

Airline Control System Version 2 IBM

Concepts and Facilities
Release 4.1

 SH19-6953-16

Airline Control System Version 2 IBM

Concepts and Facilities
Release 4.1

 SH19-6953-16

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xiii.

Seventeenth Edition (September 2010)

This edition applies to Release 4, Modification Level 1, of Airline Control System Version 2, Program Number 5695-068, and to all
subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers’ comments appears at the back of this publication. If the form has been removed, address your comments to:

ALCS Development
2455 South Road
 P923
Poughkeepsie NY 12601-5400
USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003, 2010. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xiii
Programming interface information . xiii
Trademarks . xiv

About this book . xv
Who should read this book . xv
How this book is organized . xv

Chapter 1. ALCS Version 2 concepts and facilities 1
1.1 Overview of ALCS . 1
1.2 General description of ALCS Version 2 . 2
1.3 Application programming languages . 5

1.3.1 Callable services for high-level language programs 10
1.4 Overview of the ALCS Version 2 system . 11

1.4.1 Application environment . 11
1.4.2 ALCS commands . 12
1.4.3 Offline programs . 13
1.4.4 Generation macros . 13

1.5 Message flow in an ALCS system . 13
1.5.1 Entry of a message from a terminal . 14
1.5.2 Input message processing by the ALCS online monitor 15
1.5.3 Messages on TCP/IP . 19
1.5.4 Messages on WebSphere MQ for z/OS 20

| 1.5.5 Communicating with Websphere Application Server for z/OS using
| optimized local adapter support . 24

1.5.6 Application program processing . 25
1.5.7 Output message processing by the ALCS online monitor 30

1.6 Standard record and storage block sizes . 32
1.6.1 How ALCS stores DASD records . 32
1.6.2 ALCS minimum requirements for standard sizes 33
1.6.3 Application portability and TPF compatibility 33
1.6.4 Recommendations and requirements for record and block sizes . . . 34
1.6.5 Sequential file records . 35

1.7 Multiprogramming and multiprocessing . 35
1.7.1 Re-entrant application programs . 35
1.7.2 Entry control block . 36
1.7.3 Data event control blocks (DECBs) . 38
1.7.4 Data collection area . 39
1.7.5 Serialization – forcing exclusive access to resources 39

Chapter 2. Communication management . 41
2.1 ALCS communication resources and resource addressing 41

2.1.1 Communication resource name (CRN) 44
2.1.2 Communication resource identifier (CRI) 44
2.1.3 Computer room agent set (CRAS) . 45
2.1.4 CRAS authority and Security Authorization Facility (SAF) 47
2.1.5 Special addressing for CRAS terminals 47
2.1.6 Communication resource ordinal . 48

2.2 Message router . 49
2.2.1 Addressing other-system resources . 50

© Copyright IBM Corp. 2003, 2010 iii

2.3 Logon and logoff, and sine in and sine out 50
2.4 Printer shadowing . 51
2.5 Printer sharing . 52
2.6 Printer redirection . 52
2.7 Specifying communication resources . 52
2.8 Online Communication Table Maintenance (OCTM) 52

Chapter 3. ALCS data sharing and data management 55
3.1 Standard ALCS structures . 55
3.2 TPFDF . 55
3.3 Sharing data with non-ALCS applications 55

3.3.1 Relational databases . 56
3.3.2 Real-time data export and import . 57
3.3.3 Shared general file or GDS . 58
3.3.4 Batch data export and import . 60

Chapter 4. ALCS database file management 61
4.1 The ALCS real-time database . 62

4.1.1 Organization of the database . 62
4.1.2 Duplicated database . 62
4.1.3 Record classes – fixed file, short-term pool, and long-term pool 63
4.1.4 Long-term pool integrity . 65
4.1.5 Pool dispense rate monitor . 65
4.1.6 Overflow and chaining . 66
4.1.7 Lists and indexes . 67

4.2 General files and general data sets . 69
4.3 Record addressing . 70

4.3.1 Constructing the file address . 70
4.3.2 File address format . 71
4.3.3 Multiple file address format support . 73

4.4 Allocatable space overview . 75
4.4.1 Algorithm-based addressing . 78
4.4.2 Table-based addressing . 79

4.5 Record header . 81
4.5.1 Record ID and RCC checking . 82

4.6 Virtual file access . 82
4.7 Spill file on predecessor ALCS systems . 84
4.8 The ALCS test database facility . 84

4.8.1 How the test database facility works . 85
4.8.2 Benefits . 86
4.8.3 Test pool files . 88

4.9 The ALCS configuration data sets . 89

Chapter 5. Sequential file management . 93
5.1 System sequential files . 94

5.1.1 ALCS diagnostic file . 94
5.1.2 ALCS update-log file(s) . 95
5.1.3 ALCS data-collection file . 95
5.1.4 ALCS user file . 95

5.2 Application sequential files . 96
5.3 Symbolic names for sequential files . 96
5.4 Cataloged sequential file data sets . 98
5.5 Sequential file data set switch . 98

iv ALCS 2.4.1 Concepts and Facilities

Chapter 6. Entry management . 99
6.1 How ALCS creates entries . 99
6.2 How ALCS dispatches entries . 101

6.2.1 Entry processing limits . 103
6.3 How entries lose control . 103

6.3.1 Application loop timeout . 103
6.4 Input/output counter and wait service . 104
6.5 Delay and defer processing . 104
6.6 Communication between entries . 106

6.6.1 How entries pass data . 106
6.6.2 How entries share data . 107

6.7 Transactions that create multiple entries . 107
6.8 Entries using SQL, CPI-C, APPC, MQI and TCP/IP 109

6.8.1 Normal and abnormal termination . 109
6.8.2 SQL threads and application processes 109
6.8.3 CPI-C and APPC transaction programs 110
6.8.4 MQI transaction programs . 110
6.8.5 TCP/IP Sockets transaction programs 110

| 6.8.6 WebSphere Application Server for z/OS transaction programs 110

Chapter 7. Storage management . 111
7.1 Storage layout . 111
7.2 Real and virtual storage . 113
7.3 Entry storage . 113
7.4 Heap storage used by assembler programs 113
7.5 High-level language storage . 114

7.5.1 Initial storage allocation . 114
7.5.2 Stack and heap storage . 114

7.6 Storage units . 115

Chapter 8. Automated operations . 119

Appendix A. ALCS pool file support . 121
A.1 Recoup and emergency pool recovery . 121
A.2 Long-term pool support – type 1 and type 2 121

A.2.1 Type 1 long-term pool support . 122
A.2.2 Type 2 long-term pool support . 123
A.2.3 Migration from type 1 LT to type 2 LT-pool support 123
A.2.4 Performance . 123

A.3 Short-term pool support – type 1 and type 2 123
A.3.1 Type 1 short-term pool support . 124
A.3.2 Type 2 short-term pool support . 124
A.3.3 Migration from type 1 ST to type 2 ST-pool support 126
A.3.4 Tagging of ST-pool records . 126
A.3.5 Adding ST-pool records . 126
A.3.6 Deleting ST-pool records . 127
A.3.7 Coexistence . 127

A.4 Dispense rings . 127
A.5 Release rings . 128

Appendix B. Long-term pool space recovery – Recoup 129
B.1 Specifying data structures to Recoup . 129

B.1.1 Chaining pool-file records . 130
B.1.2 Standard chain . 130

 Contents v

B.1.3 Index references . 131
B.2 Group macro . 132

B.2.1 Prime group . 132
B.2.2 Non-prime group . 132
B.2.3 Chain-chasing . 133

B.3 Index macro . 133
B.3.1 Items . 133
B.3.2 Variable numbers of items . 134
B.3.3 Item keys . 135
B.3.4 Subitems . 136

Appendix C. Communication management for the SLC network 137
C.1 SLC concepts . 137

C.1.1 LDBs . 138
C.1.2 SLC terminal addressing . 138
C.1.3 SLC link characteristics . 139
C.1.4 Type 1 SLC protocol . 139
C.1.5 Type 2 SLC protocol . 139
C.1.6 Type 3 SLC protocol . 140

C.2 ALCS SLC procedures . 140
C.2.1 Starting a channel . 140
C.2.2 Out-of-service period . 141
C.2.3 When an SLC link changes state . 141
C.2.4 When ALCS changes state . 141
C.2.5 Positive acknowledgement . 141
C.2.6 Queuing messages on DASD . 141
C.2.7 Idle output line condition . 142
C.2.8 Negative acknowledgement (sequence errors) 142
C.2.9 Negative acknowledgement (parity errors) 142
C.2.10 Error recovery . 142
C.2.11 SLC channel enquiry procedure . 143

C.3 Testing the SLC network . 143
C.3.1 Performing an SLC loop test . 143
C.3.2 Performing a SITA functional acceptance test 144
C.3.3 SLC link trace facility . 144

Appendix D. ALCS services . 145
D.1 ALCS services for communication . 145
D.2 ALCS services for DASD processing . 146
D.3 ALCS services for sequential file processing 147

D.3.1 ALCS C language functions for sequential file processing 148
D.4 ALCS entry management services . 148

D.4.1 C language functions for entry management 149
D.5 ALCS storage management services . 149

D.5.1 C language functions for storage management 150
D.6 ALCS services for global area processing 150

D.6.1 C language functions for global area processing 151
D.7 ALCS services for program linkage . 151

D.7.1 C language functions for program linkage 152

Appendix E. Direct-access files . 153
E.1 How ALCS uses the duplicated database 153

E.1.1 I/O errors . 153
E.1.2 ALCS action when one copy is offline 153

vi ALCS 2.4.1 Concepts and Facilities

E.2 Update logging . 154
E.2.1 Logging criteria . 154

E.3 Record hold facility . 155
E.3.1 When record hold is unnecessary . 156
E.3.2 Performance considerations . 156
E.3.3 Data sets . 157
E.3.4 Allocating data sets . 158

E.4 Offline access to file address information 159

Appendix F. Application global area . 161
F.1 Global area records . 161
F.2 Global area directories . 161
F.3 Header stripping and logical globals . 163
F.4 Including records in the application global area 163

Appendix G. Application program management 165
G.1 The program configuration table . 166
G.2 Application program load list . 166
G.3 Naming application programs . 166

Appendix H. Acronyms and abbreviations . 167

Glossary . 173

Bibliography . 193
Airline Control System Version 2 Release 4.1 193
MVS . 193
APPC/MVS . 193
DFSMS . 193
RMF . 193
Data Facility Sort (DFSORT) . 193
Language Environment . 193
z/OS XL C/C++ . 194
COBOL . 194
PL/I . 194
High Level Assembler . 194
CPI-C . 194
DB2 for z/OS . 194
ISPF . 194
WebSphere MQ for z/OS . 194

| WebSphere Application Server for z/OS . 194
Tivoli NetView . 195
SMP/E . 195
Communications Server IP (TCP/IP) . 195
TPF . 195
TPF Database Facility (TPFDF) . 195
TSO/E . 195
Communications Server SNA (VTAM) . 195
Security Server (RACF) . 195
Other IBM publications . 195
CD-ROM Softcopy collection kits . 195
SITA publications . 196
Other non-IBM publications . 196

 Contents vii

Index . 197

viii ALCS 2.4.1 Concepts and Facilities

 Figures

1. ALCS components overview . 1
2. Communication and database facilities . 3
3. Where to find more information about ALCS components 4
4. ALCS monitor services . 5
5. Summary of ALCS application program interfaces 5
6. ALCS application programming language 7
7. Other application programming languages 8
8. Callable services overview . 10
9. Input message processing: VTAM puts the message in a buffer 15

10. Input message processing: ALCS transfers the data to a storage block . 16
11. Input message processing: ALCS adds the ECB to the input list 16
12. Input message processing: ALCS transfers the data to a storage block

and translates it to EBCDIC . 17
13. Input message processing: ALCS transfers the data to a storage block

and translates it to EBCDIC . 17
14. Input message processing: A channel program fills the input buffers . . . 18
15. Input message processing: ALCS transfers the data to a storage block

and translates it to EBCDIC . 18
16. Input message processing: Initial state, application queue empty 21
17. Input message processing: The queue becomes non-empty 22
18. Input message processing: WebSphere MQ for z/OS puts a trigger

message on the initiation queue . 22
19. Input message processing: ALCS gets a message and transfers it to a

storage block . 23
20. Input message processing: The ALCS input queue 24
21. Input message processing: ALCS checks the routing for a message . . . 25
22. Example of routing for an airline application system 26
23. Data gathering transactions: The application stores a message and

discards the ECB . 28
24. Data gathering transactions: The application stores each intermediate

message and discards each ECB . 28
25. The ALCS terminal hold facility . 29
26. Scrolling moves a screen-sized window over a large response message 30
27. Output message processing: ALCS translates the EBCDIC data to the line

code and passes it to VTAM . 31
28. Output message processing: ALCS translates the EBCDIC data to the line

code and adds it to an SLC queue . 32
29. VSAM control interval format . 33
30. ALCS record in a VSAM control interval 33
31. Storage block sizes . 34
32. Some entry-control-block areas . 36
33. Installation-wide ECB user fields . 37
34. ECB levels . 38
35. DECB level . 39
36. ALCS communication resources: Sources and destinations 41
37. ALCS communication resource names and LU names overview 42
38. Communication resource names (SNA LU, CRNs, and CRIs) 43
39. CRAS CRNs for terminals and printers . 46
40. The CRI in messages to and from a CRAS 48
41. CRAS CRNs and CRI ranges . 48

© Copyright IBM Corp. 2003, 2010 ix

42. ALCS message routing to and from communication resources 49
43. The cross-system ID (CSID) . 50
44. ALCS data sharing: Overview of the available methods 56
45. ALCS data sharing: Using a relational database 57
46. ALCS data sharing: Real-time import and export (MQI) 58
47. ALCS data sharing: Using a general file or GDS 59
48. ALCS data sharing: Using a general sequential file 60
49. ALCS DASD files: Overview . 61
50. Where to find more information about ALCS direct-access file

management . 61
51. ALCS direct-access files: Fixed files . 63
52. ALCS direct-access files: Standard forward chains 66
53. ALCS direct-access files: Backward chains 67
54. ALCS direct-access files: Lists . 68
55. ALCS direct-access files: Indexes . 69
56. ALCS file address: Compressing the class, type, and ordinal 71
57. ALCS file address formats . 73
58. File address: Different formats for TPF and ALCS 74
59. Allocatable pool: Initial allocation . 76
60. Allocatable pool: Dispensing from LT-pool 76
61. Allocatable pool: After some fixed files are deleted (and purged) 76
62. Allocatable pool: After changing to type-2 dispensing 77
63. Allocatable pool: Records in use . 77
64. Allocatable pool: Using and reusing allocatable pool 77
65. Algorithm file addressing: Class, type, and ordinal to data set and RBA . 78
66. Table-based file addressing: Class, type, and ordinal to data set and RBA 79
67. Record header . 81
68. Virtual file access (VFA) overview . 83
69. Test database: Read a record from the test database 85
70. Test database: Write a record to the test data set 85
71. Test database: Read and write on the test data set 86
72. Test database: Shared testdata base, separate test data sets 87
73. Test database: Copy record to test data set 88
74. Test database: Incorrect overflow file address 89
75. ALCS sequential files: Overview . 93
76. Sequential files: Types and contents . 94
77. Sequential files: Changing the mapping of symbolic names 97
78. Sequential files: Mapping input and output to a data set 97
79. Entry dispatcher work list (schematic) . 102
80. Passing data between entries: parameter areas 106
81. Passing data between entries: storage blocks 106
82. Multiple entries: create-type services in loops 108
83. Protected storage locations and characteristics 111
84. Unprotected storage locations and characteristics 112
85. Entry storage: Prime and overflow storage units 116
86. Example of chained records . 130
87. Standard chain . 130
88. Forward and backward chains . 131
89. Group of records with index references 131
90. Items in a record, fields in items . 133
91. Example fields in an item . 134
92. INDEX macro: Example using a constant for the item count 134
93. INDEX macro: Example using a field for the item count 134
94. INDEX macro: Use of NAB (normal order) 134

x ALCS 2.4.1 Concepts and Facilities

95. INDEX macro: Use of NAB (reversed order) 135
96. INDEX macro: Use of AIX and DIX . 135
97. Overview of SLC terminology . 137
98. SLC loop test using one channel – with and without modems 143
99. SLC loop test using two channels – and two modems 143
100. ALCS record sizes and VSAM control intervals 158
101. Relationship between CISIZE and RBA 159
102. ALCS global areas and global area directory – logical view 161
103. ALCS global area – physical view . 162

 Figures xi

xii ALCS 2.4.1 Concepts and Facilities

 Notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

The Director of Licencing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department 830A
522 South Road
Mail Drop P131
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Programming interface information
This Concepts and Facilities manual is intended to help the customer to understand
the functions and facilities of Airline Control System Version 2, Program Number
5695-068. This Concepts and Facilities manual documents General-Use
Programming Interface and Associated Guidance Information provided by Airline
Control System Version 2 Program Number 5695-068.

