure to read
the general information under “Notices” on page iv.

| Eighth Edition (November 1993)

| This edition replaces and makes obsolete the previous edition, SX26-3751-06.

| This edition applies to VS FORTRAN Version 2 Release 6, Program Numbers
5668-805, 5668-087, 5667-806, and to any subsequent releases until otherwise
indicated in new editions or technical newsletters.

Specific changes for this edition are indicated by a vertical bar to the left of the
change. A vertical bar to the left of a figure caption indicates that the figure has
changed. Editorial changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication
in connection with the operation of IBM systems, consult the latest IBM
System/370, 30xx, 4300, and 9370 Processors Bibliography, GC20-0001, for
the editions that are applicable and current.

Requests for IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality. If you request publications from the
address given below, your order will be delayed because publications are not
stocked there.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, address your comments to:

IBM Canada Ltd. Laboratory
Information Development, 2G/345/1150/TOR
1150 Eglinton Avenue East, North York

 Ontario, Canada M3C 1H7

When you send information to IBM, you grant IBM a nonexclusive right to use
or distribute the information in any way it believes appropriate without incurring
any obligation to you.

 Copyright International Business Machines Corporation 1986, 1993. All
rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . iv
Programming Interface Information . iv
Trademarks and Service Marks . iv

Compiler and Library Information . 1
Arithmetic Expressions . 1
Relational Expressions . 1
Logical Expressions . 2
Hierarchy of Operations . 2
Required Order of Statements and Comments 3
Language Statement Categories . 4
Statement Syntax . 6
Parallel Statement Categories . 26
Parallel Statement Syntax . 27
Parallel Task Management Statements 27
Parallel Loop Statements . 28
Parallel Sections Statements . 29
Parallel Call Statements . 30
Compile-Time Options . 31
Conflicting Compile-Time Options . 36
Compiler Directives . 37
Parallel and Vector Directives . 38
Run-Time Options . 39
Service Subroutines . 41
Parallel Library Event Service Subroutines 45
Parallel Library Lock Service Subroutines and Function 46
Parallel Function . 47
Data-in-Virtual Subroutines . 48
Multitasking Facility (MTF) Subroutines 50
Error-Handling Subroutines . 51

Intrinsic Functions . 52

Interactive Debug Commands . 58
Interactive Debug Command Categories 59
Interactive Debug Command Syntax 60
Format and Dump Codes for the AUTOLIST and LIST Commands . . . 74
Valid SET Command Assignments . 75

 Copyright IBM Corp. 1986, 1993 iii

 Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may
be used. Any functionally equivalent product, program, or service that does
not infringe any of IBM's intellectual property rights or other legally
protectible rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other
products, programs, or services, except those expressly designated by IBM,
are the user's responsibility.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY
10577.

Programming Interface Information
This reference is intended to help you create application programs using the
VS FORTRAN Version 2 licensed program. This reference documents
General-Use Programming Interface and Associated Guidance Information
provided by VS FORTRAN Version 2.

General-Use programming interfaces allow the customer to write programs
that obtain the services of VS FORTRAN Version 2.

Trademarks and Service Marks
The following terms, denoted by an asterisk (*) in this publication, are trade-
marks of the IBM Corporation in the United States and/or other countries:

 IBM

 SAA

Systems Application Architecture

 3090

iv  Copyright IBM Corp. 1986, 1993

Compiler and Library Information

 Arithmetic Expressions

Arithmetic
Operator Definition

** Exponentiation

* Multiplication
/ Division
+ Addition (or unary plus)
− Subtraction (or unary minus)

 Relational Expressions

Standard
Relational
Operator

VS Fortran
Relational
Operator

Definition

.GT. > Greater than

.GE. >= Greater than or equal to

.LT. < Less than

.LE. <= Less than or equal to

.EQ. == Equal to

.NE.| /= <> Not equal to

 Copyright IBM Corp. 1986, 1993 1

 Logical Expressions

Logical
Operator

Use

Meaning

.NOT. .NOT.A If A is true, then .NOT.A is false; if A is false, then .NOT.A
is true.

.AND. A.AND.B If A and B are both true, then A.AND.B is true; if either A
or B or both are false, then A.AND.B is false.

.OR. A.OR.B If either A or B or both are true, then A.OR.B is true; if
both A and B are false, then A.OR.B is false.

| .XOR.| A.XOR.B| If either A or B is true, the A.OR.B is true; if both A and B
| are false, then A.OR.B is false.

.EQV. A.EQV.B If A and B are both true or both false, then A.EQV.B is
true; otherwise it is false.

.NEQV. A.NEQV.B If A and B are both true or both false, then A.NEQV.B is
false; otherwise it is true.

Hierarchy of Operations

Operations

Hierarchy

Evaluation of functions 1st (highest)
Exponentiation (**) 2nd
Multiplication and division (* and /) 3rd
Unary addition and subtraction (+ or -) 4th
Binary addition and subtraction (+ and -) 5th
Concatenation (//) 6th
Relationals (.GT.,.GE.,.LT.,.LE.,.EQ.,.NE.) 7th
.NOT. 8th
.AND. 9th
.OR. 10th

| .EQV. or .NEQV. or .XOR. 11th

2

Required Order of Statements and Comments

Figure 1. Order of Statements and Comment Lines

Comment
Lines

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA Statement

FORMAT
and
ENTRY
Statements

IMPLICIT NONE Statement

PARAMETER
Statements

IMPLICIT
Statements

Other
Specification
Statements

DATA
Statements

Statement
Function
Statements

Executable
Statements
and Parallel
Statements

END Statement

 Compiler and Library Information 3

Language Statement Categories
In the following statements, extensions to the Fortran standard language are
printed in color.

Assignment Statements

 Arithmetic
 Character
 Logical
 ASSIGN

Control Statements

 CALL
 CONTINUE
 DO
 DO WHILE
 END
 END DO
 GO TO
 IF
 (ELSE,ELSE IF,
 END IF)
 PAUSE
 RETURN
 STOP

Data Statements

 DATA

Static Debug Statements

 AT
 DEBUG
 DISPLAY
 END DEBUG
 TRACE OFF
 TRACE ON

Input/Output Statements

 BACKSPACE
 CLOSE
 DELETE
 ENDFILE

Input/Output Statements (con-
tinued)

 FORMAT
 INQUIRE
 OPEN
 PRINT
 READ
 REWIND
 REWRITE
 WAIT
 WRITE

Program Statement

 PROGRAM

Specification Statements

| AUTOMATIC
 COMMON
 DIMENSION
 EQUIVALENCE
 Explicit type:
 CHARACTER,
 COMPLEX,
 DOUBLE PRECISION,

INTEGER,
LOGICAL, and REAL

| DOUBLE COMPLEX
| UNSIGNED
| BYTE

 EXTERNAL
 IMPLICIT
 INTRINSIC
 NAMELIST
 PARAMETER

| POINTER
 SAVE

| STATIC

4

Subprogram Statements

 BLOCK DATA
 ENTRY
 FUNCTION
 SUBROUTINE

| Allocation Statements

| ALLOCATE
| DEALLOCATE
| NULLIFY

| Parallel Statements

| See page 26.

 Compiler and Library Information 5

 Statement Syntax

 Statement Syntax
In the following statements, extensions to the Fortran standard language are
printed in color.

| ALLOCATE Statement

| ALLOCATE (pointee1 [, pointee2 ...], STAT=stat)

| Obtains space for a pointee array.

ASSIGN Statement

ASSIGN stl TO i

Assigns a number (statement label) to an integer variable.

Assignment Statement

a = b

Evaluates the expression to the right of the equal sign, replacing the current
value of the variable, array element, character substring, or character vari-
able to the left of the equal sign with the expression’s value.

AT Statement

AT stl

Identifies the beginning of a debug packet and indicates the point in the
program at which debugging statements are to be inserted.

| AUTOMATIC Statement

| AUTOMATIC name1 [, name2 ...]

| Names variables and arrays to be in the automatic storage class.

BACKSPACE Statement

BACKSPACE un

BACKSPACE

6

 Statement Syntax

([UNIT=] un
[,IOSTAT=ios]
[,ERR=stl])

Positions a sequentially-accessed file to the beginning of the Fortran record
last written or read, or repositions the file to the beginning of the preceding
record.

BLOCK DATA Statement

BLOCK DATA [name]

Initializes values for variables and array elements in named common blocks.

CALL Statement

CALL name [([arg1 [,arg2]...])]

Evaluates actual arguments that are expressions, passes actual arguments
that will be associated with dummy arguments defined in the subroutine, and
transfers control to the subroutine.

CLOSE Statement

CLOSE
([UNIT=] un [,ERR=stl]
[,STATUS=sta]
[,IOSTAT=ios])

Disconnects a unit.

COMMON Statement

COMMON [/[name1]/] list1 [[,]/[name2]/list2...]

Allows two or more program units to share storage and to specify the names
of variables and arrays that are to occupy the area.

CONTINUE Statement

CONTINUE

Labels a position in a program (can designate the end of a DO loop).

 Compiler and Library Information 7

 Statement Syntax

DATA Statement

DATA list1 /clist1/ [[,]list2 /clist2/...]

Defines initial values of variables, array elements, arrays, and substrings.

| DEALLOCATE Statement

| DEALLOCATE (pointee1[,pointee2...] STAT=stat)

| Releases space used for a pointee array and resets the associated pointer
| variable to the unassigned state.

DEBUG Statement

DEBUG option1 [,option2...]

Sets the conditions for operation of the debug facility and designates debug-
ging operations that apply to the entire program unit.

DELETE Statement

DELETE un

DELETE

([UNIT=] un
[,ERR=stl]
[,IOSTAT=ios])

Removes a record from a file connected for keyed access.

DIMENSION Statement

DIMENSION a1 (dim1) [,a2 (dim2)...]

Specifies the name and dimensions of an array.

DISPLAY Statement

DISPLAY list

Displays data in NAMELIST output format.

8

 Statement Syntax

DO Statement

DO [stl [,]] i=e1, e2 [,e3]

Controls the processing of the statements that follow it, up to and including
the statement that denotes the end of the DO loop.

DO WHILE Statement

DO [stl [,]] WHILE (m)

Controls the processing of the statements that follow it, up to and including
the terminating statement.

END Statement

END

Terminates a main program or a function, subroutine or block data subpro-
gram.

END DEBUG Statement

END DEBUG

Terminates the last debug packet for the program.

END DO Statement

END DO

Terminates the range of a DO WHILE loop (may be used to terminate the
range of a DO loop).

ENDFILE Statement

ENDFILE un

ENDFILE

([UNIT=] un
[,ERR=stl]
[,IOSTAT=ios])

Writes an end-of-file record on a sequentially accessed external file.

 Compiler and Library Information 9

 Statement Syntax

ENTRY Statement

ENTRY name [([arg1 [,arg2]...])]

Names a place in a subroutine or function subprogram that can be used in a
CALL statement or as a function reference.

EQUIVALENCE Statement

EQUIVALENCE (list1) [,(list2)...]

Permits the sharing of data storage within a single program unit.

Explicit Type Statement

type name1 [,name2...]

type*len name1*len(dim) [,name2*len(dim)...]

Specifies the type and length of variables, arrays, and user-supplied func-
tions, specifies the dimensions of an array, and assigns initial data values for
variables and arrays.

EXTERNAL Statement

EXTERNAL name1 [,name2...]

Identifies a user-supplied subprogram name and permits such a name to be
used as an actual argument.

FORMAT Statement

FORMAT (f1 [,f2...])

Specifies the structure of Fortran records and the form of the data fields
within the records.

10

 Statement Syntax

Format Codes

I Integer data editing
F Real data editing
D Real, complex, or double-precision data editing
E Real, complex, double- or extended-precision data editing
Q Extended-precision data editing
G Real, integer, or logical data transmission
P Scale factor specification
Z Hexadecimal data transmission
L Logical variable transmission
A Character data transmission
H Character constant transmission
X Skipping characters
T Data transmission, start
TL Data transmission, starts number of characters to left
TR Data transmission, starts number of characters to right
Group Repeats a set of format codes
S Plus character control restoration
SP Plus character control production
SS Plus character control cessation
BN Blanks ignored
BZ Blanks treated as zeros
Slash Record termination
Colon Format control termination

| B Binary data transmission
| O Octal data transmission
| $ End-of-record suppression

FUNCTION Statement

[type] FUNCTION name ([arg1 [,arg2]...])

[type*len] FUNCTION name*len ([arg1 [,arg2]...])

Identifies a function subprogram.

Assigned GO TO Statement

GO TO i [[,](stl1 [,stl2] [,stl3]...)]

Transfers control to a statement label depending on the current assignment
of i.

 Compiler and Library Information 11

 Statement Syntax

Computed GO TO Statement

GO TO (stl1 [,stl2] [,stl3]...) [,] m

Transfers control to a statement label depending on the current value of m.

Unconditional GO TO Statement

GO TO stl

Transfers control to the statement specified by the statement label.

Arithmetic IF Statement

IF (m) stl1,stl2,stl3

Transfers control to a statement label depending on the value of the arith-
metic expression m.

Block IF Statement

IF (m) THEN

Controls processing sequence.

ELSE Statement

ELSE

Indicates statements that are processed if the preceding block IF or ELSE IF
condition is evaluated to be false.

ELSE IF Statement

ELSE IF (m) THEN

Indicates statements that are processed if the preceding block IF condition is
evaluated to be false.

END IF Statement

END IF

Concludes an IF-block.

12

 Statement Syntax

Logical IF Statement

IF (m) st

Evaluates a logical expression and processes or skips a statement,
depending on whether the value of the expression is true or false.

IMPLICIT Statement

IMPLICIT type (a [,a]...) [,type(a [,a]...)...]

IMPLICIT type*len (a [,a]...) [,type*len(a [,a]...)...]

IMPLICIT NONE

Confirms or changes the default implied types, or voids implied typing alto-
| gether; type can be AUTOMATIC or STATIC.

INQUIRE by File

INQUIRE
(FILE=fn
[,specifier[,specifier]...])

Allows you to determine file existence, connection status and other proper-
ties of a named file. The list of possible specifiers follows INQUIRE by
Unnamed File statement on page 14.

INQUIRE by Unit

INQUIRE
([UNIT=] un
[,specifier[,specifier]...])

Allows you to determine the existence of a unit, whether the unit is con-
nected to a file, and, if the unit is connected, what the properties are of the
unit and file connection. The list of possible specifiers follows INQUIRE by
Unnamed File statement on page 14.

 Compiler and Library Information 13

 Statement Syntax

INQUIRE by Unnamed File

INQUIRE
([UNIT=] un,
FILE=fn
[,specifier[,specifier]...])

Allows you to determine the file existence and connection status for an
unnamed file, as well as other properties of the file. Following is the list of
possible specifiers.

INTRINSIC Statement

INTRINSIC name1 [,name2...]

Identifies a name as representing a procedure supplied by VS FORTRAN
Version 2, and permits a specific intrinsic function name to be used as an
actual argument.

NAMELIST Statement

NAMELIST /name1/ list1 [/name2/ list2...]

Specifies one or more lists or names for use in READ and WRITE state-
ments.

ACCESS=acc LASTKEY=lky
ACTION=act LASTRECL=lrl
BLANK=blk NAME=nam
CHAR=chr NAMED=nmd

| DELIM=dlm NEXTREC=nxr
DIRECT=dir NUMBER=num
ERR=stl OPENED=opn
EXIST=exs| PAD=pad
FORM=frm PASSWORD=pwd
FORMATTED=fmt| POSITION=pos
IOSTAT=ios READ=ron
KEYED=kyd READWRITE=rwr
KEYEND=ken RECL=rcl
KEYID=kid SEQUENTIAL=seq
KEYLENGTH=kle UNFORMATTED=unf
KEYSTART=kst WRITE=wri

14

 Statement Syntax

| NULLIFY Statement

| NULLIFY (pointer1 [, pointer2 ...])

| Disassociates a pointer variable from an addressed pointee variable and
| sets the value of the pointer variable to the unassigned state.

OPEN Statement

OPEN
([UNIT=] un [,ERR=stl] [,STATUS=sta]
[,FILE=fn] [,ACCESS=acc] [,BLANK=blk]
[,CHAR=chr]
[,FORM=frm] [,IOSTAT=ios]
[,RECL=rcl]
[,ACTION=act] [,PASSWORD=pwd]

| [,POSITION=pos]
| [,PAD=pad]
| [,DELIM=dlm]

[,KEYS=(start : end [,start : end]...)])

Connects an existing file to a unit, creates a file that is preconnected,
creates a file and connects it to a unit, or changes certain specifiers of a
connection between a file and a unit.

PARAMETER Statement

PARAMETER (name1=constant1 [,name2=constant2]...)

Assigns a name to a constant.

PAUSE Statement

PAUSE [n]
PAUSE ['message']

Temporarily halts the processing of the program and displays a message.

| POINTER Statement

| POINTER[*len](ptr1[*len],ptee1[(dim)])[,(ptr2[*len],ptee2[(dim)])...]

| Specifies a pointer variable and associates it with a target variable, called a
| pointee variable. The value of the pointer variable is the storage address of
| the pointee variable.

 Compiler and Library Information 15

 Statement Syntax

PRINT Statement—Formatted with Sequential Access

PRINT fmt [,list]

Transfers data from internal storage to an external device.

PRINT Statement—List-Directed to External Devices

PRINT * [,list]

Transfers data from internal storage to an external device.

PRINT Statement—NAMELIST with External Devices

PRINT name

Transfers data from internal storage to an external device.

PROGRAM Statement

PROGRAM name

Assigns a name to a main program.

READ Statement—Asynchronous

READ
([UNIT=] un,
ID=id)
[list]

Transmits unformatted data from a direct-access or tape device using
sequential access.

READ Statement—Formatted with Direct Access

READ
([UNIT=] un, [FMT=] fmt,
REC=rec [,ERR=stl]
[,IOSTAT=ios]) [list]

Transfers data from an external direct-access device into internal storage.

16

 Statement Syntax

READ Statement—Formatted with Keyed Access (Direct Retrieval)

READ
([UNIT=] un, [FMT=] fmt [,ERR=stl]
[,IOSTAT=ios] [,KEYID=kid] [,NOTFOUND=stl]
{,KEY=key | ,KEYGE=kgel | ,KEYGT=kgt}) [list]

Transfers data from an external direct-access device into internal storage.

READ Statement—Formatted with Keyed Access (Sequential Retrieval)

READ
([UNIT=] un, [FMT=] fmt [,ERR=stl]
[,IOSTAT=ios] [,NOTFOUND=stl | ,END=stl])
[list]

Transfers data from an external direct-access device into internal storage.

READ Statement—Formatted with Sequential Access

READ fmt [,list]

READ

([UNIT=] un, [FMT=] fmt
[,ERR=stl] [,END=stl]
[,IOSTAT=ios]) [list]

Transfers data from an external I/O device to storage.

READ Statement—Formatted with Sequential Access to Internal Files

READ
([UNIT=] un, [FMT=] fmt
[,ERR=stl] [,END=stl]
[,IOSTAT=ios]) [list]

Transfers data from one area of internal storage into another area of internal
storage.

 Compiler and Library Information 17

 Statement Syntax

READ Statement—List-Directed from External Devices

READ * [,list]

READ

([UNIT=] un, [FMT=] *
[,ERR=stl] [,END=stl]
[,IOSTAT=ios]) [list]

Transfers data from an external device into internal storage.

READ Statement—List-Directed with Internal Files

READ
([UNIT=] un, [FMT=] *
[,ERR=stl] [,END=stl]
[,IOSTAT=ios]) [list]

Transfers data from one area of internal storage to one or more other areas
of internal storage.

READ Statement—NAMELIST with External Devices

READ name

READ

([UNIT=] un
| {[,FMT=]name | [,NML=]name}

[,ERR=stl] [,END=stl]
[,IOSTAT=ios])

Transfers data from an external I/O device into storage.

READ Statement—NAMELIST with Internal Files

READ
([UNIT=] un

| {[,FMT=]name | [,NML=]name}
[,ERR=stl] [,END=stl]
[,IOSTAT=ios])

Transfers data from one area of internal storage to one or more other areas
of internal storage.

18

 Statement Syntax

READ Statement—Unformatted with Direct Access

READ
([UNIT=] un, REC=rec
[,ERR=stl] [,IOSTAT=ios]
[,NUM=n]) [list]

Transfers data without conversion from an external direct-access device into
internal storage.

READ Statement—Unformatted with Keyed Access (Direct Retrieval)

READ
([UNIT=] un [,ERR=stl] [,IOSTAT=ios] [,KEYID=kid]
{,KEY=key | ,KEYGE=kge | ,KEYGT=kgt}
[,NOTFOUND=stl] [,NUM=n]) [list]

Transfers data without conversion from an external direct-access I/O device
into internal storage.

READ Statement—Unformatted with Keyed Access (Sequential
Retrieval)

READ
([UNIT=] un [,ERR=stl] [,IOSTAT=ios]
[,NOTFOUND=stl | ,END=stl]
[,NUM=n]) [list]

Transfers data without conversion from an external direct-access I/O device
into internal storage.

READ Statement—Unformatted with Sequential Access

READ
([UNIT=] un [,ERR=stl]
[,END=stl] [,IOSTAT=ios]
[,NUM=n]) [list]

Transfers data without conversion from an external I/O device into internal
storage.