General-Use programming interfaces allow the customer to write programs that
obtain the services of Airline Control System Version 2

© Copyright IBM Corp. 2003, 2010 xiii

 Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Other company, product, and service names might be trademarks or service marks
of others.

xiv ALCS 2.4.1 Concepts and Facilities

About this book

This book presents conceptual information for Release 4.1 of Airline Control
System (ALCS) Version 2, an IBM* licensed program.

ALCS is one of a family of IBM programs designed to satisfy the needs of airlines
and other industries with similar requirements for high-volume and high-availability
transaction processing.

The product, which is also known as TPF/MVS, provides the Transaction
Processing Facility (TPF) application programming interface (API) for z/OS*

environments. It supersedes ALCS/Multiple Virtual Storage/Extended Architecture
(ALCS/MVS/XA*), known as ALCS Version 1.

Throughout this book:

� Airline Control System Version 2 is abbreviated to ALCS unless the context
makes it necessary to distinguish between ALCS Version 2 Release 4.1, and
the predecessor products.

� Airlines Line Control Interconnection (ALCI) includes the function of network
extension facility (NEF).

� Advanced Communications Function for the Virtual Telecommunication Method
is abbreviated to VTAM*.

� TPF refers to all versions of Transaction Processing Facility and its
predecessor, Airlines Control Program (ACP).

� MVS* refers to z/OS.

This book describes the overall function of ALCS and how ALCS uses MVS and
VTAM services. It explains the concept of ALCS resources and how ALCS maps
its database layout on to VSAM clusters. It is also used as a link to all the other
manuals in the library.

Who should read this book
This book is intended to help system programmers, application programmers and
operators to gain an overall understanding of the functions and facilities of ALCS.

It may also be useful to executives and data processing professionals wishing to
choose a transaction processing system.

How this book is organized
This book is organized as follows:

Chapter 1, “ALCS Version 2 concepts and facilities”
Provides an overview of ALCS communication and database facilities and
describes message flow in an ALCS system. It also outlines multiprogramming
and multiprocessing.

Chapter 2, “Communication management”
Describes the communication protocols that ALCS supports.

Chapter 3, “ALCS data sharing and data management”
Describes how ALCS shares data with other systems.

© Copyright IBM Corp. 2003, 2010 xv

Chapter 4, “ALCS database file management”
Describes the ALCS direct-access files and the addressing methods that ALCS
uses. It also describes lists structures and index structures.

Chapter 5, “Sequential file management”
Describes the sequential files that ALCS provides for applications to use, and
the sequential files that ALCS uses for system purposes.

Chapter 6, “Entry management”
Describes how ALCS creates and dispatches entries.

Chapter 7, “Storage management”
Describes how ALCS uses the storage space associated with the MVS region
where ALCS runs. In particular it describes the use of home address space.

Chapter 8, “Automated operations”
Describes how NetView can be used to provide automated-operations support
for the MVS environment.

Appendix A, “ALCS pool file support”
Gives more details about type 1 and type 2 pool support.

Appendix B, “Long-term pool space recovery – Recoup”
Gives more detail about chain structures, and how to describe them for
Recoup.

Appendix C, “Communication management for the SLC network”
Describes SLC links and procedures.

Appendix D, “ALCS services”
Lists the services that ALCS provides for applications.

Appendix E, “Direct-access files”
Gives more detail about the ALCS direct-access files.

Appendix F, “Application global area”
Explains the layout of the ALCS application global area.

Appendix G, “Application program management”
Introduces the concept of the ALCS application program load list and the
program configuration table

Appendix H, “Acronyms and abbreviations”
Lists acronyms and abbreviations used throughout the ALCS library. Not every
term necessarily occurs in this book.

The book also contains a glossary of terms, a bibliography, and an index.

xvi ALCS 2.4.1 Concepts and Facilities

 General description

Chapter 1. ALCS Version 2 concepts and facilities

This chapter provides an overview of ALCS and describes how the online monitor
processes input and output messages. It also outlines multiprogramming and
multiprocessing in an ALCS environment.

1.1 Overview of ALCS
ALCS is a software interface between application programs and the z/OS operating
system. It runs as a job or started task under z/OS, providing real-time transaction
processing facilities for airlines, banks, hotels, and other industries that generate
high transaction rates and require fast response times and high system availability.

Typical applications are passenger and cargo reservations for airlines and railroads,
hotel booking systems, and credit card authorization.

ALCS provides:

� High performance and capacity

� A high level of system availability

� High transaction rates

� A wide range of communication facilities

� Connectivity with other transaction processing platforms

� Access to relational databases for business applications

Figure 1 shows a simplified view of an ALCS system where user terminals connect
to the ALCS online system. ALCS application programs (running on the online
system) handle specific tasks associated with transaction processing.

ALCS control terminal
(note 2) Logging facility

(note 3)

User terminals (note 1)

ALCS online system Non-ALCS system

Real-time
database

Shared data,
diagnostic information,

update logging,
and data collection

Dumps,
performance information,

yield management,
and so on

Figure 1. ALCS components overview

© Copyright IBM Corp. 2003, 2010 1

 General description

Note: ALCS terminals are known traditionally as:

 1. Agent sets
2. Computer-room agent set (CRAS)
3. Read-only computer-room agent set (RO CRAS)

The real-time database is optimized for high-speed access; the offline processing
uses separate shared files. The ALCS system is controlled and monitored from
special terminals in secure areas.

The application programming interface (API) of ALCS V2 is compatible with the API
of the TPF family:

� ALCS/MVS/XA (also called ALCS V1)
 � ALCS/VSE
� TPF and its predecessor ACP

Applications developed for any of the four can be – and are – easily exchanged
with users of the other three. You can install proven applications with minimal
programming effort.

ALCS Version 2 supports higher transaction rates than ALCS/MVS/XA or
ALCS/VSE because it benefits from the increased capacity and function of the z/OS
operating system, which allows the use of more powerful hardware configurations.

1.2 General description of ALCS Version 2
ALCS runs in a z/OS environment, and uses many of the facilities of MVS to
perform standard data processing operations.

ALCS Version 2 is a control monitor which supports programs written to the
specifications of the application program interface for TPF, ALCS/VSE, and
ALCS/MVS/XA.

ALCS V2 also supports a wide variety of communication protocols for different
networks and terminals. Figure 2 on page 3 shows the communication between
ALCS and the following:

 � Applications
� VTAM and non-VTAM communications resources

 � NetView*

� Other processors and programs
� DB2* for z/OS
� WebSphere* MQ for z/OS

 � TCP/IP
| � WebSphere Application Server for z/OS using the optimized local adapters
| (OLA)

Appendix H, “Acronyms and abbreviations” on page 167 lists the abbreviations
used in Figure 2 on page 3.

2 ALCS 2.4.1 Concepts and Facilities

 General description

z/O
S

S
LC

S
LC

H
ostto
host

H
ostto
host

A
X

.25

A
X

.25 A
X

.25
X

.25
A

LC
LU

6.2
S

D
LC

B
S

C

LU
6.1

A
C

F
/N

C
P T
I

A
LC

term
inals

C
hannel-attached

3270
devices

3270
devices

3270
devices

LA
N

LA
N

Teletype

W
T

T
Y

H
ost

H
ost

R
em

ote
applications

S
equentialfiles

D
irect-access

R
eal-tim

e
database

G
eneral
files

A
pplication

files
S

ystem
files

R
elational

database
M

essage
queues

H
ostto
host

A
LC

A
LC

term
inals

Teletype

W
T

T
Y

H
ost

H
igh-level
netw

ork

H
ostto

host

Type
B

Type
A

H
ostto
host

A
LC

A
LC

term
inals

Teletype

W
T

T
Y

H
ost

H
igh-level
netw

ork

H
ostto

host

Type
B

Type
A

V
TA

M

A
P

P
C

O
ther

program
s

D
A

TA
B

A
S

E
2

W
ebS

phere
M

Q

N
etV

iew

N
P

S
I

A
LC

I
N

T
O

A
LC

S A
LC

S
applications

3705
E

P
/V

S

T
C

P
/IP

O
ther

program
s

T
C

P
/IP

W
eb

S
erver

Intranet

Internet

H
T

T
P

W
orldw

ide
W

ebG
D

S
e-m

ail

O
ther

hosts
IP

T
N

3270
T

N
3270E

M
A

T
IP

O
LA W

ebS
phere

A
pplication

S
erver

Figure 2. Communication and database facilities

 Chapter 1. ALCS Version 2 concepts and facilities 3

 General description

In addition to the control monitor, ALCS includes the following components to
generate, maintain, and operate the system:

� Interactive System Productivity Facility (ISPF) panels to simplify:

 – Installation
 – Generation
 – Maintenance
– Application program assembly or compilation

� Assembler language macrodefinitions that application programs can use.
These macros replace the equivalent TPF or ALCS/VSE macrodefinitions.

� C language header files and functions that application programs written in the
C language can use.

� Callable services that assembler and high-level language programs can use

� A generation package that includes assembler language macrodefinitions. The
ALCS user codes a series of macroinstructions that specify installation-specific
characteristics of the system, and then assembles these statements. The
assembly generates the configuration-dependent components of the ALCS
system.

� A support package, executing under the control of the ALCS online monitor,
that provides interactive monitoring, control, and diagnostic facilities additional
to those provided with MVS and VTAM.

� A maintenance package that includes MVS offline programs. These programs
perform functions such as producing reports.

� Components that provide access to NetView, which allows the use of
automated operations.

Figure 3 shows where you can find more information about ALCS components.

Figure 3. Where to find more information about ALCS components

Component

Application files 5.2, “Application sequential files” on page 96

Database Chapter 4, “ALCS database file management” on page 61

General files 4.2, “General files and general data sets” on page 69

Message flow 1.5, “Message flow in an ALCS system” on page 13

Real-time
database

4.1, “The ALCS real-time database” on page 62

Sharing data Chapter 3, “ALCS data sharing and data management” on page 55

System files 5.1, “System sequential files” on page 94

4 ALCS 2.4.1 Concepts and Facilities

 General description

1.3 Application programming languages
ALCS allows you to write application programs in several languages. These
languages fall into the following main categories:

 � Assembler
 � SabreTalk
 � C
� Other high-level languages (HLLs)

Figure 4 shows the four main categories.

Assembler

Language Environment

SabreTalk

API API

High-level
language

Assembler
or C

C language

API

ALCS monitor services

Figure 4. ALCS monitor services

Figure 5 shows the application program interfaces available with ALCS.

Application

MVS,...services
(GETMAIN,ATTACH,
DFSORT,VSAM,...)

Assembler or
HLL programs

User-written callable
services

Assembler, SabreTalk,
or C programs

TPF family API
(FINDC, FILEC, ENTER, BACK)

Assembler or
HLL programs
Callable services

(SQL, CPI-C, MQI, APPC,
TCP/IP, WebSphere OLA)

LE facilities (for
example math functions)

HLL programs

TPFDF functions
(DBOPN, DBRED, DBIDX,...)

Assembler
or C programs

Figure 5. Summary of ALCS application program interfaces

 Chapter 1. ALCS Version 2 concepts and facilities 5

 General description

Notes:

1. Not all LE facilities can be used in ALCS application programs

2. Not all TPF family API functions are available to C application programs

3. Do not use MVS services in ALCS application programs

Figure 6 on page 6 and Figure 7 on page 7 summarize the characteristics of the
languages in these categories.

ALCS Application Programming Guide describes how to choose a language for
application programming.

6 ALCS 2.4.1 Concepts and Facilities

 General description

 T
he

re
 a

re
 la

rg
e

nu
m

be
rs

 o
f

ex
is

tin
g

ap
pl

ic
at

io
n

pr
og

ra
m

s
th

at
 y

ou
 m

ay
 w

an
t

to
 u

se
 o

n
yo

ur
 A

LC
S

 s
ys

te
m

.
It

is
 o

fte
n

ch
ea

pe
r

to
 b

uy
 a

n
ex

is
tin

g
ap

pl
ic

at
io

n
(a

nd
 p

os
si

bl
y

cu
st

om
iz

e
or

 e
nh

an
ce

 it
)

th
an

 t
o

de
ve

lo
p

a
ne

w
 o

ne
.

A
LC

S
 V

er
si

on
 2

 s
up

po
rt

s
al

l t
he

 p
ro

gr
am

m
in

g
la

ng
ua

ge
s

th
at

 o
th

er
 T

P
F

-f
am

ily
 p

la
tfo

rm
s

su
pp

or
t.

T
he

 c
ho

ic
e

of
 p

ro
gr

am
m

in
g

la
ng

ua
ge

 c
an

 a
ffe

ct
 t

he
 p

er
fo

rm
an

ce
 c

ha
ra

ct
er

is
tic

s
of

 t
he

 a
pp

lic
at

io
n.

U
su

al
ly

,
as

se
m

bl
er

 la
ng

ua
ge

 p
ro

gr
am

s
ha

ve
 s

ho
rt

er
 p

at
hl

en
gt

hs
 t

ha
n

hi
gh

-le
ve

l l
an

gu
ag

e
pr

og
ra

m
s.

T
hi

s
is

 u
nl

ik
el

y
to

 a
ffe

ct
 t

ra
ns

ac
tio

n
re

sp
on

se
 t

im
es

,
bu

t
it

ca
n

af
fe

ct
 t

he
 s

iz
e

(p
ow

er
)

of
 t

he
 p

ro
ce

ss
or

 y
ou

 n
ee

d.

A
ss

em
bl

er
 la

ng
ua

ge
 p

ro
gr

am
s

ar
e

ea
si

ly
 p

or
ta

bl
e

be
tw

ee
n

T
P

F
-f

am
ily

 p
la

tfo
rm

s,
 b

ut
 d

iff
ic

ul
t

to
 p

or
t

to
 o

r
fr

om
 o

th
er

 p
la

tfo
rm

s.
S

im
ila

rly
,

S
ab

re
T

al
k

an
d

C
 la

ng
ua

ge
 p

ro
gr

am
s

ar
e

ea
si

ly
 p

or
ta

bl
e

be
tw

ee
n

T
P

F
-f

am
ily

 p
la

tfo
rm

s.

P
or

tin
g

ap
pl

ic
at

io
ns

 b
et

w
ee

n
ot

he
r

(n
ot

 T
P

F
-f

am
ily

)
pl

at
fo

rm
s

an
d

A
LC

S
 is

 g
en

er
al

ly
 e

as
ie

r
if

th
e

ap
pl

ic
at

io
ns

 a
re

 in
 a

 h
ig

h-
le

ve
l l

an
gu

ag
e.