 Compiler and Library Information 19

 Statement Syntax

RETURN Statement in Function Subprogram

RETURN

Returns control to the calling program.

RETURN Statement in Subroutine Subprogram

RETURN [m]

Returns control to the calling program.

REWIND Statement

REWIND un

REWIND

([UNIT=] un [,ERR=err]
[,IOSTAT=ios])

Repositions a sequentially-accessed file at the beginning of the first record of
the file.

REWRITE Statement—Formatted with Keyed Access

REWRITE
([UNIT=] un, [FMT=] fmt
[,ERR=stl] [,IOSTAT=ios]
[,DUPKEY=stl]) list

Replaces a record in a keyed file.

REWRITE Statement—Unformatted with Keyed Access

REWRITE
([UNIT=] un [,ERR=stl]
[,IOSTAT=ios] [,DUPKEY=stl]
[,NUM=num]) list

Replaces a record in a keyed file.

20

 Statement Syntax

SAVE Statement

SAVE [name1 [,name2]...]

Retains the definition status of the name of a named common block, variable
or array after the processing of a RETURN or END statement in a subpro-
gram.

Statement Function Statement

name ([arg1 [,arg2]...]) = m

Specifies operations to be performed whenever that statement function name
appears as a function reference in another statement in the same program.

| STATIC Statement

| STATIC name1 [/clist1/] [, name2[/clist2/] ...]

| Identifies the variables and arrays to be assigned the static storage class.

STOP Statement

STOP [n]
STOP ['message']

Ends the processing of the object program and displays a message.

SUBROUTINE Statement

SUBROUTINE name [([arg1 [,arg2]...])]

Identifies a subroutine subprogram.

TRACE OFF Statement

TRACE OFF

Stops the display of program flow by statement label.

 Compiler and Library Information 21

 Statement Syntax

TRACE ON Statement

TRACE ON

Initiates the display of program flow by statement label.

WAIT Statement

WAIT
([UNIT=]un, ID=id
[,COND=i1] [,NUM=i2])
[list]

Synchronizes the completion of the data transmission begun by the corre-
sponding asynchronous READ or WRITE statement.

WRITE Statement—Asynchronous

WRITE
([UNIT=] un,
ID=id)
list

Transmits data from an array in main storage to an external file.

WRITE Statement—Formatted with Direct Access

WRITE
([UNIT=] un, [FMT=] fmt,
REC=rec [,ERR=stl]
[,IOSTAT=ios]) [list]

Transfers data from internal storage onto an external device.

WRITE Statement—Formatted with Keyed Access

WRITE
([UNIT=] un, [FMT=] fmt
[,ERR=stl] [,IOSTAT=ios]
[,DUPKEY=stl]) list

Transfers data from internal storage onto an external device.

22

 Statement Syntax

WRITE Statement—Formatted with Sequential Access

WRITE
([UNIT=] un, [FMT=] fmt
[,ERR=stl] [,IOSTAT=ios])
[list]

Transfers data from internal storage to a file.

WRITE Statement—Formatted with Sequential Access to Internal Files

WRITE
([UNIT=] un, [FMT=] fmt
[,ERR=stl] [,IOSTAT=ios])
[list]

Transfers data from one or more areas of internal storage to another area in
internal storage.

WRITE Statement—List-Directed to External Devices

WRITE
([UNIT=] un, [FMT=] *
[,ERR=stl] [,IOSTAT=ios])
[list]

Transfers data from internal storage to a file.

WRITE Statement—List-Directed with Internal Files

WRITE
([UNIT=] un, [FMT=] *
[,ERR=stl] [,IOSTAT=ios])
[list]

Transfers data from one or more areas of internal storage to another area of
internal storage.

 Compiler and Library Information 23

 Statement Syntax

WRITE Statement—NAMELIST with External Devices

WRITE
([UNIT=] un,

| {[,FMT=]name | [,NML=]name}
[,ERR=stl]
[,IOSTAT=ios])

Transfers data from internal storage to a file.

WRITE Statement—NAMELIST with Internal Files

WRITE
([UNIT=] un,

| {[,FMT=]name | [,NML=]name}
[,ERR=stl]
[,IOSTAT=ios])

Transfers data from one or more areas of internal storage to another area of
internal storage.

WRITE Statement—Unformatted with Direct Access

WRITE
([UNIT=] un, REC=rec
[,ERR=stl] [,IOSTAT=ios]
[,NUM=n]) [list]

Transfers data without conversion from internal storage to a file.

WRITE Statement—Unformatted with Keyed Access

WRITE
([UNIT=] un [,ERR=stl]
[,IOSTAT=ios] [,NUM=n]
[,DUPKEY=stl]) list

Transfers data without conversion from internal storage to a file.

24

 Statement Syntax

WRITE Statement—Unformatted with Sequential Access

WRITE
([UNIT=] un [,ERR=stl]
[,IOSTAT=ios] [,NUM=n])
[list]

Transfers data without conversion from internal storage to a file.

 Compiler and Library Information 25

 Parallel Statement Categories

Parallel Statement Categories
In the following statements, extensions to the Fortran standard language are
printed in color.

Parallel Task Management Statements

 ORIGINATE
 SCHEDULE
 TERMINATE
 WAIT FOR
 ALL TASKS
 ANY TASK
 TASK

Parallel Loop Statements

 EXIT
 LOCAL
 PARALLEL DO
 DOAFTER
 DOBEFORE
 DOEVERY

Parallel Sections Statements

 END SECTIONS
 LOCAL
 PARALLEL SECTIONS
 SECTION

Parallel Call Statements

 PARALLEL CALL
WAIT FOR ALL CALLS

26

 Parallel Statement Syntax

Parallel Statement Syntax
In the following statements, extensions to the Fortran standard language are
printed in color.

Parallel Task Management Statements
ORIGINATE Statement

ORIGINATE TASK ptaskid | ORIGINATE ANY TASK rtaskid

Creates a new parallel task.

SCHEDULE Statement

{SCHEDULE TASK ptaskid | SCHEDULE ANY TASK rtaskid}
[,SHARING (shrcom [,shrcom]...)]
[,COPYING (cpcom [,cpcom]...)]
[,COPYINGI (cpicom [,cpicom]...)]
[,COPYINGO (cpocom [,cpocom]...)]
,CALLING subx [([arg[,arg]...])]

Assigns a subroutine to an originated task for parallel processing. Must
have a matching WAIT FOR ALL TASKS, WAIT FOR ANY TASK, or WAIT
FOR TASK statement.

TERMINATE Statement

TERMINATE TASK taskid

Deletes a parallel task created by ORIGINATE.

WAIT FOR Statements

One of the following WAIT FOR statements is required for each SCHEDULE
statement in a parallel task.

WAIT FOR ALL TASKS Statement

WAIT FOR ALL TASKS

Causes the scheduling routine to wait for all originated tasks, owned by the
scheduling routine, to finish processing.

 Compiler and Library Information 27

 Parallel Statement Syntax

WAIT FOR ANY TASK Statement

WAIT FOR ANY TASK rtaskid

Causes the scheduling routine to wait for any originated task, owned by the
scheduling routine, to finish processing.

WAIT FOR TASK Statement

WAIT FOR TASK ptaskid

Causes the scheduling routine to wait for a specified originated task, owned
by the scheduling routine, to finish processing.

Parallel Loop Statements
EXIT Statement

EXIT stl

Stops processing of the DOEVERY block of a parallel loop, whether or not
all the iterations have finished running.

LOCAL Statement (for parallel loops)

LOCAL var [,var]...

| Specifies that an instance of each variable and array listed is provided to
each virtual processor participating in execution of the parallel loop.

PARALLEL DO Statement

PARALLEL DO [stl [,]] i = e1, e2 [,e3]

Similar to the DO statement except each iteration of the loop can be proc-
essed concurrently; permits parallelism of the loops to be explicitly stated.

DOAFTER Statement

DOAFTER [LOCK]

Indicates the beginning of a block of statements that each virtual processor
participating in the execution of the PARALLEL DO processes after the loop
is run.

28

 Parallel Statement Syntax

DOBEFORE Statement

DOBEFORE [LOCK]

Indicates the beginning of a block of statements that each virtual processor
participating in the execution of the PARALLEL DO processes before the
loop is run.

DOEVERY Statement

DOEVERY

Indicates the beginning of a block of statements with processing shared by
the virtual processors assigned to the loop.

Parallel Sections Statements
END SECTIONS Statement

END SECTIONS

Terminates a group of parallel sections.

LOCAL Statement (for parallel sections)

LOCAL var [,var]...

| Specifies that an instance of each variable and array listed is provided to
each virtual processor participating in execution of the parallel loop.

PARALLEL SECTIONS Statement

PARALLEL SECTIONS

Indicates the beginning of a group of sections that can be run in parallel with
other sections in the group.

SECTION Statement

SECTION [m][,WAITING (n1 [,n2]...)]

Indicates the beginning of a block of statements to be processed as a par-
allel thread.

 Compiler and Library Information 29

 Parallel Statement Syntax

Parallel Call Statements
PARALLEL CALL Statement

PARALLEL CALL name [([arg1[,arg2]...])]

Assigns a subroutine to run as a parallel thread.

WAIT FOR ALL CALLS Statement

WAIT FOR ALL CALLS

Causes the calling routine to wait until all subroutines invoked with PAR-
ALLEL CALL within the same parallel thread have completed.

30

 Compile-Time Options

 Compile-Time Options
Note: To specify compile-time options on a program-by-program basis,
use the @PROCESS compiler directive; for example: @PROCESS LIST
TEST.

AUTODBL (NONE | DBL | DBL4 | DBL8 |
DBLPAD | DBLPAD4 | DBLPAD8 | value)

Provides an automatic means of converting single-precision floating-point
calculations to double-precision, and double-precision calculations to
extended-precision.

CHARLEN (number | 500)
Specifies the maximum length permitted for any character variable, char-
acter array element, or character function.

CI (number1, number2,...)
Specifies the identification numbers of the INCLUDE statements to be
processed.

DBCS | NODBCS
Specifies whether the source file may contain double-byte characters.

DC (* | name1, name2,...)
Defines the names of common blocks to be allocated at run time.

| DDIM | NODDIM
| Indicates that the pointee arrays that specify object-time dimensions are to
| have those dimensions evaluated dynamically at each element reference.

DECK | NODECK
Specifies whether the compiler is to write the object module to the data
set defined by the ddname SYSPUNCH.

DIRECTIVE (trigger-constant) | NODIRECTIVE [(trigger-constant)]
Specifies whether selected comments containing compiler directive state-
ments are to be processed.

| DYNAMIC (name1,name2...)
| Provides dynamic loading of user subroutines or functions during program
| execution.

EC (* | name1, name2,...)
Defines the names of common blocks to be dynamically allocated as
extended common blocks.

EMODE | NOEMODE
Specifies that the code compiled for a subroutine or function can receive
parameters that reside in an extended common block.

 Compiler and Library Information 31

 Compile-Time Options

FIPS (S | F) | NOFIPS
Specifies whether standard language flagging is to be performed, and, if it
is, the standard language flagging level: subset or full.

Items not defined in the current American National Standard are flagged.

FLAG (I | W | E | S)
Specifies the level of diagnostic messages to be written: I (information) or
higher, W (warning) or higher, E (error) or higher, or S (severe) or higher.

FREE | FIXED
Indicates whether the input source program is in free format or in fixed
format.

GOSTMT | NOGOSTMT
Specifies whether internal statement numbers (for run-time error debug-
ging information) are to be generated for a calling sequence to a subpro-
gram or to the run-time library from the compiler-generated code.

| HALT (I|W|E|S)
| Causes termination of the compile after any phase if the compiler return
| code is at or above the specified level.

ICA [(
[USE (name1,name2,...)]
[UPDATE (name)]
[DEF (nameA, nameB,...)]
[MXREF (S | L) | NOMXREF]
[CLEN | NOCLEN]
[CVAR | NOCVAR]
[MSG ({ NEW | NONE | ALL })]
[MSGON (number1, number2, ...) | MSGOFF (number1, number2, ...)]
[RCHECK | NORCHECK]
)]
| NOICA

Specifies whether intercompilation analysis is to be performed, specifies
the files containing intercompilation analysis information to be used or
updated, and controls output from intercompilation analysis.

IL (DIM | NODIM)
Specifies whether the code for adjustably-dimensioned arrays is to be
placed inline, IL(DIM) or called from the library, IL(NODIM).

LANGLVL (66 | 77)
Specifies the language level in which the input source program is written:
the FORTRAN 66 language level or the FORTRAN 77 language level.

LINECOUNT (number | 60)
Specifies the maximum number of lines on each page of the printed
source listing.

32

 Compile-Time Options

LIST | NOLIST
Specifies whether the object module listing is to be written.

MAP | NOMAP
Specifies whether a table of source program variable names, named con-
stants, and statement labels and their displacements is to be produced.

NAME (name | MAIN#)
Specifies the name of the control section (CSECT) generated in the object
module of the main program (valid only when LNGLVL(66) is specified).

OBJECT | NOOBJECT
Under CMS, specifies whether the compiler is to write the object module
to the file associated with the ddname TEXT.

Under MVS, specifies whether the compiler is to write the object module
to the data set associated with the ddname SYSLIN.

OPTIMIZE (0 | 1 | 2 | 3) | NOOPTIMIZE
Specifies the optimizing level to be used during compilation:

OPTIMIZE (0) or NOOPTIMIZE specifies no optimization.
OPTIMIZE (1) specifies partial optimization.
OPTIMIZE (2) specifies full optimization with interruption localizing.
OPTIMIZE (3) specifies full optimization without interruption localizing.

| PARALLEL [(
| [REPORT [(optionlist)] | NOREPORT]
| [LANGUAGE | NOLANGUAGE]
| [AUTOMATIC | NOAUTOMATIC]
| [REDUCTION | NOREDUCTION]
| [TRACE | NOTRACE]
| [ANZCALL | NOANZCALL]
|)]
| | NOPARALLEL
| Specifies suboptions to the compiler for generating code for DO loops, the
| PARALLEL DO, PARALLEL SECTIONS, and PARALLEL CALL con-
| structs, and the task management statements.

| PTRSIZE (4|8)
| Sets the default length for pointer variables.

RENT | NORENT
Specifies whether the object module generated is suitable for use in a
shareable area.

 Compiler and Library Information 33

 Compile-Time Options

SAA | NOSAA
Specifies whether flagging of language elements that are not part of the
Systems Application Architecture* (SAA*) is to be performed.

SC (* | name1, name2,...)
Defines the names of common blocks to be compiled as static common
blocks.

SDUMP [(ISN | SEQ)] | NOSDUMP
Specifies whether symbolic dump information is to be generated, and if
so, whether internal statement numbers or sequence numbers will be
used. The -g flag on the fvs command is equivalent to this option.

SOURCE | NOSOURCE
Specifies whether the source listing is to be produced.

SRCFLG | NOSRCFLG
Controls the insertion of error messages in the source listing.

SXM | NOSXM
Formats XREF or MAP listing output to a 72-character width.

SYM | NOSYM
Invokes the production of SYM cards in the object text file. The SYM
cards contain location information for variables within a Fortran program.

TERMINAL | NOTERMINAL
Specifies whether error messages and compiler diagnostics are to be
written on the SYSTERM data set and whether a summary of messages
for all compilations is to be written at the end of the listing.

TEST | NOTEST
TEST overrides any optimization level about OPTIMIZE(0).

TRMFLG | NOTRMFLG
Controls the display of error messages on the terminal.

VECTOR [(
[REPORT [(optionlist)] | NOREPORT]
[INTRINSIC | NOINTRINSIC]
[IVA | NOIVA]
[REDUCTION | NOREDUCTION]
[SIZE ({ANY | LOCAL | n })]

| [MODEL (ANY|VF2|LOCAL)]
| [SPRECOPT | NOSPRECOPT]
| [ANZCALL | NOANZCALL]

* SAA and Systems Application Architecture are trademarks of the International Busi-
ness Machines Corporation.

34

 Compile-Time Options

| [CMPLXOPT | NOCMPLXOPT]
)]
| NOVECTOR

Specifies whether to invoke the vectorization process, which produces
programs that can utilize the speed of the IBM* 3090* vector facility.

XREF | NOXREF
Specifies whether a cross-reference listing is to be produced.

* IBM and 3090 are trademarks of the International Business Machines Corporation.

 Compiler and Library Information 35

Conflicting Compile-Time Options
Conflicting Compile-Time Options Options Assumed

DBCS FIPS DBCS NOFIPS

DBCS SAA DBCS NOSAA

DC EC Note 1 Note 1

DC SC Note 1 Note 1

EC SC Note 1 Note 1

EC NOEMODE EC EMODE

FIPS FLAG¬=I FIPS FLAG=I

FIPS SAA Installation default Installation default

FREE FIPS FREE NOFIPS

FREE SAA FREE NOSAA

FREE SDUMP(SEQ) FREE SDUMP(ISN)

LANGLVL(66) DBCS LANGLVL(66) NODBCS

LANGLVL(66) FIPS LANGLVL(66) NOFIPS

LANGLVL(66) SAA LANGLVL(66) NOSAA

LANGLVL(77) NAME LANGLVL(77) Ignore NAME

NODECK SYM NODECK NOSYM

NOOBJ SYM NOOBJ NOSYM

NOTRMFLG VEC(REP(TERM...)) NOTRMFLG VEC(REP(NOTERM...))

NOTRMFLG PAR(REP(TERM...)) NOTRMFLG PAR(REP(NOTERM...))

PAR OPT(0) or OPT(1) PAR OPT(3)

PAR TEST NOPAR TEST

PAR(NOREP) VEC(REP(LIST)) PAR(REP(LIST)) VEC(REP(LIST))

| PAR(ANZCALL)| VEC(NOANZCALL)| PAR(NOANZCALL)| VEC(NOANZCALL)

| PAR(NOANZCALL)| VEC(ANZCALL)| PAR(ANZCALL)| VEC(ANZCALL)

PAR(NOREP) VEC(REP(XLIST)) PAR(REP(XLIST)) VEC(REP(XLIST))

PAR(NOREP) VEC(REP(STAT)) PAR(REP(STAT)) VEC(REP(STAT))

PAR(REP(LIST)) VEC(NOREP) PAR(REP(LIST)) VEC(REP(LIST))

PAR(REP(XLIST)) VEC(NOREP) PAR(REP(XLIST)) VEC(REP(XLIST))

PAR(REP(STAT)) VEC(NOREP) PAR(REP(STAT)) VEC(REP(STAT))

PAR(REP) VEC(REP(SLIST)) PAR(REP(SLIST
XLIST))

VEC(REP(SLIST
XLIST))

TEST OPT(1), OPT(2),
OPT(3)

TEST OPT(0)

TEST NOSDUMP TEST SDUMP(ISN)

VEC OPT(0) or OPT(1) VEC OPT(3)

VEC(IVA) NOSDUMP VEC(IVA) SDUMP(ISN)

VEC(IVA) PAR VEC(NOIVA) PAR

Note:

1. The SC, DC, and EC compile-time options use the last option indicated to resolve conflicts between
them.

36

 Compiler Directives

 Compiler Directives
@PROCESS

Provides compile-time options that override the corresponding default
options or those specified at compiler invocation.

EJECT

EJECT

Starts a new full page of the source listing.

INCLUDE

INCLUDE (member) [n]

INCLUDE 'filename [filetype [filemode]] [(member)]'

INCLUDE 'dsn [(member)]'

INCLUDE 'filename'

Inserts a specified statement or group of statements into a program unit.

 Compiler and Library Information 37

 Parallel and Vector Directives

Parallel and Vector Directives
ASSUME COUNT

Local Directive:
ASSUME COUNT (val)

Global Directive:
ASSUME COUNT ({val|var=val[,var=val]...}) ON

ASSUME COUNT OFF

Specifies the value to be used for vector or parallel cost analysis when a
loop iteration count cannot be determined at compile time.

IGNORE

IGNORE [RECRDEPS [(array-list)]] [CALLDEPS [(name[,name...])]]

Instructs the compiler to ignore specified dependences in a loop.

Warning: Use with extra caution. Incorrectly specifying IGNORE can
produce erroneous program results.

PREFER

Local PREFER:
PREFER [SCALAR | VECTOR]

[SERIAL | PARALLEL]
[CHUNK({n|n:|:m.|n::m})]

Global PREFER:
PREFER [SCALAR | SERIAL] ON | OFF

Requests that particular loops be run in vector or scalar and/or parallel or
serial modes.

38

 Run-Time Options

 Run-Time Options
ABSDUMP | NOABSDUMP

Specifies whether the post-ABEND symbolic dump information is to be
printed in the event of an abnormal termination.

AUTOTASK (loadmod,ntasks) | NOAUTOTASK
Specifies whether the multitasking facility (MTF) is enabled for your
program. This option available on MVS only.

CNVIOERR | NOCNVIOERR
Specifies whether to treat input conversion errors as I/O errors.

DEBUG | NODEBUG
Specifies whether to call VS FORTRAN Version 2 interactive debug.

DEBUNIT(s1 [, s2...]) | NODEBUNIT (MVS format)
DEBUNIT(s1 [s2 s3]) | NODEBUNIT (CMS format)

Identifies Fortran units considered to be connected to a terminal, so that
interactive debug can handle their I/O in batch mode.