A
LC

S
 s

up
po

rt
s

th
e

fo
llo

w
in

g
pr

og
ra

m
m

in
g

in
te

rf
ac

es
:

S
Q

L
F

or
 a

cc
es

si
ng

 r
el

at
io

na
l d

at
a

ba
se

s.
C

P
I-

C
F

or
 s

yn
ch

ro
no

us
 (

co
nv

er
sa

tio
na

l)
co

m
m

un
ic

at
io

n
w

ith
 o

th
er

 a
pp

lic
at

io
ns

.

A
LC

S
 a

ls
o

su
pp

or
ts

 t
he

 r
el

at
ed

 S
N

A
 p

ro
gr

am
m

in
g

in
te

rf
ac

e,
 A

P
P

C
.

M
Q

I
F

or
 a

sy
nc

hr
on

ou
s

(q
ue

ue
d)

 c
om

m
un

ic
at

io
n

w
ith

 o
th

er
 a

pp
lic

at
io

ns
 v

ia
 W

eb
S

ph
er

e
M

Q
 f

or
 z

/O
S

.
T

C
P

/IP
F

or
 c

om
m

un
ic

at
io

n
w

ith
 o

th
er

 a
pp

lic
at

io
ns

 a
nd

 d
ev

ic
es

.
|

W
A

S
F

or
 c

om
m

un
ic

at
io

ns
 w

ith
 o

th
er

 a
pp

lic
at

io
ns

 v
ia

 W
eb

S
ph

er
e

O
LA

.

A
LC

S
 p

ro
vi

de
s

a
w

id
e

ra
ng

e
of

 s
pe

ci
al

iz
ed

 m
on

ito
r

se
rv

ic
es

 f
or

 a
ss

em
bl

er
 a

nd
 S

ab
re

T
al

k
la

ng
ua

ge
 p

ro
gr

am
s,

 a
nd

 a
 m

or
e

re
st

ric
te

d
ra

ng
e

fo
r

C
 la

ng
ua

ge
 p

ro
gr

am
s.

T
he

 I
B

M
 T

P
F

D
F

 p
ro

du
ct

 p
ro

vi
de

s
an

 a
cc

es
s

m
et

ho
d

fo
r

ap
pl

ic
at

io
n

pr
og

ra
m

s
on

 T
P

F
-f

am
ily

 p
la

tfo
rm

s.
T

P
F

D
F

 p
ro

vi
de

s
se

rv
ic

es
 f

or
 a

ss
em

bl
er

an
d

C
 la

ng
ua

ge
 p

ro
gr

am
s.

T
he

se
 r

es
tr

ic
tio

ns
 a

re
 d

iff
er

en
t

fo
r

th
e

di
ffe

re
nt

 la
ng

ua
ge

s,
 b

ut
 a

lw
ay

s
in

cl
ud

e:

�
A

LC
S

 a
pp

lic
at

io
n

pr
og

ra
m

s
m

us
t

us
e

A
LC

S
 s

er
vi

ce
s,

 T
P

F
D

F
 s

er
vi

ce
s,

 o
r

ot
he

r
in

te
rf

ac
es

 t
o

pe
rf

or
m

 I
/O

.
�

M
or

e
ge

ne
ra

lly
,

A
LC

S
 a

pp
lic

at
io

n
pr

og
ra

m
s

m
us

t
no

t
di

re
ct

ly
 in

vo
ke

 s
er

vi
ce

s
pr

ov
id

ed
 b

y
M

V
S

 o
r

ot
he

r
M

V
S

 s
ub

sy
st

em
s.

T
he

se
 r

es
tr

ic
tio

ns
 a

ls
o

ap
pl

y
to

 a
ny

 p
ro

gr
am

s
th

at
 y

ou
r

ap
pl

ic
at

io
n

ca
lls

.

F
ig

ur
e

6.
 A

LC
S

ap
pl

ic
at

io
n

pr
og

ra
m

m
in

g
la

ng
ua

ge
 E

xi
st

in
g

 a
p

p
lic

at
io

n
s

P
er

fo
rm

an
ce

P
o

rt
ab

ili
ty

S
er

vi
ce

s

M
o

n
it

o
r

se
rv

ic
es

 a
n

d
 T

P
F

D
F

R
es

tr
ic

ti
o

n
s

 Chapter 1. ALCS Version 2 concepts and facilities 7

 General description

O
th

er
 H

L
L

T
he

re
 a

re
 n

o
ex

is
tin

g
T

P
F

-f
am

ily
 a

pp
lic

at
io

ns
 w

rit
te

n
in

 la
ng

ua
ge

s
ot

he
r

th
an

as
se

m
bl

er
,

S
ab

re
T

al
k,

 a
nd

 C
.

U
su

al
ly

,
H

LL
 p

ro
gr

am
s

ha
ve

 a
lo

ng
er

 p
at

hl
en

gt
h

th
an

as
se

m
bl

er
 la

ng
ua

ge
 p

ro
gr

am
s.

T
hi

s
is

 u
nl

ik
el

y
to

 a
ffe

ct
tr

an
sa

ct
io

n
re

sp
on

se
 t

im
es

,
bu

t
it

ca
n

af
fe

ct
 t

he
 s

iz
e

(p
ow

er
)

of
th

e
pr

oc
es

so
r

yo
u

ne
ed

.

W
ith

 c
ar

ef
ul

 d
es

ig
n,

 it
 is

po
ss

ib
le

 t
o

de
ve

lo
p

pr
og

ra
m

s
in

hi
gh

-le
ve

l l
an

gu
ag

es
 t

ha
t

ar
e

po
rt

ab
le

 t
o

an
d

fr
om

 o
th

er
pl

at
fo

rm
s.

T

he
se

pr
og

ra
m

s
m

us
t

ad
he

re
 t

o
A

LC
S

 la
ng

ua
ge

re
st

ric
tio

ns
.

D
ep

en
ds

 if
 t

he
 H

LL
 is

 s
up

po
rt

ed
by

: �
D

B
2

fo
r

z/
O

S
 p

re
co

m
pi

le
r

(f
or

 S
Q

L)
�

A
P

P
C

/M
V

S
 (

fo
r

C
P

I-
C

 a
nd

A
P

P
C

)
�

W
eb

S
ph

er
e

M
Q

 f
or

 z
/O

S
(f

or
 M

Q
I)

�
T

C
P

/IP
 f

or
 M

V
S

 o
r

C
om

m
un

ic
at

io
n

S
er

ve
r

(f
or

T
C

P
/IP

)
|

�
O

pt
im

iz
ed

 lo
ca

l a
da

pt
er

s
|

(O
LA

)
(f

or
 W

eb
S

ph
er

e
|

A
pp

lic
at

io
n

S
er

ve
r

fo
r

z/
O

S
|

se
rv

er
s)

C
 l

an
g

u
ag

e

S
om

e
ex

is
tin

g
T

P
F

-f
am

ily
ap

pl
ic

at
io

ns
 a

re
 in

 C
.

Y
ou

 c
an

ru
n

th
es

e
pr

og
ra

m
s

un
de

r
A

LC
S

w
ith

 li
ttl

e
or

 n
o

pr
og

ra
m

ch
an

ge
s.

T
he

 p
er

fo
rm

an
ce

 o
f

C
 la

ng
ua

ge
pr

og
ra

m
s

is
 s

im
ila

r
to

 o
th

er
 H

LL
pr

og
ra

m
s.

A
pp

lic
at

io
ns

 t
ha

t
us

e
th

e
T

P
F

-f
am

ily
 A

P
I

fu
nc

tio
ns

 (
en
tr
c,

fi
nd
c,

 a
nd

 s
o

on
)

ar
e

po
rt

ab
le

on
ly

 t
o

an
d

fr
om

 o
th

er
T

P
F

-f
am

ily
 p

la
tfo

rm
s.

C
 a

pp
lic

at
io

n
pr

og
ra

m
s

ca
n

us
e

|
S

Q
L,

 C
P

I-
C

,
A

P
P

C
,

M
Q

I,
O

LA
,

an
d

T
C

P
/IP

 c
al

ls
.

S
ab

re
T

al
k

S
om

e
ex

is
tin

g
T

P
F

-f
am

ily
ap

pl
ic

at
io

ns
 a

re
 in

 S
ab

re
T

al
k.

Y
ou

 c
an

 r
un

 t
he

se
 p

ro
gr

am
s

un
de

r
A

LC
S

 w
ith

 li
ttl

e
or

 n
o

pr
og

ra
m

 c
ha

ng
es

.
T

he
re

 a
re

 n
o

S
ab

re
T

al
k

ap
pl

ic
at

io
ns

 f
or

 o
th

er
pl

at
fo

rm
s.

T
yp

ic
al

ly
 S

ab
re

T
al

k
ap

pl
ic

at
io

ns
ha

ve
 p

at
hl

en
gt

hs
 t

ha
t

ar
e

lo
ng

er
th

an
 a

ss
em

bl
er

 a
pp

lic
at

io
ns

,
bu

t
sh

or
te

r
th

an
 o

th
er

 h
ig

h-
le

ve
l

la
ng

ua
ge

s.

E
as

ily
 p

or
ta

bl
e

be
tw

ee
n

T
P

F
-f

am
ily

 p
la

tfo
rm

s,
 b

ut
 n

ot
po

rt
ab

le
 t

o
ot

he
r

pl
at

fo
rm

s.

O
th

er
 s

er
vi

ce
s

ar
e

no
t

av
ai

la
bl

e
to

 S
ab

re
T

al
k

pr
og

ra
m

s.

A
ss

em
b

le
r

M
os

t
ex

is
tin

g
T

P
F

-f
am

ily
ap

pl
ic

at
io

ns
 a

re
 in

 a
ss

em
bl

er
la

ng
ua

ge
.

Y
ou

 c
an

 r
un

 t
he

se
pr

og
ra

m
s

un
de

r
A

LC
S

 w
ith

 li
ttl

e
or

 n
o

pr
og

ra
m

 c
ha

ng
es

.

P
ro

vi
de

d
th

at
 e

qu
al

ly
 e

ffi
ci

en
t

al
go

rit
hm

s
ar

e
us

ed
,

as
se

m
bl

er
la

ng
ua

ge
 g

iv
es

 t
he

 b
es

t
po

ss
ib

le
 p

er
fo

rm
an

ce
 (

sh
or

te
st

pa
th

le
ng

th
).

E
as

ily
 p

or
ta

bl
e

be
tw

ee
n

T
P

F
-f

am
ily

 p
la

tfo
rm

s,
 b

ut
di

ffi
cu

lt
to

 p
or

t
to

 o
r

fr
om

 o
th

er
pl

at
fo

rm
s.

A
ss

em
bl

er
 a

pp
lic

at
io

n
pr

og
ra

m
s

ca
n

us
e

S
Q

L,
 C

P
I-

C
,

A
P

P
C

,
|

M
Q

I,
O

LA
,

an
d

T
C

P
/IP

 c
al

ls
.

F
ig

ur
e

7
(P

ag
e

1
of

 2
).

 O
th

er
ap

pl
ic

at
io

n
pr

og
ra

m
m

in
g

la
ng

ua
ge

s

 E
xi

st
in

g
 a

p
p

lic
at

io
n

s

P
er

fo
rm

an
ce

P
o

rt
ab

ili
ty

O
th

er
 s

er
vi

ce
s

8 ALCS 2.4.1 Concepts and Facilities

 General description

O
th

er
 H

L
L

Y
ou

 c
an

 d
ev

el
op

 y
ou

r
ow

n
ca

lla
bl

e
se

rv
ic

es
 t

o
m

ak
e

se
le

ct
ed

 A
LC

S
 m

on
ito

r
se

rv
ic

es
or

 T
P

F
D

F
 s

er
vi

ce
s

av
ai

la
bl

e
to

yo
ur

 H
LL

 p
ro

gr
am

s

B
ro

ad
ly

 s
im

ila
r

to
 o

th
er

tr
an

sa
ct

io
n

pr
oc

es
si

ng
 p

la
tfo

rm
s

(s
uc

h
as

 C
IC

S
).

T
he

 m
ai

n
re

st
ric

tio
n

is
 t

ha
t

yo
u

m
us

t
no

t
us

e
I/O

 f
un

ct
io

ns
.

C
 l

an
g

u
ag

e

M
os

t
A

LC
S

 m
on

ito
r

se
rv

ic
es

an
d

T
P

F
D

F
 s

er
vi

ce
s

ar
e

av
ai

la
bl

e
to

 C
 p

ro
gr

am
s.

Y
ou

m
us

t
av

oi
d

us
in

g
th

es
e

se
rv

ic
es

if
w

an
t

yo
ur

 p
ro

gr
am

s
to

 b
e

po
rt

ab
le

 t
o

ot
he

r
(n

ot
T

P
F

-f
am

ily
)

pl
at

fo
rm

s.

B
ro

ad
ly

 s
im

ila
r

to
 o

th
er

tr
an

sa
ct

io
n

pr
oc

es
si

ng
 p

la
tfo

rm
s

(s
uc

h
as

 C
IC

S
*)

.
T

he
 m

ai
n

re
st

ric
tio

n
is

 t
ha

t
yo

u
m

us
t

no
t

us
e

C
 I

/O
 f

un
ct

io
ns

 (
ex

ce
pt

 f
or

st
di
n

an
d
st
do

ut
).

S
ab

re
T

al
k

M
os

t
A

LC
S

 m
on

ito
r

se
rv

ic
es

 a
re

av
ai

la
bl

e
to

 S
ab

re
T

al
k

pr
og

ra
m

s.

S
ab

re
T

al
k

pr
og

ra
m

s
ca

nn
ot

 a
cc

es
s

T
P

F
D

F
 f

ac
ili

tie
s.

S
ab

re
T

al
k

is
 a

 s
pe

ci
al

 p
ur

po
se

T
P

F
-f

am
ily

 la
ng

ua
ge

.
A

LC
S

do
es

 n
ot

 im
po

se
 a

ny
 r

es
tr

ic
tio

ns
on

 S
ab

re
T

al
k.

A
ss

em
b

le
r

A
ll

A
LC

S
 m

on
ito

r
se

rv
ic

es
 a

nd
T

P
F

D
F

 s
er

vi
ce

s
ar

e
av

ai
la

bl
e

to
as

se
m

bl
er

 a
pp

lic
at

io
n

pr
og

ra
m

s.

T
he

re
 a

re
 a

 n
um

be
r

of
re

st
ric

tio
ns

 t
ha

t
ap

pl
y

to
 A

LC
S

as
se

m
bl

er
 la

ng
ua

ge
 a

pp
lic

at
io

n
pr

og
ra

m
m

in
g.

R
ef

er
 t

o
A

LC
S

A
pp

lic
at

io
n

P
ro

gr
am

m
in

g
R

ef
er

en
ce

 –
 A

ss
em

bl
er

 f
or

 a
co

m
pl

et
e

lis
t

of
 r

es
tr

ic
tio

ns
.

F
ig

ur
e

7
(P

ag
e

2
of

 2
).

 O
th

er
ap

pl
ic

at
io

n
pr

og
ra

m
m

in
g

la
ng

ua
ge

s

 M
o

n
it

o
r

se
rv

ic
es

 a
n

d
 T

P
F

D
F

R
es

tr
ic

ti
o

n
s

 Chapter 1. ALCS Version 2 concepts and facilities 9

 General description

1.3.1 Callable services for high-level language programs
ALCS provides a wide range of specialized monitor services for assembler and
SabreTalk language programs, and a more restricted range for C language
programs.

IBM's TPF Database Facility (TPFDF) product provides an access method for
application programs on TPF-family platforms. TPFDF provides services for
assembler and C language programs.

Programs in other languages cannot access these specialized services directly.
Instead, you must develop callable services to interface between these programs
and the ALCS environment, including your existing application (if any).

By developing callable services, you can make your high-level language programs
independent of the unique characteristics of the ALCS environment. This greatly
simplifies porting the applications to or from other platforms. It also reduces the
need for ALCS-specific programming skills in high-level language application
programmers.