ECPACK | NOECPACK
Specifies whether a data space should be filled with as many extended
common blocks as possible before a new data space is allocated.

| ERRUNIT(number)
| Identifies the unit number to which run-time error information is to be
| directed.

FAIL (ABEND | RC | ABENDRC)
Indicates how to terminate unsuccessful programs. This option is not sup-
ported for parallel processing.

FILEHIST | NOFILEHIST
Specifies whether to allow the file definition referred to by a ddname to be
changed at run time.

INQPCOPN | NOINQPCOPN
Controls using the OPENED specifier on an INQUIRE by unit to determine
whether a preconnected unit had any I/O statements directed to it.

IOINIT | NOIOINIT
Specifies whether the normal initialization for I/O processing occurs during
initialization of the run-time environment.

OCSTATUS | NOOCSTATUS
Specifies whether to verify the OPEN and CLOSE status specifiers.

PARALLEL [(numprocs)] | NOPARALLEL
Specifies whether the program runs in the parallel processing environ-
ment.

 Compiler and Library Information 39

 Run-Time Options

| PRTUNIT(number)
| Identifies the unit number that is to be used for PRINT or WRITE state-
| ments that do not specify a unit number.

| PTRACE[(options)]
| Enables the Paralllel Trace Facility and causes the Trace File to be initial-
| ized.

| PUNUNIT(number)
| Identifies the unit number that is to be used for PUNCH statements that
| do not specify a unit number.

| RDRUNIT(number)
| Identifies the unit number that is to be used for READ statements that do
| not specify a unit number.

RECPAD | NORECPAD
Specifies whether a formatted input record is padded with blanks when an
input list and format specification require more data from the record than
the record contains.

SPIE | NOSPIE
Specifies whether the run-time environment takes control when a program
interrupt occurs.

STAE | NOSTAE
Specifies whether the run-time environment takes control in the event of
an abnormal termination.

XUFLOW | NOXUFLOW
Specifies whether an exponent underflow causes a program interrupt.

40

 Service Subroutines

 Service Subroutines
| ARGSTR Subroutine

| CALL ARGSTR(string,rc)

| Retrieves the user-supplied parameters from the command line.

ASSIGNM Subroutine

CALL ASSIGNM (input, output, rcode, rsncode)

Moves a character string containing double-byte data to a character variable,
substring, or array element, preserving balanced shift codes.

CLOCK Subroutine

CALL CLOCK (cpuclk, [,count [,max]])

Returns the value of the processor clock as a positive integer.

CLOCKX Subroutine

CALL CLOCKX (cpuclk [,xcount [,xmax]])

Returns an abbreviated version of the processor clock in a REAL*8 variable.

CDUMP/CPDUMP Subroutines

CALL {CDUMP | CPDUMP} (a1,b1,a2,b2 ...)

Provides a symbolic dump of a specified area of storage containing char-
acter data.

CPUTIME Subroutine

CALL CPUTIME (accumcpu, rcode)

Lets you determine the amount of processor time used by a program or
portion of a program. This subroutine is not allowed in a parallel program.

DATIM Subroutine

CALL DATIM (now)

Provides information about the date, time of day, and processor clock.

 Compiler and Library Information 41

 Service Subroutines

DATIMX Subroutine

CALL DATIMX (now)

Provides the date and time in a form that can be used to produce printable
or formatted data.

DUMP/PDUMP Subroutines

CALL {DUMP | PDUMP} (a1,b1,k1,a2,b2,k2 ...)

Provides a symbolic dump of a specified area of storage.

DVCHK Subroutine

CALL DVCHK (k)

Tests for divide-check exception.

EXIT Subroutine

CALL EXIT

Ends processing of the program. This subroutine can be called only in serial
parts of the root task.

FILEINF Subroutine

CALL FILEINF [(rcode [,param1, value1, param2, value2 ...])]

Sets up file characteristics to be used by an OPEN or an INQUIRE state-
ment.

| MVBITS Subroutine

| CALL MVBITS(arg1,arg2,arg3,arg4,arg5)

| Allows a bit subfield of one integer value to be assigned to a bit subfield of
| another integer value.

42

 Service Subroutines

OVERFL Subroutine

CALL OVERFL (k)

Tests for exponent overflow or underflow.

| PFAFFS Routine

| CALL PFAFFS

| Switches the virtual processor the parallel thread is running on to the same
| one that the parallel program first started running on; allows use of system
| services.

| PFAFFC Routine

| CALL PFAFFC

| Releases any processor affinity previously set by calling PFAFFS.

| PYIELD Routine

| CALL PYIELD

| Causes the VS FORTRAN Version 2 library to interrupt the execution of the
| current thread and to attempt to execute any threads now waiting to execute.

| PTPARM Routine

| CALL PTPARM (argstring)

| Provides a means for your program to dynamically control the tracing activity
| of the Parallel Trace Facility during program execution.

| PTWRIT Routine

| CALL PTWRIT(category,type,user_data [,user_data_len])

| Allows you to generate your own trace records for events you determine are
| of significance in the execution of your program.

 Compiler and Library Information 43

 Service Subroutines

SDUMP Subroutine

CALL SDUMP [(rtn1 [,rtn2]...)]

Provides a symbolic dump of all variables in a program unit.

SYSABD Subroutine

CALL SYSABD (compl-code)

Causes abnormal termination of your job with a dump.

SYSABN Subroutine

CALL SYSABN (compl-code)

Causes abnormal termination of your job without a dump.

SYSRCS Subroutine

CALL SYSRCS (n)

Saves a return code value for future termination.

SYSRCT

CALL SYSRCT (m)

Obtains the value of the currently saved return code.

SYSRCX Subroutine

CALL SYSRCX [(k)]

Ends program processing using either the saved return code or a supplied
return code.

UNTANY Subroutine

CALL UNTANY (rcode, startnum, endnum, unitnum)

Identifies the lowest Fortran unit number that is available, within a range of
unit numbers, regardless of the file definitions in effect.

44

 Parallel Service Subroutines

UNTNOFD Subroutine

CALL UNTNOFD (rcode, startnum, endnum, unitnum)

Identifies the lowest Fortran unit number that is available, within a range of
unit numbers, that does not have a user-specified file definition associated
with it.

XUFLOW Subroutine

CALL XUFLOW (k)

Allows or suppresses a program interrupt caused by exponent underflow.

Parallel Library Event Service Subroutines
PEORIG Subroutine

CALL PEORIG (eventid [,postcount [,waitcount [,unique]]])

Creates and initializes an event and returns an identifier for the event.

PEPOST Subroutine

CALL PEPOST (eventid)

Posts the specified event.

PETERM Subroutine

CALL PETERM (eventid)

Deletes the specified event.

PEWAIT Subroutine

CALL PEWAIT (eventid)

Causes the calling parallel thread to wait until the event's post-count (or wait-
count if the current post-count equal to the initial value) is reached.

 Compiler and Library Information 45

 Parallel Service Subroutines

Parallel Library Lock Service Subroutines and Function
PLCOND Function

PLCOND (lockid [,mode [,var [,var]...]])

Conditionally obtains the specified lock.

PLFREE Subroutine

CALL PLFREE (lockid [,var [,var [var]...]])

Releases the specified lock.

PLLOCK Subroutine

CALL PLLOCK (lockid[,mode[,var[,var]...]])

Obtains the specified lock. If the lock is currently owned by another parallel
thread, waits until lock is available.

PLORIG Subroutine

CALL PLORIG (lockid)

Creates and initializes a lock and returns an identifier for the lock.

PLTERM Subroutine

CALL PLTERM (lockid)

Deletes the specified lock.

46

 Parallel Service Subroutines

 Parallel Function
NPROCS Function

NPROCS ([n])

Allows the program to determine the number of virtual processors specified
at run time.

 Compiler and Library Information 47

 Data-in-Virtual Subroutines

 Data-in-Virtual Subroutines
| The data-in-virtual subroutines are not available for parallel processing.

DIVCML Subroutine

CALL DIVCML (rcode, dyncom, length)

| Obtains the length of a dynamic or extended common.

DIVINF Subroutine

CALL DIVINF (rcode, dyncom, objsize_commons, divobj,
type, access)

| Allows you to associate a data object with a dynamic or extended common
| for reading or for reading and writing (fixed-view).

DIVINV Subroutine

CALL DIVINV (rcode, obj-id, objsize_pages, divobj,
type, access)

Allows you to associate a data object with a data object ID for reading or for
reading and writing (varying-view).

DIVRES Subroutine

CALL DIVRES (rcode, dyncom)

| Resets the data in the dynamic or extended common to the values in the
| mapped part of the data object, eliminating any changes that have been
| made in the dynamic or extended common, either initially or since the last
| DIVSAV.

DIVSAV Subroutine

CALL DIVSAV (rcode, dyncom)

| Saves changes made in the dynamic or extended common to the data object
that has been accessed for READWRITE.

48

 Data-in-Virtual Subroutines

DIVTRF Subroutine

CALL DIVTRF (rcode, dyncom)

| Terminates the association of the data object to the dynamic or extended
| common (fixed-view).

DIVTRV Subroutine

CALL DIVTRV (rcode, obj-id)

Terminates the association between the data object ID and the data object
(varying-view).

DIVVWF Subroutine

CALL DIVVWF (rcode, dyncom, mapnum)

| Establishes the part of the data object the dynamic or extended common
| maps (fixed-view).

DIVVWV Subroutine

CALL DIVVWV (rcode, dyncom, offset, obj-id)

| Establishes the part of the data object the dynamic or extended common
| maps (varying-view).

 Compiler and Library Information 49

 Multitasking Facility (MTF) Subroutines

Multitasking Facility (MTF) Subroutines
DSPTCH Subroutine

CALL DSPTCH (subrname [, (arg1) [, (arg2)]...])

Schedules a parallel subroutine for processing in a subtask.

NTASKS Subroutine

CALL NTASKS (n)

Returns the number of subtasks specified with the AUTOTASK keyword in
the PARM parameter of the EXEC statement for the job step. Returns a
value of zero when the AUTOTASK keyword is not in effect.

SHRCOM Subroutine

CALL SHRCOM (dyncom)

Designates a dynamic common as shareable among the main task program
and the parallel subroutines.

SYNCRO Subroutine

CALL SYNCRO

Causes the main task program to wait until all scheduled parallel subroutines
finish processing.

50

 Error-Handling Subroutines

 Error-Handling Subroutines
Note that each parallel task has its own error option table. A parallel thread
uses the error option table associated with the parallel task in which it runs.

ERRMON Subroutine

CALL ERRMON (imes, iretcd, ierno [, data1] [, data2, ...])

Calls the error monitor routine.

ERRSAV Subroutine

CALL ERRSAV (ierno, tabent)

Copies an option table entry into an 8-byte storage area accessible to the
Fortran programmer.

ERRSET Subroutine

CALL ERRSET (ierno, inoal [, inomes] [, itrace]
[, iusadr] [, irange])

Permits the user to control processing when error conditions occur.

ERRSTR Subroutine

CALL ERRSTR (ierno, tabent)

Stores an entry in the option table.

ERRTRA Subroutine

CALL ERRTRA

Dynamically requests a traceback and continued processing.

 Compiler and Library Information 51

 Intrinsic Functions

 Intrinsic Functions

Intrinsic functions are procedures supplied in VS FORTRAN Version 2 for
standard mathematical computations, character manipulations, and bit
manipulations.

The intrinsic functions provided by VS FORTRAN Version 2 are described in
the following figure.

| Figure 2 (Page 1 of 6). Intrinsic Functions

| Intrinsic
| Function
| Generic
| Name
| Specific
| Name

| No.
| of
| Argu-
| ments
| Type of Argu-
| ment

| Type and
| Range of
| Function

|
| Exponential and Logarithmic Functions
|

| Exponential| EXP| EXP�
| DEXP�
| QEXP
| CEXP
| CDEXP
| CQEXP

| 1| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| Natural loga-
| rithm
| LOG| ALOG�
| DLOG�
| QLOG
| CLOG
| CDLOG
| CQLOG

| 1| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| Common
| logarithm
| LOG10| ALOG10�
| DLOG10�
| QLOG10

| 1| REAL*4
| REAL*8
| REAL*16

| REAL*4
| REAL*8
| REAL*16

|
| Trigonometric Functions
|

| Sine| SIN| SIN�
| DSIN�
| QSIN
| CSIN
| CDSIN
| CQSIN

| 1| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| Cosine| COS| COS�
| DCOS�
| QCOS
| CCOS
| CDCOS
| CQCOS

| 1| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

52

 Intrinsic Functions

| Figure 2 (Page 2 of 6). Intrinsic Functions

| Intrinsic
| Function
| Generic
| Name
| Specific
| Name

| No.
| of
| Argu-
| ments
| Type of Argu-
| ment

| Type and
| Range of
| Function

| Tangent| TAN| TAN�
| DTAN�
| QTAN

| 1| REAL*4
| REAL*8
| REAL*16

| REAL*4
| REAL*8
| REAL*16

| Cotangent| COTAN| COTAN�
| DCOTAN�
| QCOTAN

| 1| REAL*4
| REAL*8
| REAL*16

| REAL*4
| REAL*8
| REAL*16

| Arcsine| ASIN| ASIN�
| DASIN�
| QARSIN

| 1| REAL*4
| REAL*8
| REAL*16

| REAL*4
| REAL*8
| REAL*16

| Arccosine| ACOS| ACOS�
| DACOS�
| QARCOS

| 1| REAL*4
| REAL*8
| REAL*16

| REAL*4
| REAL*8
| REAL*16

| Arctangent| ATAN

| ATAN2

| ATAN�
| DATAN�
| QATAN
| ATAN2�
| DATAN2�
| QATAN2

| 1

| 2

| REAL*4
| REAL*8
| REAL*16
| REAL*4
| REAL*8
| REAL*16

| REAL*4
| REAL*8
| REAL*16
| REAL*4
| REAL*8
| REAL*16

|
| Hyperbolic Functions
|

| Hyperbolic
| sine
| SINH| SINH�
| DSINH
| QSINH

| 1| REAL*4
| REAL*8
| REAL*16

| REAL*4
| REAL*8
| REAL*16

| Hyperbolic
| cosine
| COSH| COSH�
| DCOSH
| QCOSH

| 1| REAL*4
| REAL*8
| REAL*16

| REAL*4
| REAL*8
| REAL*16

| Hyperbolic
| tangent
| TANH| TANH�
| DTANH
| QTANH

| 1| REAL*4
| REAL*8
| REAL*16

| REAL*4
| REAL*8
| REAL*16

|
| Miscellaneous Mathematical Functions
|

| Truncation| AINT| AINT
| DINT
| QINT

| 1| REAL*4
| REAL*8
| REAL*16

| REAL*4
| REAL*8
| REAL*16

| Nearest
| whole
| number

| ANINT| ANINT
| DNINT
| 1| REAL*4
| REAL*8
| REAL*4
| REAL*8

| Nearest
| integer
| NINT| NINT
| IDNINT
| 1| REAL*4
| REAL*8
| INTEGER*4
| INTEGER*4

 Intrinsic Functions 53

 Intrinsic Functions

| Figure 2 (Page 3 of 6). Intrinsic Functions

| Intrinsic
| Function
| Generic
| Name
| Specific
| Name

| No.
| of
| Argu-
| ments
| Type of Argu-
| ment

| Type and
| Range of
| Function

| Absolute
| value
| ABS| IABS�
| ABS
| DABS
| QABS
| CABS�
| CDABS�
| CQABS

| 1| any integer
| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| same as arg
| REAL*4
| REAL*8
| REAL*16
| REAL*4
| REAL*8
| REAL*16

| Error func-
| tion
| ERF

| ERFC

| ERF
| DERF
| QERF

| ERFC
| DERFC
| QERFC

| 1

| 1

| REAL*4
| REAL*8
| REAL*16

| REAL*4
| REAL*8
| REAL*16

| REAL*4
| REAL*8
| REAL*16
| REAL*4
| REAL*8
| REAL*16

| Gamma and
| log gamma
| GAMMA

| LGAMMA

| GAMMA
| DGAMMA
| ALGAMA
| DLGAMA

| 1| REAL*4
| REAL*8
| REAL*4
| REAL*8

| REAL*4
| REAL*8
| REAL*4
| REAL*8

| Remain-
| dering
| MOD| MOD�
| AMOD
| DMOD
| QMOD

| 2| any integer
| REAL*4
| REAL*8
| REAL*16

| same as arg
| REAL*4
| REAL*8
| REAL*16

| Transfer of
| sign
| SIGN| ISIGN�
| SIGN
| DSIGN
| QSIGN

| 2| any integer
| REAL*4
| REAL*8
| REAL*16

| same as arg
| REAL*4
| REAL*8
| REAL*16

| Positive dif-
| ference
| DIM| IDIM�
| DIM
| DDIM
| QDIM

| 2| any integer
| REAL*4
| REAL*8
| REAL*16

| same as arg
| REAL*4
| REAL*8
| REAL*16

| Double pre-
| cision
| product

| | DPROD| 2| REAL*4| REAL*8

| Imaginary
| part of a
| complex
| argument

| IMAG| AIMAG
| DIMAG
| QIMAG

| 1| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| REAL*4
| REAL*8
| REAL*16

| Complex
| conjugate
| CONJG| CONJG
| DCONJG
| QCONJG

| 1| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| Square root| SQRT| SQRT�
| DSQRT�
| QSQRT
| CSQRT
| CDSQRT
| CQSQRT

| 1| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

54

 Intrinsic Functions

| Figure 2 (Page 4 of 6). Intrinsic Functions

| Intrinsic
| Function
| Generic
| Name
| Specific
| Name

| No.
| of
| Argu-
| ments
| Type of Argu-
| ment

| Type and
| Range of
| Function

|
| Conversion and Maximum/Minimum Functions�
|

| Conversion
| to type
| integer

| INT
|
|
|
|

| ───────

| —
| IFIX
| IDINT
| IQINT
| —

| ───────

| HFIX�

| 1| any integer
| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8

| ────────────

| REAL*4

| same as arg
| INTEGER*4
| INTEGER*4
| INTEGER*4
| INTEGER*4

| ────────────

| INTEGER*2

| Conversion
| to type real
| REAL| FLOAT�
| —
| SNGL
| SNGLQ
| —
| DREAL
| QREAL

| 1| any integer
| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8
| COMPLEX*16
| COMPLEX*32

| REAL*4
| REAL*4
| REAL*4
| REAL*4
| REAL*4
| REAL*8
| REAL*16

| Conversion
| to type
| double preci-
| sion

| DBLE| DFLOAT�
| DBLE
| —
| DBLEQ
| —

| 1| any integer
| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8

| REAL*8
| REAL*8
| REAL*8
| REAL*8
| REAL*8

| Conversion
| to type
| extended
| precision

| QEXT| QFLOAT�
| QEXT
| QEXTD

| 1| any integer
| REAL*4
| REAL*8

| REAL*16
| REAL*16
| REAL*16

| Conversion
| to type
| complex

| CMPLX
|
|
|
|

| ───────

| —
| CMPLX
| —
| QCMPLX
| —

| ───────

| DCMPLX�

| 1 or
| 2
| any integer
| REAL*4
| REAL*8
| REAL*16
| COMPLEX*8

| ────────────

| REAL*8

| COMPLEX*8
| COMPLEX*8
| COMPLEX*8
| COMPLEX*32
| COMPLEX*8

| ────────────

| COMPLEX*16

| Choosing
| largest value
| MAX
|
|
|

| ───────

| MAX0�
| AMAX1
| DMAX1
| QMAX1

| ───────

| AMAX0�,�
| MAX1�

| ≥ 2| any integer
| REAL*4
| REAL*8
| REAL*16

| ────────────

| any integer
| REAL*4

| same as arg
| REAL*4
| REAL*8
| REAL*16

| ────────────

| REAL*4
| INTEGER*4

 Intrinsic Functions 55

 Intrinsic Functions

| Figure 2 (Page 5 of 6). Intrinsic Functions

| Intrinsic
| Function
| Generic
| Name
| Specific
| Name

| No.
| of
| Argu-
| ments
| Type of Argu-
| ment

| Type and
| Range of
| Function

| Choosing
| smallest
| value

| MIN
|
|
|

| ───────

| MIN0�
| AMIN1
| DMIN1
| QMIN1

| ───────

| AMIN0�,�
| MIN1�

| >= 2| any integer
| REAL*4
| REAL*8
| REAL*16

| ────────────

| any integer
| REAL*4

| same as arg
| REAL*4
| REAL*8
| REAL*16

| ────────────

| REAL*4
| INTEGER*4

|
| Storage Functions
|

| Allocation
| status
| | ALLO-
| CATED
| 1| any| LOGICAL*4

| Location of
| variable
| | LOC| 1| any| POINTER

|
| Character Manipulation Functions
|

| Conversion
| to type
| integer

| | ICHAR| 1| CHARACTER*1| INTEGER*4

| Conversion
| to type char-
| acter

| | CHAR�| 1| any integer| CHARACTER*1

| Length| | LEN| 1| CHARACTER| INTEGER*4

| Index of a
| substring
| | INDEX| 2| CHARACTER| INTEGER*4

| Lexically
| greater than
| or equal

| | LGE| 2| CHARACTER| LOGICAL*4

| Lexically
| greater than
| | LGT| 2| CHARACTER| LOGICAL*4

| Lexically
| less than or
| equal

| | LLE| 2| CHARACTER| LOGICAL*4

| Lexically
| less than
| | LLT| 2| CHARACTER| LOGICAL*4

|
| Bit Manipulation Functions
|

| Inclusive or| | IOR�| 2| any integer or
| unsigned
| same as arg

56

 Intrinsic Functions

| Figure 2 (Page 6 of 6). Intrinsic Functions

| Intrinsic
| Function
| Generic
| Name
| Specific
| Name

| No.
| of
| Argu-
| ments
| Type of Argu-
| ment

| Type and
| Range of
| Function

| Logical and| | IAND�| 2| any integer or
| unsigned
| same as arg

| Logical com-
| plement
| | NOT�| 1| any integer or
| unsigned
| same as arg

| Exclusive or| | IEOR�
| XOR�
| 2| any integer or
| unsigned
| same as arg

| Shift bits| | ISHFT�| 2| any integer or
| unsigned
| same as arg

| Shift left| | LSHIFT�| 2| any integer or
| unsigned
| same as arg

| Shift right| | RSHIFT�| 2| any integer or
| unsigned
| same as arg

| Shift circu-
| larly
| | ISHFTC�| 2 or
| 3
| any integer or
| unsigned
| same as arg