Reasons for choosing to write application programs in high-level languages often
include:

 � Marketability
 � Portability
 � Skills availability

If your application code directly invokes specialized ALCS monitor functions then
you reduce all these benefits to some extent. Callable services are (usually small)
programs that you write in C or assembler language. Your application programs
invoke these callable services using the CALL interface. The callable service
routines interface directly with the data base and existing application programs
using ALCS monitor services. Figure 8 shows this schematically.

HLL
Application

Existing
Application

SQL

CALL ENTER

BACKRETURN

FIND/FILE
or TPFDF

FIND/FILE
or TPFDF

Relational Databases Existing Database

Callable
service

Assembler
or C

Figure 8. Callable services overview

Note that the purpose of the callable service program in Figure 8 is to isolate the
application program from application and system functions that may be different on
other systems.

10 ALCS 2.4.1 Concepts and Facilities

 Overview

ALCS Application Programming Guide describes how to develop callable services
for high-level language programs.

7.5, “High-level language storage” on page 114 describes the storage requirements
for HLL programs.

1.4 Overview of the ALCS Version 2 system
This section describes the following:

 � Application environment

 � ALCS commands

 � Offline programs

 � Generation macros

 1.4.1 Application environment
The primary function of an ALCS system is to process messages received from the
communication network. ALCS processes each input message as a separate user
work item. These work items are called entries. Associated with each entry is an
entry control block (ECB) that is used to control the processing of that entry.
1.7.2, “Entry control block” on page 36 describes the ALCS ECB fields in more
detail.

Notes:

1. ALCS entries are not the same as MVS tasks.
2. An ALCS ECB is not the same as an MVS event control block.
3. 1.7, “Multiprogramming and multiprocessing” on page 35 explains how ALCS

uses these entries.

When ALCS receives an input message from a communication terminal, the online
monitor creates an entry. It then transfers control to the application program which
performs the requested function.

The application program normally constructs and sends a response message and
then exits the entry. Typically, an entry completes processing and exits within a
fraction of second.

In addition to input messages, two other types of entry can exist:

� Entries that application programs generate. ALCS provides monitor services
that allow application programs to create new entries. These are the
create-type services.

� Entries that ALCS generates. For example, the ALCS online monitor timer
routines create a new entry every minute. The new entry is for
application-dependent timer functions.

 Chapter 1. ALCS Version 2 concepts and facilities 11

 Overview

During the processing of a message, the application programs request the monitor
to perform services such as:

� Transferring control between application programs
� Obtaining and returning storage areas
� Initiating input/output operations

Application programs use ALCS application programming interface (API) functions
to call the ALCS routines that perform these services, these are:

� Monitor-request macros (for assembler programs)
� C language functions (for C programs)

The monitor can perform many of these services immediately, and can often return
control directly to the requesting application. However, for some requests, the
monitor cannot return control to the requesting application until some other event
completes. For example, in a request to read a record from a direct access
storage device (DASD), ALCS cannot return control until the data transfer from
DASD to processor storage completes. If ALCS cannot return control immediately,
the processing of that entry is suspended.

ALCS saves information so that it can restart the entry. When the other event
completes, the suspended processing resumes. In this way, ALCS implements its
own subtasking system.

ALCS supports multiprocessor configurations by processing multiple entries
simultaneously. To ensure the integrity of shared storage areas, ALCS provides
facilities to prevent programs that update the same storage area from running
simultaneously. These are called serialization services.

 1.4.2 ALCS commands
ALCS includes a set of commands (variously called operator commands,
functional messages, and Z messages) to control its operation. ALCS processes
these commands in much the same way as it processes messages that request
application functions. The first character of all ALCS commands is Z; this is called
the primary action code. The commands are five characters long and can be
followed by parameters.

ALCS commands request such functions as:

� Alter the contents of an ALCS file
� Display information about ALCS communication resources

To prevent unauthorized access, the use of some ALCS commands is restricted.
Typical restrictions are:

� The command is only accepted from the Prime CRAS terminal
� The command is only accepted from CRAS terminals
� The command is only accepted while ALCS is in a particular system state

12 ALCS 2.4.1 Concepts and Facilities

 Message flow

 1.4.3 Offline programs
In addition to the online monitor and the application programs, the ALCS system
includes a number of independent MVS batch programs. These are called offline
programs. Offline programs run as normal MVS batch jobs and use standard MVS
services.

Examples of ALCS offline programs include:

ALCS system test compiler (STC)
You can use STC to create data records and message records.

STC compiles data on to a sequential data set, called a data file, for loading
to the real-time database. Input to STC is a user-coded file that describes the
contents of real-time database records. Use the ZDATA command to load the
records from the data file to the real-time database.

You can also use STC to prepare a sequential data set, called a test unit
tape (TUT), that contains test messages. The TUT is input to the online
monitor test routines. It allows the testing of application functions.

ALCS diagnostic file processor
The diagnostic file processor analyzes the contents of diagnostic files
generated by ALCS, and prints formatted reports.

 1.4.4 Generation macros
The ALCS monitor program and some of the offline programs need information that
varies from one installation to another, including:

� The size of the real-time database
� The real-time and general sequential files that the application needs
� A description of the ALCS communication network

The configuration-dependent tables contain this information. Each table is a
separate load module.

You must code the ALCS generation macroinstructions to define the initial ALCS
configuration, or to define a change to the ALCS configuration.

Stage 1 of the ALCS generation procedure assembles the macroinstructions to
create an MVS job stream.

Stage 2 executes the job stream produced by stage 1 and creates the
configuration-dependent tables.

1.5 Message flow in an ALCS system
This section describes the following:

� Entry of a message from a terminal

� Input message processing by the ALCS online monitor

� Messages on TCP/IP

� Messages on WebSphere MQ for z/OS

| � Communicating with WebSphere Application Server for z/OS using optimized
| local adapters (OLA)

� Application program processing

 Chapter 1. ALCS Version 2 concepts and facilities 13

 Message flow

� Output message processing by the ALCS online monitor

1.5.1 Entry of a message from a terminal
Figure 2 on page 3 shows the communication networks available to ALCS.
Messages can originate from various types of terminal:

� IBM 3270 terminals on a VTAM network

� ALC terminals on a VTAM network (ALCI or AX.25)

� IBM 3270 terminals on a TCP/IP network

� ALC terminals on a TCP/IP network

� Terminals on an SLC high-level network

� NetView operator IDs

IBM 3270 terminals on a VTAM network
An input message consists of one or more lines of text. Pressing the Enter key
transmits the message to VTAM. ALCS uses VTAM RECEIVE macros to obtain the
message from VTAM.

At various stages in the routing of the message to ALCS, control information is
added to the basic text of the message. This control information includes:

� Codes that indicate the position of the input message on the display terminal
screen.

� Routing codes that indicate the address of the originating terminal.

ALC terminals on a VTAM network (ALCI or AX.25)
Input messages are entered in much the same way as from IBM 3270 terminals
connected by VTAM. The main differences are:

� Terminals connected in this way are normally dedicated to a particular system.
All input messages are sent to that system.

� The control and routing information that is added during transmission of the
message to ALCS is different from that added to IBM 3270 messages.

IBM 3270 terminals on a TCP/IP network
Telnet for IBM 3270 terminals is a service provided by Communication Server in
z/OS. Telnet sessions using the TN3270 or TN3270E protocols appear as
standard 3270 devices in ALCS.

Input messages are entered in much the same way as from IBM 3270 terminals
connected by VTAM. The main differences are:

� Pressing the Enter key transmits the message to the TCP/IP Telnet server.
The Telnet server runs a VTAM application which has a session with ALCS.
ALCS receives the message from this VTAM application as if it were from a
3270 terminal.

� The control and routing information that is added during transmission of the
message to ALCS is different from that added to VTAM messages.

14 ALCS 2.4.1 Concepts and Facilities

 Message flow

ALC terminals on a TCP/IP network
Input messages are entered in much the same way as from ALC terminals
connected by VTAM. The main differences are:

� Terminals connected in this way are normally dedicated to a particular system.
All input messages are sent to that system.

� VTAM does not process the messages. Instead, ALCS uses TCP/IP sockets
calls to obtain the message from TCP/IP.

� The control and routing information that is added during transmission of the
message to ALCS is different from that added to VTAM messages.

Terminals on an SLC high-level network
Input messages are entered in much the same way as from terminals connected by
VTAM. The main differences are:

� Terminals connected in this way are normally dedicated to a particular system.
All input messages are sent to that system.

� VTAM does not process the messages. Instead, the ALCS online monitor
performs I/O operations directly to the communication controller (for example,
an IBM 3705) that connects the communication lines from the high-level
network.

� The control and routing information that is added during transmission of the
message to ALCS is different from that added to VTAM messages.

1.5.2 Input message processing by the ALCS online monitor
ALCS creates an entry for each incoming message. The entry control block (ECB)
contains 16 storage levels (level D0 through level DF) that can associate up to 16
blocks of storage with the entry. ALCS places incoming messages in a storage
block associated with level D0.

IBM 3270 Terminals on a VTAM or TCP/IP network
The ALCS online monitor uses VTAM RECEIVE macros to get input messages from
VTAM. When the ALCS job starts, the online monitor restart routines issue a
number of RECEIVEs. Each RECEIVE specifies an input buffer. When VTAM
receives an input message, it puts the message in the buffer and indicates that the
RECEIVE has completed.

3270 and
workstation

devices

SDLC
BSC

ACF/NCP VTAM RECEIVE

Buffer

ALCS

VTAM

Control Message

3270 and
workstation

devices

TCP/IPOSA

TCP/IP

Figure 9. Input message processing: VTAM puts the message in a buffer

 Chapter 1. ALCS Version 2 concepts and facilities 15

 Message flow

As each RECEIVE completes, the ALCS online monitor transfers the input message
into a storage block attached to level D0 of the ECB and reissues the RECEIVE so
that VTAM can pass another message.

When the online monitor transfers the message into a storage block, it reformats
the message text into the format that ALCS applications use. It transforms the
terminal address information into an internal format terminal address called a
communication resource identifier (CRI) and stores the CRI in a routing control
parameter list (RCPL) and in the message header on level D0.

ALCS

Buffer

ECB
Storage

block

Reformatted message
in EBCDIC

Level
D0

RCPL
CRI

Control Message

Figure 10. Input message processing: ALCS transfers the data to a storage block

The ECB that contains the reformatted input message is then added to a list of
outstanding work items for the ALCS online monitor. This work list is called the
input list.

ALCS
ECB

Storage block
Input list

Reformatted message
in EBCDIC

Level
D0

RCPL
CRI

Figure 11. Input message processing: ALCS adds the ECB to the input list

When the ALCS online monitor can process a new task, it removes the ECB from
the input list.

An online monitor routine determines which ALCS application processes the
message, and passes control to that application.

ALC terminals on a VTAM network (ALCI or AX.25)
The ALCS online monitor processes input messages in much the same way as for
other terminals connected by VTAM. It also translates the message text to the
EBCDIC code that ALCS applications use.

16 ALCS 2.4.1 Concepts and Facilities

 Message flow

ACF/NCP VTAM

VTAM RECEIVE
EBCDIC

or
ALC

(See note)

Buffer

ALCS

Control Message

ALCI
ALC

TITI

ALC terminal

Figure 12. Input message processing: ALCS transfers the data to a storage block and translates it to EBCDIC

Note: Either ALCS or NCP can translate the message from ALC to EBCDIC.

ACF/NCP VTAM

VTAM RECEIVE

ALC

(See note)

Buffer

ALCS

Control Message
NPSI

HLN
AX.25

Local switching
center

Figure 13. Input message processing: ALCS transfers the data to a storage block and translates it to EBCDIC

Note: ALCS translates the message from ALC to EBCDIC.

The ECB that contains the reformatted input message is then added to the input
list, and processing continues as for terminals on a VTAM network.

ALC terminals on a TCP/IP network
The ALCS online monitor uses SELECTX socket calls to detect when data is ready to
be received on TCP/IP connections, and it uses RECV socket calls to get input data
from TCP/IP. Each RECV socket call specifies an input buffer where TCP/IP puts
the data. These input buffers are storage areas allocated by the ALCS TCP/IP
communication initialization routines.

Once a complete input message has been received, the ALCS online monitor
transfers the input message into a storage block attached to level D0 of the ECB.
It also translates the text to EBCDIC and reformats the message text into the
format that ALCS applications use.

The ECB that contains the reformatted input message is then added to the input
list, and processing continues as for terminals on a VTAM network.

As well as TCP/IP connections for terminal traffic, you can define TCP/IP
connections to remote applications. ALCS communication routines support both
client-type connections and server-type connections.

ALCS supports the following MATIP message traffic for a TCP/IP high-level
network:

� ATA/IATA Type A, conversational message traffic
� ATA/IATA Type B, conventional message traffic

 � Host-to-host traffic

 Chapter 1. ALCS Version 2 concepts and facilities 17

 Message flow

Terminals on an SLC high-level network
ALCS reads these input messages directly from the communication controller.

When a channel of an SLC link is started, ALCS initiates input from the
communication controller by issuing the MVS EXCP macro. It uses a continuously
running channel program that transfers data into a set of input buffers. These input
buffers are storage areas allocated by the ALCS SLC communication initialization
routines. Since the channel program runs continuously, there is no interruption to
indicate when a message has been read in. Instead, the online monitor checks the
input buffers at intervals of approximately 200 milliseconds.

EP/VS
Channel
program

ALCS checks for a
complete mesage or

control block every 200mS.

Buffer

ALCS

Control Message

Control Message

Control Message

HLN

SLC

Local switching
center

Figure 14. Input message processing: A channel program fills the input buffers

If one or more of the buffers contains a complete message, the online monitor
transfers each input message into a storage block attached at level D0 of an ECB.

When ALCS transfers the message into a storage block, it translates the text to
EBCDIC and reformats the message text into the format that ALCS applications
use. ALCS processes control blocks and does not pass them as messages to
applications.

ALCS

Buffer

Padded ALC

ECB
Storage

block

Translated to
EBCDIC

Reformatted message
in EBCDIC

Level
D0

RCPL
CRI

Control Message

Figure 15. Input message processing: ALCS transfers the data to a storage block and
translates it to EBCDIC

The ECB that contains the reformatted input message is then added to the input
list, and processing continues as for terminals connected by VTAM.

ALCS supports the following SLC message traffic:

� ATA/IATA Type A, conversational message traffic
� ATA/IATA Type B, conventional message traffic

 � Host-to-host traffic

18 ALCS 2.4.1 Concepts and Facilities

 Message flow

1.5.3 Messages on TCP/IP
To use ALCS TCP/IP communication support, you must have Communication
Server IP installed together with the relevant hardware and software to connect
MVS to the TCP/IP network.

You can use TCP/IP calls in your ALCS applications to exchange messages with
other ALCS applications or applications that are:

� On the same MVS system
� On another platform that supports TCP/IP socket connections.

Figure 2 on page 3 shows how ALCS can connect to remote devices using the
TCP/IP protocols.

The ALCS system programmer uses the SCTGEN macro parameters to specify:

� Support for TCP/IP (TCPIP=YES).
� Support for the TCP/IP concurrent server (Listener) (TCPLIST=YES).
� The virtual IP address for binding sockets used by the concurrent server and

the TCP/IP communication resources (TCPVIPA=virtual_ip_address)
� The name of the TCP/IP address space for the inital connection

(TCPNAME=tcpip_address_space_name).
� Up to eight TCP/IP port numbers which the concurrent server will use

(TCPPORT={port_number_1,port_number_2,...}).

The ALCS operator uses the ZCTCP command to establish or terminate a connection
between ALCS and a specified TCP/IP address space in the same MVS system.
The ZCTCP command also starts and stops the ALCS TCP/IP concurrent server
(ALCS Listener). Up to eight concurrent servers (Listeners) can be started at the
same time using different port numbers.

ALCS Operation and Maintenance describes the ZCTCP command.