| Bit test| | BTEST�,�| 2| any integer or
| unsigned
| LOGICAL*4

| Bit set| | IBSET�,�| 2| any integer or
| unsigned
| same as arg

| Bit clear| | IBCLR�,�| 2| any integer or
| unsigned
| same as arg

| Bit extraction| | IBITS�,�| 3| any integer or
| unsigned
| same as arg

| Notes:

| � The generic name must be used for conversion functions when no spe-
| cific name is supplied.

| � Also available in the alternate mathematical library, which provides
| alternative functions that provide results compatible with VS FORTRAN
| Version 1.

| � The specific name must be used to obtain a function value of this type.

| � The bits in bit-manipulation functions are numbered from right to left,
| beginning at zero.

| � This specific name is also a generic name when used with integer
| argument(s); it is specific only with INTEGER*4 argument(s). When
| there is more than one argument, all arguments must agree in length.

 Intrinsic Functions 57

 Interactive Debug

Interactive Debug Commands

Note that for parallel programs, you can only use the interactive debug to
| debug the root task and Fortran code that is not parallel. New types and
| other features introduced in VS FORTRAN Version 2 Release 6 are not sup-
| ported by the Interactive Debug. See the summary of changes in the front
| of the VS FORTRAN Version 2 Language and Library Reference for a list of
| these features.

When using interactive debug commands:

� A statement number is either an ISN or a sequence number (columns
73-80), depending on how the program was compiled.

� Precede a statement label by a slash (/) when it is used in place of a
statement number.

� Separate list items with commas or blanks (except for command lists).

58

 Interactive Debug Command Categories

Interactive Debug Command Categories

Controlling Program Processing

 AT
 ENDDEBUG
 GO
 HALT
 LISTBRKS
 NEXT
 OFF
 OFFWN
 RESTART
 STEP
 WHEN

Monitoring and Modifying Vari-
ables

 AUTOLIST
 DESCRIBE
 IF
 LIST
 QUALIFY
 SET

Processing Sequential Files

 BACKSPACE
 CLOSE
 ENDFILE
 RECONNECT
 REWIND

Controlling Full Screen Display

 COLOR
 DOWN
 LEFT
 LISTINGS
 MOVECURS
 POSITION
 PREVDISP
 PROFILE
 REFRESH

Controlling Full Screen Display
(continued)

 RESTORE
 RETRIEVE
 RIGHT
 SEARCH
 SIZE
 UP
 WINDOW
 ZOOM

Handling Run Time Library Errors

 ERROR
 FIXUP

Gathering Vector Tuning Informa-
tion

 LISTVEC
 VECSTAT

Tracing and Timing

 ANNOTATE
 LISTFREQ
 LISTSAMP
 LISTSUBS
 LISTTIME
 TIMER
 TRACE
 WHERE

General Commands

* or " (Comments)
 DBCS
 HELP
 PURGE
 QUIT
 SYSCMD
 TERMIO

 Interactive Debug Commands 59

 Interactive Debug Command Syntax

Interactive Debug Command Syntax

* or ' (Comments)

{* | "}
[comment]

Inserts comments in the debugging log.

ANNOTATE Command—Copying Source Listings to a Print File

ANNOTATE
{unit | (unit-list) | * }
[SAMPLING [DIRECT | CALLED | ALL] | FREQUENCY]

Shows sampling or frequency data as a source listing to the AFFPRINT file.

ANNOTATE Command—Providing a Bar Chart in the Source Window

ANNOTATE
{ON | OFF | TOGGLE}
[SAMPLING [DIRECT | CALLED | ALL]
| FREQUENCY | MESSAGE]

Shows sampling or frequency data as a bar chart overlay on the source
listing window.

Note: Valid in full screen mode only.

ANNOTATE Command—Querying the Settings

ANNOTATE

Queries the ANNOTATE settings.

60

 Interactive Debug Command Syntax

AT Command

AT
[qual.]
{number[:[qual.]number] | ENTRY | EXIT}
| (number/ENTRY/EXIT list)
[(command-list)]
[COUNT(n)]
[NOTIFY | NONOTIFY]

Sets breakpoints.

Note: Separate individual commands in the command list with percent
signs (%).

AUTOLIST Command

AUTOLIST
[{[qual.] name [:[qual.] name]
| * | 'string' | number | (list)}
[FORMAT [(code)] | DUMP [(code)]]]

Automatically displays values of variables in the monitor window.

Notes:

1. Valid in full screen mode only.

2. Check the format and dump codes table on page 74.

BACKSPACE Command

BACKSPACE
{number | [qual.] integer-variable |
[qual.]integer-array-element}

Positions a sequentially accessed external file at the beginning of the pre-
vious record.

CLOSE Command

CLOSE
{number | [qual.] integer-variable |
[qual.]integer-array-element}

Disconnects a sequential external file from a unit.

 Interactive Debug Commands 61

 Interactive Debug Command Syntax

COLOR Command

COLOR

Customizes color, highlighting, and intensity on the main debugging panel.

Note: Valid in full screen mode only.

DBCS Command

DBCS
[YES | NO]

Specifies whether X'0F' and X'0E' are interpreted as the double-byte char-
acter set shift characters in input and output.

DESCRIBE Command

DESCRIBE
{[qual.] name | * | (name-list)}
[PRINT]

Displays data types of scalar variables and arrays, and dimension informa-
tion for arrays.

DOWN Command

DOWN
[number | PAGE | HALF | CSR | DATA | MAX]

Scrolls the contents of a window so that lines below those currently dis-
played in the window can be seen.

Note: Valid in full screen mode only.

ENDDEBUG Command

ENDDEBUG
[SAMPLE[(msecs)]
[MAXSAMP(n[,STOP])]
[CALLED]]

Discontinues debugging and continues program processing. Also initiates
program sampling.

62

 Interactive Debug Command Syntax

ENDFILE Command

ENDFILE
{number | [qual.] integer-variable |
[qual.]integer-array-element}

Writes an end-of-file record on a sequentially accessed external file.

ERROR Command

ERROR
{error | error:error | (error-list)}
[MSG | NOMSG]
[EXIT | NOEXIT]

Selects diagnostic options for run-time errors.

FIXUP Command

FIXUP
[ARG1(value)]
[ARG2(value)]

Specifies corrective action.

GO Command

GO
[[qual.] {number | EXIT}]

Resumes processing.

HALT Command

HALT
[OFF | STMT | GOTO | ENTRY | IMMED]

Causes processing to be suspended for every statement of a given class, or
at a specific point in a command list.

 Interactive Debug Commands 63

 Interactive Debug Command Syntax

HELP Command—CMS or TSO Full Screen Mode

HELP
[command | vecmsg-id]

Requests online information about interactive debug commands, common
tasks, and vector messages contained in the vector report listing, as well as
a task-oriented tutorial.

HELP Command—CMS Line Mode

HELP
[command [ALL | (DESC | (PARM | (FORM]
| vecmsg-id]

Requests online information about interactive debug commands, common
tasks, and vector messages contained in the vector report listing, as well as
a task-oriented tutorial.

HELP Command—TSO Line Mode

HELP
[command [ALL | FUNCTION | SYNTAX
| OPERANDS [(keyword-list)]] | vecmsg-id]

Requests online information about interactive debug commands, common
tasks, and vector messages contained in the vector report listing, as well as
a task-oriented tutorial.

IF Command

IF
(condition) command

Tests a condition.

LEFT Command

LEFT
[number | PAGE | HALF | CSR | DATA | MAX]

Scrolls the contents of a window so that columns to the left of those cur-
rently displayed in the window can be seen.

Note: Valid in full screen mode only.

64

 Interactive Debug Command Syntax

LIST Command

LIST
{[qual.] name [: [qual.] name]
| * | 'string' | number | (list)}
[PRINT]
[FORMAT [(code)] | DUMP [(code)]]

Displays values of variables.

Note: Check the format and dump codes table on page 74.

LISTBRKS Command

LISTBRKS [PRINT]

Lists all breakpoints and WHEN conditions currently set, and the current
HALT status.

LISTFREQ Command

LISTFREQ
[[qual.]
{number [: [qual.] number] | ENTRY | EXIT}
| (number/ENTRY/EXIT list)]
[ZEROFREQ] [PRINT]

Lists the number of times statements processed.

LISTINGS Command

LISTINGS

Displays the interactive debug listings panel.

Note: Valid in full screen mode only.

 Interactive Debug Commands 65

 Interactive Debug Command Syntax

LISTSAMP Command—Statement

LISTSAMP
{[qual.] number[:[qual.]number]
| [qual.]ENTRY | [qual.]* | (list) | *.*}
[DIRECT][CALLED][ALL]
[TOP[(n)]][PRINT]

Lists sampling counts by statement.

LISTSAMP Command—Program Unit

LISTSAMP
{unit-name | (unit-name-list) | * } SUMMARY
[DIRECT | CALLED | ALL]
[TOP[(n)]][PRINT]

Lists sampling counts by program unit.

LISTSAMP Command—DO Loop

LISTSAMP
{[qual.] number [:[qual.] number |
[qual.] * | (list) | *.*}
DOLOOP [DIRECT | CALLED | ALL]
[TOP [(n)]] [PRINT]

Lists sampling counts by DO loop.

LISTSUBS Command

LISTSUBS
[PRINT]

Lists information about all debuggable program units in the running load
module.

LISTTIME Command—Program Unit

LISTTIME
[PRINT]

Displays timing information for program units.