 E-mail
You can use the ALCS e-mail facility to transmit and receive e-mail messages over
TCP/IP networks using an external mail server or mail transfer agent (MTA). ALCS
uses the Internet Simple Message Transfer Protocol (SMTP) to communicate with
the mail server. E-mail uses the ALCS support for socket programming and the
ALCS concurrent server (Listener).

 Web Server
You can use the ALCS Web Server facility to deliver web pages and application
function to Web Browser clients over TCP/IP networks. ALCS uses the Internet
HTTP protocol to communicate with the clients. The Web Server uses ALCS
support for socket programming and the ALCS concurrent server (Listener), as well
as the ALCS hierarchical file system (HFS).

TCP/IP large messages
ALCS supports large (up to 2 MegaBytes) extended messages to/from ALC
terminals connected to ALCS through TCP/IP and to/from TCP/IP connections.

ALCS will use heap storage for input messages, if a message does not fit in any
storage block.

 Chapter 1. ALCS Version 2 concepts and facilities 19

 Message flow

As such messages can be very large (up to 2MB) there are certain restrictions
(only solicited messages to terminals connected to this ALCS, no ALCS scroll
logging, no ALCS message retrieval using the ZRETR command).

1.5.4 Messages on WebSphere MQ for z/OS
You can use MQI calls in your ALCS applications to exchange messages with other
ALCS applications or applications that are:

� On the same MVS system
� On another platform that supports message queuing using the IBM WebSphere

MQ products

In message queuing with ALCS, the term application queue denotes any queue on
which application programs use MQI calls to put and get messages. In addition to
the MQI calls which the IBM WebSphere MQ for z/OS product supports, your
application can take advantage of two special message queuing facilities that ALCS
provides.

These facilities are the:

� ALCS initiation queue
� ALCS input queue

The ALCS initiation queue
In message queuing, an initiation queue is a local queue on which the queue
manager puts trigger messages. The queue manager creates a trigger message
on the initiation queue when a predetermined event occurs, such as a message
arriving on an application queue. A trigger message contains information about
which program is to be started, in order to handle this event.

You can define an WebSphere MQ for z/OS initiation queue to ALCS in order to
start an ALCS application automatically when a trigger message is put on this
queue. ALCS uses information (in the trigger message) to start an ALCS
application that can retrieve messages from the application queue to which the
trigger message refers.

You can use the ALCS initiation queue facility when you want to monitor an
WebSphere MQ for z/OS initiation queue, but you do not want to create a
long-lived ECB to do this.

The ALCS system programmer can use the SCTGEN macro parameters to specify:

� Support for WebSphere MQ for z/OS: MQM=YES
� The name of an WebSphere MQ for z/OS initiation queue for ALCS and,

optionally, the lowest system state in which ALCS can open the initiation
queue: MQMI=(initiation_queue,system_state)

ALCS Installation and Customization describes the SCTGEN macro.

ALCS can open an initiation queue during startup (MQM=(YES,CONNECT)), or the
ALCS operator can use the ZCMQI command to open this (or another) initiation
queue.

(ALCS Operation and Maintenance describes the ZCMQI command.)

Figure 16 through Figure 19 give an overview of the ALCS initiation queue.

20 ALCS 2.4.1 Concepts and Facilities

 Message flow

Initial state: Figure 16 on page 21 shows the initial state where the application
queue is empty.

Application
queue

Initiation
queue

MQSeries

Other
applications
(for example

CICS)

MQIMQI

ALCS
applications

ALCS

MQSeries

Other
applications
(for example

CICS)

MQIMQI

ALCS
applications

ALCS

Figure 16. Input message processing: Initial state, application queue empty

 Chapter 1. ALCS Version 2 concepts and facilities 21

 Message flow

Figure 17 shows some messages on the application queue

Application
queue

Initiation
queue

MQSeries

Other
applications
(for example

CICS)

MQIMQI

ALCS
applications

ALCS

MQSeries

Other
applications
(for example

CICS)

MQIMQI

ALCS
applications

ALCS

Figure 17. Input message processing: The queue becomes non-empty

WebSphere MQ for z/OS puts a trigger message on the initiation queue to indicate
the transition of the application queue from empty to non-empty. Figure 18 shows
this trigger message.

Application
queue

Initiation
queue

MQSeries

Other
applications
(for example

CICS)

MQIMQI

ALCS
applications

ALCS

MQSeries

Other
applications
(for example

CICS)

MQIMQI

ALCS
applications

ALCS

Trigger
message

Figure 18. Input message processing: WebSphere MQ for z/OS puts a trigger message on
the initiation queue

22 ALCS 2.4.1 Concepts and Facilities

 Message flow

Figure 19 shows how ALCS transfers the message to storage block and attaches
the block to ECB level DO.

Application
queue

Initiation
queue

MQSeries

Other
applications
(for example

CICS)

MQIMQI

ALCS
applications

ALCS

MQSeries

Other
applications
(for example

CICS)

MQIMQI

ALCS
applications

ALCS

ECB
Storage

blockLevel
D0

Figure 19. Input message processing: ALCS gets a message and transfers it to a storage block

The ALCS input queue
You can define a local queue to ALCS in order to start an ALCS application
automatically when a message is put on this queue.

Messages on the ALCS input queue must be in PPMSG message format. In a
PPMSG format message, a routing control parameter list (RCPL) precedes the
message text. ALCS uses information in the RCPL to start an ALCS application
that can retrieve the message from the application queue.

You can use the ALCS input queue facility when you want to monitor an
WebSphere MQ for z/OS local queue, but you do not want to create a long-lived
ECB to do this. The ALCS system programmer can use the SCTGEN macro
parameters to specify:

� Support for WebSphere MQ for z/OS: MQM=YES
� The name of an WebSphere MQ for z/OS input queue for ALCS and,

optionally, the lowest system state in which ALCS can open the input queue:
MQMQ=(input_queue,system_state)

ALCS Installation and Customization describes the SCTGEN macro.

ALCS can open an input queue during startup (MQM=YES,CONNECT), or the ALCS
operator can use the ZCMQI command to open this (or another) input queue.

ALCS Operation and Maintenance describes the ZCMQI command.

 Chapter 1. ALCS Version 2 concepts and facilities 23

 Message flow

Figure 20 shows how ALCS transfers the message to a storage block and attaches
the block to ECB level DO.

Application
queue

MQSeries

Other
applications
(for example

CICS)

MQIMQI

ALCS
applications

ALCS

MQSeries

Other
applications
(for example

CICS)

MQIMQI

ALCS
applications

ALCS

ECB
Storage

blockLevel
D0

RCPL
CRI

Figure 20. Input message processing: The ALCS input queue

 MQ Bridge
The ALCS MQ Bridge allows messages received on MQ request queues to be
formatted and passed on to legacy applications as if they came from ordinary
terminal devices.

Output from the applications is routed from the ALCS output routines to the MQ
Bridge in order to send it on to the corresponding MQ response queues.

The MQ queues are defined in the ALCS communication table. MQ terminals are
also defined in the ALCS communication table and they are associated with an MQ
queue definition. Applications can use normal terminal records and device
addressing.

This support is intended to provide connectivity to current ALCS applications from
remote systems (for example, web servers).

| 1.5.5 Communicating with Websphere Application Server for z/OS
| using optimized local adapter support
| The ALCS system programmer can use the SCTGEN macro parameter WAS=YES to
| specify support for WebSphere Application Server for z/OS optimized local adapters
| (OLA). ALCS Installation and Customization describes the SCTGEN macro. ALCS
| automatically enables the optimized local adapters interface during restart. The
| ALCS operator can use the ZCWAS command to enable and disable this interface
| while ALCS is running.

| The OLA adapters for calling between WebSphere Application Server for z/OS and
| ALCS (in another address space on the same z/OS image) allow ALCS customers
| to support an efficient integration of newer Java-based applications with
| ALCS-based applications. Those newer applications will provide a strong
| differentiator for hosting WebSphere on z/OS alongside existing ALCS applications
| as performance will be significantly better than any equivalent function.

24 ALCS 2.4.1 Concepts and Facilities

 Message flow

| Data is passed as serialized byte arrays. z/OS WAS will manage how those byte
| arrays get mapped into one or more Java objects.

| Note: The WAS applications/EJBs/servlets must use the widely used JCA (1.5)
| style interactions.

| A set of callable services can be used by ALCS assembler or C/C++ programs for
| exchanging data with applications running in WebSphere Application Server for
| z/OS. For more information on the callable services (with names of the form
| BBOA1xxx) are described in the IBM Information Center for WebSphere Application
| Server - Network Deployment (z/OS) and search for BBOA1. You can use the
| USRWAS1 installation-wide monitor exit to verify the authority of the caller and to
| identify input and output mesages.

| The ALCS WAS Bridge allows ALCS application programs to send and receive
| messages using OLA for WebSphere Application Server for z/OS without the need
| to code any callable services in ALCS programs. The ALCS WAS Bridge
| installation-wide monitor exits USRWAS3, USRWAS4, USRWAS5, and USRWAS6
| allow you to customize the behaviour of the WAS Bridge to suit your applications.

1.5.6 Application program processing

Input message routing
When ALCS receives an input message, it creates a new entry to process the
message. Then the ALCS router passes control to an application program called
an input-message editor. There is an input-message editor for each application,
but they do not have to be unique; several applications can use the same
input-message editor.

The ALCS router checks whether there is input routing for the terminal. If there is,
it routes the input message to the corresponding input message editor. If there is
not, it routes the input message to the ALCS command processor.

 Input-message
 editors
 ┌──────────────┐

┌───────────────┐ ┌────────┐ ┌�│ Application │
 A─�│ Communication │ │ ├─┘ │ for A │
 B─�│ Input ├�│ Router │ └──────────────┘
 C─�│ │ │ ├─┐ ┌──────────────┐

└───────────────┘ └────┬───┘ └�│ Application │
│ │ for B │

 │ └──────────────┘
 │
 │ ┌──────────────┐

└──────�│ ALCS Command │ ALCS routes the message
│ Processor │ to here if no input
└──────────────┘ routing is found.

Figure 21. Input message processing: ALCS checks the routing for a message

The input-message routing for a terminal can be specified by:

� The COMDEF macro in the ALCS communication generation
� The ZROUT command
� The ZACOM command

 Chapter 1. ALCS Version 2 concepts and facilities 25

 Message flow

Using program function (PF) keys to enter messages
If a terminal has program function (PF) keys, you can use these to enter messages.
ALCS automatically converts the resulting input into normal input messages or
commands.

ALCS provides standard conversion for PF keys (which is the same as
ALCS/MVS/XA). You can provide an installation-wide exit to override these PF key
settings, for example to adhere to IBM's Common User Access* (CUA)*

recommendations. ALCS Installation and Customization describes the ALCS
installation-wide exits.

Also, end users can use the ZAKEY command to customize their own PF key
settings. This is described in ALCS Operation and Maintenance.

Input messages beginning with Z
ALCS normally assumes that any input message starting with Z is an ALCS
command (or possibly a user command added using an installation-wide exit) and
passes the message directly to the ALCS command processor.

You can override this default processing if your application expects some input
messages to begin with Z. For example, a check-in application might require a
passenger name as an input message. If you do this, your application
input-message editor must identify messages that really are ALCS commands and
pass them on to the ALCS command processor (otherwise the end user will not be
able to use the ALCS commands).

Figure 22 shows a possible routing arrangement for an airline application system.
The system has two applications, reservations and message switching. Each
application has its own input-message editor.

 Input-message Output message
 editors editors
 ┌──────────────┐ ┌──────────────┐

┌───────────────┬────────┐ ┌�│ Message │── ─ ─ ─ ─ �│ Message ├─┐
A─�│ Communication │ ├─┘ │ Switching │ │ Switching │ │
B─�│ Input │ Router │ └──────────────┘ └──────────────┘ │ ┌────────┬───────────────┐
C─�│ │ ├─┐ ┌──────────────┐ ┌──────────────┐ └─────�│ │ Communication ├� A

└───────────────┴────┬───┘ └�│ Reservations │── ─ ─ ─ ─ �│ Reservations ├───────�│ Router │ Output ├� B
 │ │ │ │ │ ┌─────�│ │ ├� C
 │ └─────┬────────┘ └──────────────┘ │ └────────┴───────────────┘
 │
 │
 │ ┌─────── ──────┐ ┌──────────────┐ │

└──────�│ ALCS Command │── ─ ─ ─ ─ �│ ALCS Command ├─┘
 │ Processor │ │ Processor │
 └──────────────┘ └──────────────┘

Figure 22. Example of routing for an airline application system

Note that in Figure 22 there is a connection from the reservations input-message
editor to the ALCS command processor. That is because the reservations
input-message editor accepts input messages that begin with the character Z. The
reservations input-message editor checks these input messages to see whether
they are ALCS commands. If they are commands it enters (passes control to) the
ALCS command processor.

This checking process is one example of the type of processing that an
input-message editor can perform.

26 ALCS 2.4.1 Concepts and Facilities

 Message flow

Input messages — general processing
In general, the input-message editor decides how to process the input message.
To do this it can:

� Check the address of the originating terminal. If it is not authorized to use the
application, the input-message editor can reject the input message, in which
case it must send a response to the originator. The input-message editor can
enter an output-message editor to do this.

� Check the type of the originating terminal. The input-message editor can carry
out message editing that depends on the originating terminal type. For
example, International Programmed Airlines Reservation System (IPARS) input
messages from WTTY terminals do not use the same format as input
messages from IBM 3270 terminals.

� Check the input message to see what function the message requests. One
application can support a number of different functions. Different input
messages can request different functions. For example, the IPARS
reservations application supports functions such as:

– Display flights to a destination at a specific time
– Reserve seats on a flight
– List the passengers who have reservations on a flight

The IPARS input-message editor uses the first 1 or 2 characters of the input
message to identify the function that the message requests. These are called
the primary action code and the secondary action code respectively.

� Check that the end user terminal is authorized to request the function.

ALCS checks that the terminal is authorized to use ALCS.

End users may have to satisfy additional authorization requirements before they
can use certain applications, or particular functions of an application. The
application can conveniently perform this authorization checking during
input-message editing.

When the input-message edit processing completes, the input-message editor
enters the application program that starts to process the input message. Typically
the input-message editor decides which application program to enter, depending on
the function that the input message requests.

Processing continues through one or more application programs. For most
terminals, the application programs must send a response message to the
originating terminal. To do this, the application programs construct the response
message, and finally enter the output-message editor.

Data gathering transactions
ALCS creates a new entry to process each input message. However, some
applications require several physical input messages to perform a single logical
function. For example, the IPARS reservations application builds a record called a
passenger name record (PNR) that contains information about a passenger. The
end user enters separate input messages for separate pieces of information about
the passenger. One message can specify the passenger's name, another the
passenger's telephone number, and so on.

 Chapter 1. ALCS Version 2 concepts and facilities 27

 Message flow

This type of processing, where consecutive input messages from the same terminal
operate together to perform a single logical function, is called a data gathering
transaction.

Because each input message is a separate entry, the entries must save information
about the partially complete data gathering transaction. Each entry saves more
information until all the data is available. The final input message of the data
gathering transaction checks that all the information is available, and that it is
consistent.

The IPARS agents assembly area
One way to implement data-gathering transactions is to use fixed-file records to
save information about partially completed transactions. For example, IPARS uses
a fixed-file record called the agents assembly area (AAA). Figure 23 and
Figure 24 show how a record is built from separate input messages.

 ECB
 ┌──────────┐
│ D�────────────────────�┌───────────────────┐ Storage Block

 │ D1──────────┐ │ Intermediate │
│ RCPL │ │ │ message data │

 │ CRI │ │ └─────────┬─────────┘
 └──────────┘ │ │

└─────────�┌─────────
─────────┐ Record used to collect the information
│ Name nnnnnnnnnnnn │ (One AAA record for each terminal)

 │ Addr1 │
 │ Addr2 │
 │ Tele │
 └───────────────────┘

Figure 23. Data gathering transactions: The application stores a message and discards the
ECB

 ECB
 ┌──────────┐
│ D�────────────────────�┌───────────────────┐ Storage Block

 │ D1──────────┐ │ Intermediate │
│ RCPL │ │ │ message data │

 │ CRI │ │ └─────────┬─────────┘
 └──────────┘ │ │

└─────────�┌─────────
─────────┐ Record used to collect the information
│ Name nnnnnnnnnnn │ (One AAA record for each terminal)
│ Addr1 aaaaaaaaaaa │
│ Addr2 aaaaaaaa │

 │ Tele ttttttt │
 └───────────────────┘

Figure 24. Data gathering transactions: The application stores each intermediate message
and discards each ECB

IPARS allocates one AAA record for each terminal. The fixed-file record ordinal
number is directly associated with a terminal ordinal number (communication
resource ordinal).

The ALCS terminal hold facility
Some types of terminal can enter another input message before they receive the
response to a previous message. If the application uses a fixed-file record to save
information about partially completed transactions, two input messages can update
the record at the same time. To prevent this, the application can use the record
hold facility. However, the record should not be held for the duration of a whole
input message. To avoid this, the application can use the ALCS terminal hold
facility (also called AAA hold).

28 ALCS 2.4.1 Concepts and Facilities

 Message flow

To use the terminal hold facility, the input-message editor sets terminal hold on and
the output-message editor sets it off. They use the COMCC monitor-request macro
(or the comcc C language function) to set terminal hold on and off.

 Output-message
 editor

┌─── Input-message editor ───┐ ┌────────────┐
┌───────────────┬────────┐ ┌─────────────┐ ┌───────────┐ ┌────────────┐ │ Send reply │ ┌────────┬───────────────┐

 A─�│ Communication │ │ │ Terminal │No│ Use COMCC │ │ Update AAA │ │ Use COMCC │ │ │ Communication │
 B─�│ Input │ Router ├─�│ held? ├──┤ to hold ├─┤ record ├─┤ to release ├�│ Router │ Output ├�A
 C─�│ │ │ │ (use COMIC) │ │ terminal │ │ │ │ terminal │ │ │ │

└───────────────┴────────┘ └──────┬──────┘ └───────────┘ └────────────┘ └────────────┘ └────────┴───────────────┘

 Yes
 ┌────────────────┐

│ Ignore message │
 └────────────────┘

Figure 25. The ALCS terminal hold facility

Before the input-message editor sets terminal hold on, it checks (with the COMIC
monitor-request macro or comic C language function) to see whether it is already
on. If terminal hold is already on, the application is still processing a previous input
message; the input-message editor ignores the second input message (it does not
even send a reply).

Output message processing by application programs
After the application programs construct the response message, they enter an
output-message editor. As with input-message editors, each application can have
its own output-message editor, or several applications can use the same
output-message editor.

Figure 22 on page 26 shows a possible routing arrangement for an airline
application system. The system has two applications, reservations and message
switching. Each application has its own output-message editor.

The output-message editor eventually issues a SEND-type (SENDC or ROUTC)
monitor-request macro. These macros transmit the response to the originating
terminal.

In addition to issuing these macros and functions, the output-message editor can
provide functions such as:

Canned messages: The application program does not provide the text of the
message. Instead, it provides a code that identifies a particular standard message
(called a canned message) from a list of standard messages. The output-message
editor constructs and sends the response.

Scrolling ALCS allows an application to construct a response message that
contains:

� More columns than the output terminal supports
� More lines than the output terminal supports
� A combination of both

The output-message editor saves the whole response message (in pool records) if
it cannot fit on one screen. It then builds and sends a new output message that fits
on one screen. The output-message editor also supports ALCS commands that
scroll the screen over a large message. Figure 26 on page 30 shows the effect of
scrolling.

 Chapter 1. ALCS Version 2 concepts and facilities 29

 Message flow

saksals,ma,adasdnfnlknvknmdfddadadskvfenbv

saksals,ma,adasdn fnlknvknmdfddadad

saksals,ma,adasdnfnlknvknmdfddadadskvfenbv

sals,ma,adasdnfnlknvknmdfddadadskvfenbv

saksals,ma,adasdnfnlknvknmdfd

saksals,ma,adanlknvknmdfddadadskvfenbv

saksals,ma,adasdnfnlknvknmdfddadadskvfenbv

saksals,ma,adasdnfnlknvknmdfddadadskvfenbv

saksals,ma,adasdnfnlknvknmdfddadadskvfenbv

saksals,ma,adasdn fnlknvknmdfddadad

saksals,ma,adasdnfnlknvknmdfddadadskvfenbv

sals,ma,adasdnfnlknvknmdfddadadskvfenbv

saksals,ma,adasdnfnlknvknmdfd

saksals,ma,adanlknvknmdfddadadskvfenbv

saksals,ma,adasdnfnlknvknmdfddadadskvfenbv

saksals,ma,adasdnfnlknvknmdfddadadskvfenbv

saksals,ma,adasdnfnlknvknmdfddadadskvfenbv

saksals,ma,adasdn fnlknvknmdfddadad

saksals,ma,adasdnfnlknvknmdfddadadskvfenbv

sals,ma,adasdnfnlknvknmdfddadadskvfenbv

saksals,ma,adasdnfnlknvknmdfd

saksals,ma,adanlknvknmdfddadadskvfenbv

saksals,ma,adasdnfnlknvknmdfddadadskvfenbv

saksals,ma,adasdnfnlknvknmdfddadadskvfenbv

Initial position Scroll right Scroll down

Figure 26. Scrolling moves a screen-sized window over a large response message

Some applications provide scrolling facilities, but ALCS provides a monitor service
for scrolling which you can use instead. It is implemented using the DISPC
monitor-request macro and the ZSCRL command. These are described ALCS
Application Programming Reference – Assembler and ALCS Operation and
Maintenance.

1.5.7 Output message processing by the ALCS online monitor
ALCS application programs construct response messages and then call an
output-message editor that uses a SEND-type monitor-request macro to request
transmission of the message.

To process one of these macros or functions, the ALCS online monitor first checks
that the message is in the standard ALCS output message format (for example,
that the character count is correct, and that the CRI in the output message or
RCPL is valid).

IBM 3270 terminals on a VTAM or TCP/IP network
The CRI determines the routing information in the format required by VTAM. The
online monitor then uses a VTAM SEND macro to transmit the message to the
terminal.

For IBM 3270 terminals on a TCP/IP network, VTAM passes the message to the
Telnet server which transmits it over the TCP/IP network to the Telnet client.

ALC terminals on a VTAM network (ALCI or AX.25)
The CRI determines the routing information in the format required by VTAM.

The online monitor translates the message text from the EBCDIC code used by
ALCS applications to the transmission code used on the high-level network (HLN).

30 ALCS 2.4.1 Concepts and Facilities

 Message flow

ACF/NCPVTAM

VTAM SEND ALCI

NPSI

HLN

ALC

AX.25

TITI

ALC terminal

Local switching
center

Buffer

Padded ALC

ECB Storage
block

Translated to
a line code

Output message
in EBCDIC

Level
D0

RCPL
CRI

Control Message

Figure 27. Output message processing: ALCS translates the EBCDIC data to the line code and passes it to VTAM

The online monitor then uses a VTAM SEND macro to transmit the message to the
local HLN switching center, which forwards it to the remote terminal.

ALC terminals on a TCP/IP network
The CRI determines which TCP/IP connection is used for transmitting the message.
It also determines the routing information, if the terminal is connected through a
high-level network.

The online monitor:

� Translates the message text from the EBCDIC code used by ALCS
applications, to the transmission code used on the network.

� Adds the message text and routing information to the output queue for the
TCP/IP connection.

When the TCP/IP connection is free, ALCS transmits the highest priority message
from its queue.

ALCS uses the SEND socket calls to transmit the message over the TCP/IP network
to the remote terminal.

Terminals on an SLC high-level network
The CRI determines which SLC link is used for transmitting the message. It also
determines the routing information, as required by the HLN.

The online monitor:

� Translates the message text from the EBCDIC code used by ALCS
applications, to the transmission code used on the high-level network.

� Adds the message text and routing information to the output queue for the SLC
link.

 Chapter 1. ALCS Version 2 concepts and facilities 31

EP/VS

ALCS
monitor

EXCP

SLC output queue

HLN

SLC

Local switching
center

Buffer

Padded ALC

ECB Storage
block

Translated to
a line code

Output message
in EBCDIC

Level
D0

RCPL
CRI

Control Message

Figure 28. Output message processing: ALCS translates the EBCDIC data to the line code and adds it to an SLC
queue

When a channel (for this SLC link) is free, ALCS transmits the highest priority
message from the queue for this SLC link.

In this way, ALCS transmits the message to the local HLN switching center, which
forwards it to the remote terminal.

1.6 Standard record and storage block sizes
ALCS supports up to eight standard sizes for records on DASD. These sizes are
called L1, L2, and so on, up to L8. ALCS supports the same standard sizes for
sequential file records, plus another standard size called L0. ALCS storage
management allocates blocks of storage to entries in these same standard sizes.
Application programs can use these standard size storage blocks for reading and
writing DASD and sequential file records or for other purposes (such as for work
areas).

When you define the characteristics of your ALCS installation in the ALCS
generation, you specify which of these sizes your ALCS system will support, and
what the actual sizes (in bytes) are. When you are deciding which of the nine sizes
to support, and what actual sizes (in bytes) they are, you need to be aware of:

� How ALCS stores DASD records
� ALCS minimum requirements
� Application portability and TPF compatibility

1.6.1 How ALCS stores DASD records
This section describes how ALCS stores DASD records its own data sets. It does
not describe how (for example) DB2 for z/OS stores its relational database.

ALCS stores records on DASD in VSAM control intervals. Although VSAM
supports a variety of control interval formats, ALCS imposes the following
restrictions:

� The control interval size must be the same as the physical record size.

� Each control interval must contain one and only one record.

� Within any one cluster, all records must be the same size.

32 ALCS 2.4.1 Concepts and Facilities

Figure 29 on page 33 shows the format of a VSAM control interval. Notice that
VSAM requires the control interval size to be a multiple of 512 bytes (for large CIs,
the CI size must be a multiple of 2KB). In addition to the record itself, the VSAM
control interval contains a record definition field (RDF) and a control interval
definition field (CIDF) which together occupy the last eight bytes of the control
interval. (Although ALCS does not exploit this, VSAM allows there to be unused
space between the end of the VSAM logical record and the 8-byte RDF/CIDF.)

�─────────────── VSAM control interval (CISIZE) ──────────────�
(multiples of 512)

�──────────── VSAM logical record ─────────────────� �─── 8 ──�
 ┌──┬──────────┐

│ │ RDF/CIDF │
 └──┴──────────┘

Figure 29. VSAM control interval format

Offline programs which access ALCS general files (general data sets) read (VSAM
GET) and write (VSAM PUT) VSAM logical records. But online application programs
read (find service) or write (file service) standard size ALCS records (L1, L2, and so
on). ALCS stores the standard size ALCS record at the start of the VSAM logical
record, and reserves the last 56 bytes of the VSAM logical record to contain ALCS
control information. Typically, there are some unused bytes between the end of the
standard size ALCS record and the start of the 48-byte reserved area. Figure 30
shows this layout.

�─────────────── VSAM control interval (CISIZE) ──────────────�
(multiples of 512)

�──────────── VSAM logical record ─────────────────� �─── 8 ──�
 ┌──────────────────────┬─────────┬───────────────────┬──────────┐

│ ALCS standard record │ Unused │ 48 bytes reserved │ RDF/CIDF │
 └──────────────────────┴─────────┴───────────────────┴──────────┘

Figure 30. ALCS record in a VSAM control interval

For example, a 512-byte control interval contains a 504-byte VSAM logical record.
Because ALCS reserves 48 bytes, this allows a maximum of 456 bytes for the
ALCS standard size record. Most ALCS installations define size L1 as 381 bytes
which leaves 75 bytes unused.

1.6.2 ALCS minimum requirements for standard sizes
All ALCS systems must support at least sizes L0, L1, L2, and L3. ALCS itself uses
sizes L1, L2, and L3. ALCS assumes that these are greater than or equal to the
following minimum sizes in bytes:

L1 381 bytes
L2 1055 bytes
L3 4000 bytes

Note: You cannot change size L0, it is always 127 bytes.

1.6.3 Application portability and TPF compatibility
When you define the standard record and block sizes for your ALCS system,
consider that:

� You may want to buy applications developed to run on other systems (TPF or
ALCS). These applications may contain dependencies on the standard sizes
defined on the vendor's system.

 Chapter 1. ALCS Version 2 concepts and facilities 33

� You may want to sell applications that you develop. It may be difficult to port
your application if it contains dependencies on standard sizes that are not
defined, or are defined differently on your customer's system.

TPF only supports sizes L0, L1, L2, and L4 for application program use, and it does
not allow these sizes to vary from installation to installation. Many applications
developed for use with TPF depend on these TPF record sizes; they might not
work unless you define the sizes as follows:

L0 127 bytes
L1 381 bytes
L2 1055 bytes
L4 4095 bytes

You should also consider using these sizes for L0, L1, L2, and L4 if you plan to
develop new ALCS applications. This will make your application easier to port if
you ever sell it to a TPF user, or install TPF yourself.

Note that you can greatly enhance portability of applications that you develop by
exploiting the IBM TPFDF product. TPFDF helps you to write applications that do
not contain dependencies on the actual sizes of records that you access.

1.6.4 Recommendations and requirements for record and block sizes
Figure 31 summarizes the ALCS requirements and recommendations for standard
record and block sizes.

 TPF compatibility

If your application program must be compatible with TPF, do not use sizes L3
and L5–L8 explicitly. You can, however, use these sizes through the IBM
TPFDF program. TPFDF allows you to use any record size (decided by the
database administrator) without explicitly specifying the size in your application
programs.

Figure 31. Storage block sizes

Storage
reference

Number of bytes of
application data

Notes

L0 127 Fixed by ALCS

L1 381 Recommended for TPF compatibility

L2 1055 Recommended for TPF compatibility

L3 4000 Minimum

L4 4095 Recommended for TPF compatibility

L5 Up to 32K As required

L6 Up to 32K As required

L7 Up to 32K As required

L8 Up to 32K As required

34 ALCS 2.4.1 Concepts and Facilities

 Multiprogramming and multiprocessing

1.6.5 Sequential file records
ALCS provides services that allow application programs to read and write standard
size sequential file records (L0, L1, and so on). Sequential file records are stored
in conventional record formats, without additional ALCS or VSAM control
information.

ALCS also provides services that allow application programs to read and write
arbitrary size sequential file records.

1.7 Multiprogramming and multiprocessing
Entries: An input message is an example of an ALCS entry. An entry is a unit of
work, similar to an MVS task. ALCS can process entries independently of each
other. It can use:

Multiprogramming
Interleaves the processing of several entries on the same processor

If an application program that is processing one entry waits (for
example, for I/O), ALCS can start or resume processing another entry.
In this way, ALCS can interleave the processing of several entries on
the same processor.

Multiprocessing
Processes several entries at the same time on different processors

If ALCS runs on a multiprocessor it can process entries simultaneously
on different processors. For example, on a four-way multiprocessor,
ALCS can process four entries simultaneously.

Relationship between entries and tasks: ALCS does not ATTACH a new MVS
task for each entry. Several ALCS entries can run under the same MVS task. To
process entries, ALCS ATTACHes one or more MVS tasks during ALCS initialization.
The number of tasks is a run-time option; it determines the number of processors
that ALCS can use to process entries (each task can run on a separate processor).
Each of these tasks can start or resume processing of any entry. One entry can
start processing under one task, wait, then resume under another task.