66

 Interactive Debug Command Syntax

LISTTIME Command—DO Loop

LISTTIME
{ [qual.] number [:[qual.] number] |
[qual.] * | (list) | *.* }
DOLOOP [PRINT]

Displays timing information for analyzable DO loops.

LISTVEC Command

LISTVEC
{ [qual.] number [:[qual.] number] |
[qual.] * | (list) | *.* }
[TOP [(n)] [PRINT]

Displays DO loop length and stride information.

MOVECURS Command

MOVECURS

Toggles the cursor between the command line and its most recent position
in the main debugging panel.

Note: Valid in full screen mode only.

NEXT Command

NEXT

Suspends program execution at the next statement, entry, or exit with a
debugging hook.

OFF Command

OFF
[qual.]{ number [: [qual.] number] |
ENTRY | EXIT} | * |
(number/ENTRY/EXIT list)

Removes breakpoints in the currently qualified or specified program unit.

 Interactive Debug Commands 67

 Interactive Debug Command Syntax

OFFWN Command

OFFWN
condition name | * | (condition-name-list)

Turns off WHEN condition monitoring.

POSITION Command

POSITION
number

Positions the cursor in the log window at a specified log line, in the source
window at a given ISN or sequence number, or in the monitor window at a
specified monitor line.

Note: Valid in full screen mode only.

PREVDISP Command

PREVDISP

Redisplays the previous panel displayed by the application program.

Note: Valid in full screen mode only.

PROFILE Command

PROFILE

Displays a profile panel to change current conditions or profile settings.

Note: Valid in full screen mode only.

PURGE Command

PURGE

Purges output.

QUALIFY Command

QUALIFY
[program]

Changes or displays the current qualification.

68

 Interactive Debug Command Syntax

QUIT Command

QUIT

Ends the debugging session.

RECONNECT Command

RECONNECT
{number | [qual.]integer-variable |
[qual.]integer-array-element}

Resets a file to its original (preconnected) condition.

REFRESH Command

REFRESH
[ON | OFF]

Controls whether the IAD panel is refreshed.

Note: Valid in full screen mode only.

RESTART Command

RESTART

Restarts the debugging session while maintaining the log file.

Note: Valid in full screen mode only.

RESTORE Command

RESTORE

Restores the source window to the last point of execution.

Note: Valid in full screen mode only.

RETRIEVE Command

RETRIEVE

Redisplays the last command specified on the command line.

Note: Valid in full screen mode only.

 Interactive Debug Commands 69

 Interactive Debug Command Syntax

REWIND Command

REWIND
{number | [qual.] integer-variable
| [qual.]integer-array-element}

Positions a sequentially accessed external file at the beginning of its first
record.

RIGHT Command

RIGHT
[number | PAGE | HALF | CSR | DATA | MAX]

Scrolls the contents of a window so that columns to the right of those cur-
rently displayed in the window can be seen.

SEARCH Command

SEARCH
[/string[/]]

Searches either the source, monitor, or log window for a given character
string.

Note: Valid in full screen mode only.

SET Command

SET
[qual.] name=value [,value...]

Assigns values to variables.

SIZE Command

SIZE
[SOURCE | MONITOR | LOG]

Resizes the windows on the main debugging panel.

Note: Valid in full screen mode only.

70

 Interactive Debug Command Syntax

STEP Command

STEP
[number]

Processes one or more statements, then suspends processing. In full
screen mode, processing is animated.

SYSCMD Command

SYSCMD
[system-command]

Issues system commands during debugging.

Note: The abbreviations CMS and TSO are recognized and executed, but
the command entered does not appear in the session log.

TERMIO Command

TERMIO
[IAD | LIBRARY]
[MSG [(userid)] | NOMSG]

Selects I/O routines for terminal I/O from the VS FORTRAN program.

TIMER Command—Program Unit

TIMER
{ * | program-unit-name | (program-unit-name-list) }
[ON | OFF | RESET]

Controls timing by program unit.

TIMER Command—DO Loop

TIMER
{[qual.] number [:qual.] number
| [qual.] * | (list) | *.*}
DOLOOP [ON | OFF | RESET]

Controls timing by DO loop.

 Interactive Debug Commands 71

 Interactive Debug Command Syntax

TRACE Command

TRACE
[GOTO | ENTRY | OFF]
[PRINT]

Traces statement branches and subprogram calls.

UP Command

UP
[number | PAGE | HALF | CSR | DATA | MAX]

Scrolls the contents of a window so that lines above those currently dis-
played in the window can be seen.

Note: Valid in full screen mode only.

VECSTAT Command

VECSTAT
{[qual.] number [:qual.] number
| [qual.] * | (list) | *.*}
[ON | OFF | RESET]

Activates, deactivates, or resets DO loop length and stride recording.

WHEN Command

WHEN
condition-name [(condition) | variable]

Sets up monitoring of a condition.

WHERE Command

WHERE
[TRBACK] [FLOW] [PRINT]

Displays statement at which processing is suspended.

72

 Interactive Debug Command Syntax

WINDOW Command for Changing Configuration

WINDOW

Changes the window configuration of the debugging session.

Note: Valid in full screen mode only.

WINDOW Command for Saving Configuration

WINDOW
SAVE

Saves the window configuration of the debugging session.

Note: Valid in full screen mode only.

WINDOW Command for Opening or Closing

WINDOW
{OPEN | CLOSE}
{SOURCE | MONITOR | LOG}]

Opens or closes a specified window of the debugging session.

Note: Valid in full screen mode only.

ZOOM Command

ZOOM
[SOURCE | MONITOR | LOG]

Toggles between displaying one window and a configuration of windows.

 Interactive Debug Commands 73

 Interactive Debug

Format and Dump Codes for the AUTOLIST and LIST
Commands
Code Output

L1 LOGICAL*1

L4 LOGICAL*4

I2 INTEGER*2

I4 INTEGER*4

R4 REAL*4

R8 REAL*8

R16 REAL*16

C8 COMPLEX*8

C16 COMPLEX*16

C32 COMPLEX*32

L LOGICAL with size closest to internal data size

I INTEGER with size closest to internal data size

R REAL with size closest to internal data size

C COMPLEX with size closest to internal data size

X[nnn] Hexadecimal with nnn bytes per data item (default to internal data
size)

Z[nnn] Hexadecimal with nnn bytes per data item (default to Z4)

A[nnn] CHARACTER with nnn bytes per data item (default to internal data
size)

H[nnn] CHARACTER with nnn bytes per data item (default to continuous
full line output)

74

 Interactive Debug

Valid SET Command Assignments
Note that values must be those allowable for the type of variable being set.

Variable

Type of Value
Set to

Example

Scalar
(REAL,
INTEGER, or
COMPLEX)

Another scalar
variable

An array element

A numeric
constant

ALPHA=BETA
ALPHA=−BETA

ALPHA=A(3) ALPHA=−A(3)

NUM=7

LOGICAL Another logical variable
An array element
A logical constant

LOG1=LOG2

LOG1=LOG(2)
LOG=.TRUE.

CHARACTER Another character variable
An array element
A character constant
A substring

CHAR1=CHAR2

CHAR1=CHAR(2)
MSG='HELLO'
A(1:3)='ABC'

Array
element

Another array
element

A scalar variable

A constant

A(4)=B(1) AR(2,2)=−AR(5,5)

C(7)=RATE C(8)=−TIME

D(I,J)=0.0

Contiguous
array
elements

Value, value,...
(Values can be
variables, array
elements, or
constants; multiple
assignments of a
value can be
entered as n*value.)

A=3*1.0,4*0.0,7.2,
5.,ACCL,8.5E9

B(J,K)='C',
3*'Q','X'

 Interactive Debug Commands 75

We'd Like to Hear from You

VS FORTRAN Version 2
Reference Summary
Release 6

Publication No. SX26-3751-07

Please use one of the following ways to send us your comments about this
book:

� Mail—Use the Readers' Comments form on the next page. If you are
sending the form from a country other than the United States, give it to
your local IBM branch office or IBM representative for mailing.

� Fax—Use the Readers' Comments form on the next page and fax it to
this U.S. number: 800-426-7773.

� Electronic mail—Use one of the following network IDs:

– IBMLink: HLASMPUB at STLVM27
 – Internet: COMMENTS@VNET.IBM.COM

Be sure to include the following with your comments:

– Title and publication number of this book
– Your name, address, and telephone number if you would like a

reply

Your comments should pertain only to the information in this book and the
way the information is presented. To request additional publications, or to
comment on other IBM information or the function of IBM products, please
give your comments to your IBM representative or to your IBM authorized
remarketer.

IBM may use or distribute your comments without obligation.

 Readers' Comments

VS FORTRAN Version 2
Reference Summary
Release 6

Publication No. SX26-3751-07

How satisfied are you with the information in this book?

Please tell us how we can improve this book:

May we contact you to discuss your comments? � Yes � No
Name Address

Very
Satisfied Satisfied Neutral Dissatisfied

Very
Dissatisfied

Technically
accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to under-
stand � � � � �
Well organized � � � � �
Applicable to
your tasks � � � � �
Grammatically
correct and
consistent � � � � �
Graphically well
designed � � � � �
Overall satis-
faction � � � � �

Company or Organization

Phone No.

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

Department J58
International Business Machines Corporation
PO BOX 49023
SAN JOSE CA 95161-9945

Fold and Tape Please do not staple Fold and Tape

Readers' Comments
SX26-3751-07 IBM

IBM

File Number: S370-40
Program Number: 5668-805
 5668-806
 5688-087

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SX26-3751-	7

S
pine inform

ation:

IB
M

V
S FO

R
T

R
A

N
 V

ersion 2
R

eference Sum
m

ary
R

elease 6

	Contents
	Notices
	Programming Interface Information
	Trademarks and Service Marks

	Compiler and Library Information
	Arithmetic Expressions
	Relational Expressions
	Logical Expressions
	Hierarchy of Operations
	Required Order of Statements and Comments
	Language Statement Categories
	Statement Syntax
	Parallel Statement Categories
	Parallel Statement Syntax
	Parallel Task Management Statements
	Parallel Loop Statements
	Parallel Sections Statements
	Parallel Call Statements
	Compile-Time Options
	Conflicting Compile-Time Options
	Compiler Directives
	Parallel and Vector Directives
	Run-Time Options
	Service Subroutines
	Parallel Library Event Service Subroutines
	Parallel Library Lock Service Subroutines and Function
	Parallel Function
	Data-in-Virtual Subroutines
	Multitasking Facility (MTF) Subroutines
	Error-Handling Subroutines

	Intrinsic Functions
	Interactive Debug Commands
	Interactive Debug Command Categories
	Interactive Debug Command Syntax
	Format and Dump Codes for the AUTOLIST and LIST Commands
	Valid SET Command Assignments