1.7.1 Re-entrant application programs
One ALCS application program often processes more than one entry. For
example, several end users can request a time display at the same time. Each
request (input message) is a separate entry, but there is only one program that
generates the time display response (output message).

If one application program processes several entries, ALCS uses the same copy of
the program for all entries. Because of this, ALCS application programs must be
reentrant. A reentrant program does not modify itself; for example, it does not
contain work areas or switches that it modifies during execution.

If an ALCS application program is not reentrant, it can fail unpredictably. ALCS
terminates any application program that attempts to modify itself.

 Chapter 1. ALCS Version 2 concepts and facilities 35

 Multiprogramming and multiprocessing

1.7.2 Entry control block
Because application programs must be reentrant, they cannot use internal data
areas and switches. Instead, they must use storage that is associated with an
entry, not with a program. ALCS provides an area of storage for each entry. This
storage area is called the entry control block (ECB). The ALCS online monitor
creates a new ECB for each new entry.

Figure 32 shows the ECB format. The figure shows some assembler symbols
such as:

� EBW000 (in a user work area)
� CE1FA0 (a storage level)
� EBROUT (an entry-origin field)

For assembler programs, the ALCS EB�EB macro generates the EB0EB DSECT that
defines these labels.

Similarly for C-language programs, the c$eb�eb header file generates the eb�eb
struct that defines the labels.

Note: The $ character is the national currency symbol (X'B5').

Other high-level language programs (for example COBOL) do not have direct
access to the ECB.

: :
: :
├──┤
│ ECB work area 1 (EBW���─EBW1�3) │
│ ┌───────────────────────────────────┤
│ │ Work area 1 switch bytes │
├──────────────────────────────────┴───────────────────────────────────┤
: :
├──┤
│ Entry origin fields (CE1EID, CE1FLG, EBROUT, CE1TRC, and so on) │
├──┤
: :
: :
│ User save area for general registers 14,15,�-7 (CE1URA─CE1UR7) │
├──┤
│ ECB work area 2 (EBX���─EBX1�3) │
│ ┌───────────────────────────────────┤
│ │ Work area 2 switch bytes │
├──────────────────────────────────┴───────────────────────────────────┤
: :
├──┤
│ ECB local program work area (EBL���─EBL1�3) │
│ ┌───────────────────────────────────┤
│ │ LPW switch bytes │
├──────────────────────────────────┴───────────────────────────────────┤
: :
├──┤
│ Routing control parameter list area (CE1RCPL) │
├──┤
: :
: :
└──┘

Figure 32. Some entry-control-block areas

An application program can safely store information about a particular message in
the ECB. Information about another message does not overwrite it because each
message is a separate entry and has its own ECB.

36 ALCS 2.4.1 Concepts and Facilities

 Multiprogramming and multiprocessing

User-defined ECB fields
ALCS application programs can use the ECB work areas for any purpose. The
areas are:

� Work area 1 (EBW000 through EBW103) and its switch bytes
� Work area 2 (EBX000 through EBX103) and its switch bytes

Programs typically use these areas for intermediate results, for passing parameters
between programs, and so on.

ALCS also provides a local program work area (EBL000 through EBL103 and its
switch bytes) which is “local” to the program. It is cleared to binary zeros on entry
to the program and the contents are saved/restored across enter/back.

 TPF compatibility

Do not use the local program work area in programs that must be compatible
with TPF

Note: ALCS does not provide local program work area support for C language
programs.

However, unrelated programs (programs which do not call each other) can, and
often do, use ECB work area fields for different purposes. Therefore, fields defined
within the ECB work areas are usually specific to a particular program or group of
programs.

ALCS provides a special area (CE1USA) in the ECB, where the system
programmer can define fields which are installation-wide.

: :
│ ECB work area 2 (EBX���─EBX1�3) │
│ ┌───────────────────────────────────┤
│ │ Work area 2 switch bytes │
: └───────────────────────────────────┤
: :
├──┤
│ User area reserved for installation-wide fields (CE1USA) │
├──┤
: :

Figure 33. Installation-wide ECB user fields

Installation-wide fields can contain the same information for all entries, regardless
of which application programs are using the ECB.

ECB levels and attached storage blocks
Application programs that read or write records do not use the ECB to store the
records. Instead, they use additional storage called storage blocks. Application
programs can also use storage blocks for work areas if they need more storage
than the ECB itself.

 Storage levels
To obtain a storage block, an application program uses a monitor-request macro or
C language function. The monitor-request macro specifies an ECB field called a
storage level. The ALCS ECB contains 16 storage levels for application program
use. The monitor-request macro obtains a storage block and attaches the block to

 Chapter 1. ALCS Version 2 concepts and facilities 37

 Multiprogramming and multiprocessing

the storage level; that is, it saves information such as the block address and block
size in the storage level.

: :
├──┤
│ ECB work area 1 (EBW���─EBW1�3) │
│ ┌───────────────────────────────────┤
│ │ Work area 1 switch bytes │
├──────────────────────────────────┴───────────────────────────────────┤
: :
├──┤
│ Data levels (CE1FA�-CE1FAF) │
├──┤
: :
├──┤
│ Storage levels (CE1CR�─CE1CRF) │
├──┤
: :
: :
└──┘

Figure 34. ECB levels

Some storage blocks can be associated with an entry but not attached to a storage
level. These include:

� Detached storage blocks
� Automatic storage blocks

Detached storage blocks: Application programs can use the DETAC
monitor-request macro (detac C function) to detach a storage block from a storage
level. They can then obtain another storage block and attach it at that storage
level. A detached storage block is still associated with the entry (application
programs can use the ATTAC (attac C function) macro to re-attach it).

Automatic storage blocks: Assembler application programs can use the ALASC
monitor-request macro to obtain an automatic storage block. An automatic storage
block is associated with an entry, but it is not attached at a storage level. The
BACKC monitor-request macro releases automatic storage blocks.

See ALCS Application Programming Guide for a description of how to obtain and
use storage blocks.

 Data levels
The ALCS ECB includes 16 fields called data levels. Each data level is associated
with a corresponding storage level. Some monitor-request macros use a data level
and the associated storage level. For example, the FILEC macro writes the
contents of a storage block to DASD. The storage level contains information about
the storage block and the data level contains information about where to write the
record.

1.7.3 Data event control blocks (DECBs)
A data event control block (DECB) contains a storage level and data level. An
application program can use a DECB as an alternative to using a storage level or
data level in the ECB. Although a DECB does not physically reside in an ECB, the
DECB fields specify the same information as those in the ECB. An application
program can dynamically acquire a DECB by using the DECBC FUNC=CREATE
monitor-request macro (tpf_decb_create C function).

38 ALCS 2.4.1 Concepts and Facilities

 Multiprogramming and multiprocessing

┌──┐
│ DECB name: IDECNAM (idecnam) │
├──┤
: :
├──┤
│ Storage level: IDECCRW (ideccrw) │
│ IDECDAD (idecdad), IDECCT� (idecct�), IDECDLH (idecdlh) │
├──┤
│ Data level: IDECFRW (idecfrw) │
│ IDECRID (idecrid), IDECRCC (idecrcc), IDECFA (idecfa) │
├──┤
: :
└──┘

Figure 35. DECB level

For Assembler programs, the ALCS IDECB macro generates the IDECB DSECT that
defines the labels for the fields in a DECB.

Similarly for C-language programs, the c$decb header file generates a C data
structure defined as type TPF_DECB that defines the labels.

Note: The $ character is the national currency symbol (X'B5').

See ALCS Application Programming Guide for more information on the use of
DECBs.

1.7.4 Data collection area
Each ECB has an associated data-collection area.

During the life of an entry, the ALCS online monitor accumulates statistics in fields
in this area. If data collection is active, the data-collection routines write these
statistics to the data-collection sequential file when the ECB exits. If a
data-collection file is not defined, ALCS writes the information to the diagnostic file.
There is an optional extension to this area which installations can use.

You can use offline programs such as:

� The ALCS statistical report generator (SRG)
� The Service Level Reporter (SLR).

to process the statistics and produce reports that show how entries use ALCS
resources.

1.7.5 Serialization – forcing exclusive access to resources
Each ALCS entry has its own ECB, its own DECBs and its own attached and
detached storage blocks (or heap and stack for high-level languages), which all
belong exclusively to that entry. ALCS application programs can therefore use the
storage without interference from other entries.

However, all ALCS entries can share other resources, in particular:

 � Database records
� The application global area

 � Sequential files.

In order to allow application programs to share these resources without
inadvertently overwriting their contents, ALCS allows programs to force exclusive
access to a resource while they are using it, as follows:

 Chapter 1. ALCS Version 2 concepts and facilities 39

 Multiprogramming and multiprocessing

� Force exclusive access to the resource
� Perform instructions that use the resource
� Release the resource so that other entries can use it.

While one entry has exclusive access to a resource, ALCS queues any other
entries that want to use it until the first entry releases it.

40 ALCS 2.4.1 Concepts and Facilities

 Communication resources and resource addressing

 Chapter 2. Communication management

This chapter describes the communication protocols that ALCS supports.

2.1 ALCS communication resources and resource addressing
ALCS communication support can receive data from various sources, and send
data to various destinations. For example, it can receive data (messages) from
IBM 3270 displays, and it can send data (messages) to IBM 3270 displays and
printers.

ALCS can also receive messages from, and send messages to, applications and
NetView operator IDs. An ALCS application is a set of related functions that
application programs provide. Figure 22 on page 26 shows how the ALCS
input-message router passes messages to an input-message editor (destination).

These sources and destinations are examples of ALCS communication
resources. Figure 36 shows the ALCS communication resources.

Display

Printer

WTTY
WTTY

Display

NetView operator ID

Application Application

NetView operator ID

ALCS

LU 6.1

LU 6.2

TCP/IP
TCP/IP

MQ Bridge

WAS Bridge
WAS Bridge

MQ Bridge

LU 6.1

LU 6.2

Figure 36. ALCS communication resources: Sources and destinations

The ALCS communication generation defines every ALCS communication resource.
The LDTYPE= parameter of the COMDEF macro (in the ALCS communication
generation) specifies the logical-device type of an ALCS communication resource.

Generally, ALCS communication support does not need to know about the
communication network components (links, terminal control units, and so on) that
connect terminals. ALCS does not control or use these components directly.

© Copyright IBM Corp. 2003, 2010 41

 Communication resources and resource addressing

Consequently, these components are not ALCS communication resources. For
example, IBM 3270 terminal control units, and SDLC links that connect them, are
not ALCS communication resources.

However, there are exceptions. For example, ALCS can send messages to ALC
terminals connected through an SLC high-level network (HLN). To do this, ALCS
communication support must use the correct SLC link (the link that connects the
HLN). SLC links are ALCS communication resources because ALCS must know
about them.

Your system programmer or network control group chooses all the VTAM LU
names; the same person (or group) should choose the ALCS CRNs for resources
that do not have VTAM names.

All VTAM LU names must be unique, and all CRNs must be unique. Figure 37
shows the relationship between CRNs and SNA LU names.

ALC terminals

ALCS
applicationsSNA terminals

TN3270 terminals
TN3270E terminals

(All VTAM resources)
(All ALCS resources)

LU names CRNs
CRNs = LU names

Non-VTAM resources
used by ALCSVTAM resources

used by ALCS

VTAM resources
not used by ALCS

WTTY

NetView
operator ID

LU 6.1

LU 6.2
LU 6.1

LU 6.2

X.25

TCP/IP

WAS Bridge

MQ Bridge

Figure 37. ALCS communication resource names and LU names overview

An ALCS communication resource is known in two ways:

� An external name, the communications resource name (CRN)
� An internal identifier, the communications resource identifier (CRI)

Figure 38 on page 43 summarizes the use of CRNs and CRIs on different
communication resources; the numbers in parentheses refer to the notes that follow
the figure.

Figure 2 on page 3 shows a summary of ALCS communications.

42 ALCS 2.4.1 Concepts and Facilities

 Communication resources and resource addressing

── ─ ─ ─ ─ ─ ─ ──────────────────┐ TCP/IP client/server
┌─────────┤�───── TCP/IP ───────�CRN CRI ┌─┐CRN CRI

z/OS │ TCP/IP │�── MATIP ─────────�│ │ ALC terminal
or │ │�──────── TN327�/TN327�E ─────�┌─┐ IBM 327� display/printer └─┘
OS/39� └─────────┤ │ │ CRN is VTAM ACB name

 ┌──────┤ ┌─────────────┐ └─┘ CRI
 │ │ │ 37xx NCP │

│ │ │ ┌──────┤ ALCS Type 1,6 ┌─┐SNA LU�─CRN CRI (1) ┌─┐CRN CRI (2)
│ │ │ │ NPSI │�─── AX.25 PVC ───�│ │�──────────────────────�│ │ Terminal
│ │ │ │ │ └─┘ └─┘
│ │ │ │ │ ALCS Type 2,3,4,5 ┌─┐SNA LU�─CRN CRI (1)
│ │ │ │ │�──── X.25 PVC ───�│ │

 ┌─────────────┬─┐ │ │ │ └──────┤ └─┘
 CRI CRN─�│ Application │ │ │ │ │ │
 │─────────────┤ │ │ │ │ ┌──────┤
 CRI CRN─�│ Application │ │ │ │ │ │ NTO │────── WTTY FDX ──� Send SNA LU�─CRN ─┐

├─────────────┤ │ │ │ │ │ │�───── WTTY FDX ─── Receive SNA LU�─CRN ─┘ CRI (3)
 CRI CRN─�│ Application │ │ │ │ │ │ │

├─────────────┘ │ │ │ │ │ │�───── WTTY HDX ──� SNA LU�─CRN CRI
│ │�─�│ │ │ │ │────── WTTY SXO ──� SNA LU�─CRN CRI
│ A L C S │ │ │ │ │ │�───── WTTY SXI──── SNA LU�─CRN CRI

 │ │ │ │ │ └──────┤
 │ │ │ │ │ │
 │ │ │ │ │ ┌──────┤

└──┬─────┬──┬───┘ │ │ │ │ ALCI │ ┌─┐SNA LU�─CRN CRI (1) ┌─┐CRN CRI (2)
� │ │ │ │ or │�─────── ALC ─────�│ │�──────────────────────�│ │ Terminal

│ | | | | VTAM |<†>| | NEF2 | ¿†‘ ¿†‘
 CRN CRI (5) │ │ │ └──────┤

┌─────────┴───┐ | | | | | | |
│ NetView │ │ │ │ │�───── LU 6.1 ─────� SNA LU�─CRN CRI (1)
│ Operator ID │ | | | │ │ │ │ Parallel Session �─CRN CRI

 └─────────────┘ | | | |
| | | │ │ │ │�───── LU 6.2 ─────� CRN CRI for TP

 │ │ │ │
| | | │ │ │ │

│ │ │ │ �┐ IBM 327� display
┌────────────┴┐ | │ │ │ │ │�────── SDLC ──────� │ ┌──────┐SNA LU�─CRN CRI (1)
| MQ Bridge | │ │ │ │�─────── BSC ──────� │ │ │

 └─────────────┘ | | | | | | │ ├──────┤
 CRN CRI for queue │ │ │ │�───── LAN ────────� │ └──────┘
 CRN CRI for terminal | │ │ │ │ │ │ IBM 327� printer

│ │ └─────────────┘ │ ┌─────────┐SNA LU�─CRN CRI (1)
| ┌────────────┴┐ │ │ │ │ └─────────┘
| | WAS Bridge | │ │ Channel-attached Controllers │
| └─────────────┘ │ │ │�──────────────────� 327�, workstation, │
| CRN CRI for WAS └──────┤ LAN �┘
| CRN CRI for terminal | │

│ 37�5 EP SLC link (up to 7 channels)�─CRN CRI (4)
┌──────┤ ┌────────┐ ┌───────────────────────┐ ┌────────────┐

│ │ EXCP │��│┌───────┤�─────� Channel 1 �─CRN �─────────�│ High level │ ┌─┐CRN CRI (2)
│ │ ││ LICRA │ │ : │ │ network ├ ─ ─ ┤ │ ALC terminal

└─ ─�│ │ │└───────┤�─────� Channel 7 �─CRN �─────────�│ │ └─┘
 │ │ │ │ └───────────────────────┘ └────────────┘
 ── ─ ─ ─ ── ─ ─ ─────────────┴──────┘ └────────┘

Figure 38. Communication resource names (SNA LU, CRNs, and CRIs)

Notes:

1. The CRN is the same as the SNA LU name.
2. Specify a CRN for non-VTAM resource.
3. A WTTY FDX link has two CRNs, but only one CRI.
4. The SLC link has a CRN and CRI. The channel CRN is the link CRN with the

channel number appended. There is no channel CRI.
5. The CRN is the same as the NetView operator ID.

 Chapter 2. Communication management 43

 Communication resources and resource addressing

2.1.1 Communication resource name (CRN)
Every ALCS communication resource has a unique name, up to 8 characters in
length, called the communication resource name (CRN). If a communication
resource is an SNA* logical unit (LU), the CRN is the same as the LU name. For
communication resources which do not have an LU name, specify the CRN for a
non-VTAM resource.

In both cases, the NAME= parameter of the COMDEF macro (in the ALCS
communication generation) specifies the CRN for an ALCS communication
resource.

ALCS commands and responses can use the CRN to identify a particular
communication resource.

Special cases for CRNs
� WTTY full-duplex (FDX) links are unusual because each link has two CRNs,

one CRN for the send line and one for the receive line.

� NetView CRNs are unusual in that the CRN is the NetView operator ID, not a
physical device.

� SLC CRNs are unusual because each SLC channel has a CRN (the CRN
refers individually to the SLC channel). But each SLC link also has a CRN (the
CRN refers collectively to all channels of the link). The link CRN is up to 7
characters in length. The channel CRNs are the link CRN with the channel
number appended.

 Reserved CRNs
ALCS reserves the following CRNs, therefore do not use them as the operand of
NAME in any COMDEF macro:

 ALCSAPPL
 ALCSLINK
 APPC

AP1 through AP255
AT1 through AT255

 MQ
 NETVIEW
 NONE
 PRC
 ROC
 SLCLINK
 TCPIP
 TERMINAL

| WAS
 WTTY

2.1.2 Communication resource identifier (CRI)
The CRN is the external identifier for an ALCS communication resource. However,
application programs normally do not use the CRN to refer to communication
resources. Instead, they use an internal identifier called the communication
resource identifier (CRI) to refer to communication resources.

44 ALCS 2.4.1 Concepts and Facilities

 Communication resources and resource addressing

The CRI is a unique 3-byte number which ALCS automatically assigns to each
communication resource. The numbers are normally assigned sequentially, but you
can specify an explicit number (or range).

ALCS Installation and Customization describes how to specify an explicit CRI or a
range of CRIs. The CRI corresponds to the TPF LN/IA/TA format address (but
note that it cannot be split up into line, interchange, and terminal address
components) and the ALCS/VSE LN/ARID format address.

Special cases for CRIs
� SLC links: The individual channels of a link have their own CRNs, but share

the CRI of the link.

� WTTY full-duplex links: The send and receive sides of a link have their own
CRNs, but share the CRI of the link.

Most ALCS applications (specifically those that use IMSG, OMSG, and AMSG
message formats) use the full 3-byte CRI to address communication resources.
But some applications (specifically those that use XMSG format messages) use a
1-byte communication resource address. In ALCS, these applications use the
low-order byte of the CRI. For readers familiar with TPF or ALCS/VSE, this
corresponds to using the symbolic line number (SLN).

2.1.3 Computer room agent set (CRAS)
A CRAS terminal is an ALCS terminal that is authorized for restricted commands.
Many ALCS commands can only be entered from a CRAS terminal. See ALCS
Operation and Maintenance for details of these commands. ALCS supports 512
CRAS terminals in four types:

� 1 Prime CRAS

� 1 Receive Only CRAS (RO CRAS)

� 255 Alternate CRAS terminals

� 255 Alternate CRAS printers

In addition to this, many other terminals can be assigned CRAS authority of Prime
CRAS or alternate CRAS. It is possible that these terminals themselves may have
CRAS status of Prime CRAS or alternate CRAS, or indeed may have no CRAS
status. There is an unlimited number of terminals that may have Prime CRAS or
alternate CRAS authority.

A terminal with a particular CRAS status has the authority associated with that
CRAS, for example AT1 CRAS has AT1 authority.

At any given time CRAS terminal AT1 may also have Prime CRAS authority and
the user of the terminal can issue all the commands associated with the Prime
CRAS. Each CRAS terminal has an additional CRN (a CRAS CRN) which is
associated with its normal CRN. This topic is discussed in more detail in 2.1.5,
“Special addressing for CRAS terminals” on page 47.

Prime CRAS (CRN PRC) is the primary terminal that controls the ALCS system.
RO CRAS (CRN ROC) is a printer to which ALCS sends certain messages about
system function and progress.

 Chapter 2. Communication management 45

 Communication resources and resource addressing

There can be up to 255 alternate CRAS terminals (CRN AT1 through CRN AT255).
There can be up to 255 alternate CRAS printers (CRN AP1 through CRN AP255).

It is possible to define a CRAS printer as ATnnn, but this is not advisable. IBM
recommends that you use APnnn for defining a printer unless an existing
configuration dictates that you cannot.

The terminals with Prime CRAS and alternate CRAS (AT1 through AT16) authority
are the only terminals that can

� Transfer or assign Prime or RO CRAS
� Transfer or assign AT1 through AT16
� Transfer or assign AP1 through AP16

Alternate CRAS terminals (AT1 through AT16) are the only CRAS terminals that
can be fallback CRASs for Prime CRAS. AP1 through AP16 are normally the
fallback CRAS printers for RO CRAS. However, if AT1 through AT16 are printer
devices, they too can be fallback CRAS printers for RO CRAS.

Note: When you assign a fallback terminal or printer, consider the implications of,
for example, the prime CRAS function being inadvertently assigned to:

� A terminal in a non-secure area
� A remote terminal outside the computing center

Figure 39 summarizes ALCS CRAS terminals.

┌ ─ Prime CRAS function ─ ─ ─ ─ ─ ─ ─┐ ┌ ─ RO CRAS function ─ ─ ─ ─ ─ ─ ─ ─ ┐
 Fallback Fallback
 │ candidates │ │ candidates │
 ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐ (1)
││ Terminal │ PRC │ Terminal │ AT1 │ ││ Printer │ ROC │ Printer │ AP1 │

 └──────────┘ └──────────┘ └──────────┘ └──────────┘
│ ┌ ─ ─ ─ ─ ─┐ (2) │ │ ┌ ─ ─ ─ ─ ─┐ │

 Can assign: Terminal AT.. Printer AP..
│ PRC └ ─ ─ ─ ─ ─┘ │ │ └ ─ ─ ─ ─ ─┘ │

 ROC ┌──────────┐ ┌──────────┐
│ AT1 .. AT16 │ Terminal │ AT16 │ │ │ Printer │ AP16 │

AP1 .. AP16 └──────────┘ └──────────┘
└ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┘ └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┘

 ┌──────────┐ ┌──────────┐
│ Terminal │ AT17 │ Printer │ AP17

 └──────────┘ └──────────┘
┌ ─ ─ ─ ─ ─┐ ┌ ─ ─ ─ ─ ─┐

 Terminal AT.. Printer AP..
└ ─ ─ ─ ─ ─┘ └ ─ ─ ─ ─ ─┘

 ┌──────────┐ ┌──────────┐
│ Terminal │ AT255 │ Printer │ AP255

 └──────────┘ └──────────┘

Figure 39. CRAS CRNs for terminals and printers

Assigning Prime or alternate CRAS authority to a terminal other than the originator
requires Prime CRAS authority. Assigning Prime or alternate CRAS authority to the
originating terminal only requires the appropriate SAF authorization for the user
logged on to the terminal. See 2.1.4, “CRAS authority and Security Authorization
Facility (SAF)” on page 47 for more details on SAF authorizations and ALCS
Installation and Customization for a full description of using SAF compliant security
programs in an ALCS installation.

46 ALCS 2.4.1 Concepts and Facilities

 Communication resources and resource addressing

Notes:

1. Alternate CRAS printer AP1

By defining a NetView operator ID as AP1 you can route network control blocks
(NCBs) to the NetView Network Problem Determination Application (NPDA)
database. ALCS can receive NCBs from the SITA HLN connected by an SLC
link (using the P.1124 protocol) or by an X.25 PVC link.

2. Alternate CRAS AT4

By defining a printer as AT4, you can route all error and status messages
relating to communication to one particular printer (possibly located in a
communication control office). By default, ALCS routes all communication
messages to AT4; if AT4 is not defined, or is not a printer, then ALCS routes
the messages to RO CRAS.

 CRAS routing
You can use the installation-wide exit AXA0 to change the routing for ALCS
communication error and status messages to suit your installation. ALCS
Installation and Customization describes the AXA0 installation-wide exit.

 NetView
If you have NetView installed, you can define NetView operator ID as ALCS CRAS
terminals.

2.1.4 CRAS authority and Security Authorization Facility (SAF)
ALCS interfaces with RACF (or another SAF-compliant security product) to protect
specific functions of the system to control which end users can invoke them. It
does this by controlling which users have authority to use terminals which have
Prime CRAS or alternate CRAS authorities.

Transferring or assigning CRAS terminals or authorities may only be performed if
the current users of the terminals have sufficient SAF authority.

Example 1: User A is logged on to the Prime CRAS and user B is logged on to
the alternate CRAS AT1. In order to transfer the two CRAS devices user B must
have the SAF authority to use a terminal with Prime CRAS authority.

Note: CRAS authorities are hierarchical in nature so it follows that user A must
already have sufficient SAF authority to be alternate CRAS AT1.

Example 2: User A is logged on to a terminal with no CRAS status or authority.
In order to assign Prime CRAS authority to himself user A requires SAF authority
to use a terminal with Prime CRAS authority. For further information on SAF see
ALCS Installation and Customization. For information on the ALCS ZACOM
command which assigns and removes CRAS authority, see ALCS Operation and
Maintenance.

2.1.5 Special addressing for CRAS terminals
The ALCS communication generation assigns a CRN and CRI to each ALCS
communication resource. For each CRAS terminal (up to 512) it also associates a
CRAS CRN and CRAS CRI with the normal CRN and CRI. Each CRAS resource
can be addressed using:

� The CRN and CRI assigned during communication generation

 Chapter 2. Communication management 47

 Communication resources and resource addressing

� The CRAS CRN and CRAS CRI

The CRAS CRIs are normally only used to send messages. They are not normally
found in input messages. The CRI in input messages is the actual CRI of the
resource and not the CRAS CRI, even if the resource entering the message is a
CRAS. Figure 40 shows which CRI ALCS uses for CRAS messages.

 ALCS Terminal
┌────────────────────────────┐ Input message (CRI) ┌──────────┐
│ Copy CRI from the ┌ ─│�─────────────────────────────────┤ │
│ input to the response │ Response (CRI) │ CRI CRN │
│ └ �├─────────────────────────────────�│ │
│ │ Unsolicited message (CRAS CRI) │ │
│ Use the CRAS CRI ├─────────────────────────────────�│ CRAS CRI │
└────────────────────────────┘ │ CRAS CRN │
 └──────────┘

Figure 40. The CRI in messages to and from a CRAS

ALCS reserves some CRNs and ranges of CRIs for CRAS terminals. Figure 41
lists these ranges.

Figure 41. CRAS CRNs and CRI ranges

CRAS Type CRAS CRI CRAS CRN Remarks

RO X'000000' ROC Must be a printer or NetView operator ID. For testing
purposes, you can assign the RO CRAS to a test (STV) 3270
printer so that the output is directed to the ALCS diagnostic file
instead of a physical printer.

Alternate
printer

X'000001' AP1 Use this only for the NetView operator ID that connects to the
Network Problem Determination Application (NPDA).

Alternate
printer

X'000002'
through
X'0000FF'

AP2
through
AP255

Must be a printer or NetView operator ID. For testing
purposes, you can assign these to test (STV) 3270 printers so
that the output is directed to the ALCS diagnostic file instead of
a physical printer.

Prime X'010000' PRC Must be a display or NetView operator ID.

Alternate X'010001'
through
X'0100FF'

AT1
through
AT255

Can be a display, printer, or NetView operator ID.

2.1.6 Communication resource ordinal
The ALCS communication generation assigns a unique number (the
communication resource ordinal) to each communication resource. The
numbers are normally assigned sequentially, but you can specify an explicit number
(or range).

ALCS Installation and Customization describes how to specify an explicit ordinal
(ORD) or a range of ordinals (IORD). Application programs can use the
communication resource ordinal for any function that requires a unique number
associated with each communication resource. For example, an application can
have a fixed-file record type that has one fixed-file record for each communication
resource. The application can use the communication resource ordinal as the
record ordinal. This associates each record with the corresponding communication
resource.

48 ALCS 2.4.1 Concepts and Facilities

 Message router

ALCS uses this technique for the resource control record. The IPARS application
(supplied with ALCS) uses this technique for the agents assembly area (AAA).

Application programs can use the COMIC monitor-request macro (or the C language
comic function) to get the communication resource ordinal for a communication
resource.

 2.2 Message router
Figure 42 shows an overview of the message routing that ALCS provides.

 TPF
┌─ ALCS ─────────┐ ┌──ALCS──────────┐

 │ │ │ │
 ├────────┐ │ │ │

│ applna │�─┐ │ │ │
 ├────────┤ │ │ │ │

│ applnb │�─┘ │ │ │
 ├────────┤ │ ┌──┐Terminal │ │

│ applnc │� ─ ─ ─────�│ │ │ │
 ├────────┤ │ └──┘ │ ┌────────┤

│ applnd │� ─ ─ ───────────────────────────── ─ ─ ─�│ applnf │
 ├────────┤ │ │ └────────┤ ┌──┐Terminal

│ applne │� ─ ─ ───────────────────────────── ─ ─ ─ ─ ─ ─ ─ ─────�│ │
├────────┤ │ ┌──ALCS──────────┐ │ ┌────────┤ └──┘
│ applnd │� ─ ─ ─────── ─ ─ ─ ─ ─ ─ ─ ─────── ─ ─ ─�│ applng │

 ├────────┤ │ │ │ │ └────────┤ ┌──┐Terminal
│ applne │� ─ ─ ─────── ─ ─ ─ ─ ─ ─ ─ ─────── ─ ─ ─ ─ ─ ─ ─ ─────�│ │

 ├────────┘ │ │ │ │ │ └──┘
 └────────────────┘ │ │ │ │

┌─ TPF ───────────┐ │ │ │ │
│ │�─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─�│ │

 │ │ └────────────────┘ │ │
 └─────────────────┘ └────────────────┘

Figure 42. ALCS message routing to and from communication resources

The ALCS message router provides the following message routing functions:

� From an application to a terminal or to another application. The destination
terminal or application can be owned by the same ALCS system as the
originating application, or by another system. Use the ALCS ROUTC macro to
route messages from an application. If an ALCS application issues a send-type
macro to send a message to a terminal owned by another system, the
send-type macro processing passes the message to the ALCS message router.

� From a terminal to an application. The destination application can be owned by
the same ALCS system as the originating terminal, or by another system. Use
the ALCS ZROUT or ZACOM command to change the application to which
messages from a terminal are routed.

� From an application owned by another system, to a terminal or to another
application. The destination terminal or application can be owned by this ALCS
or by a third system.

� From a terminal owned by another system, to an application. The destination
application can be owned by this ALCS or by a third system.

For each input or output message, the message routing information is in a routing
control parameter list (RCPL). This information includes the origin, destination, and
characteristics of the message.

Assembler programmers use the RC�PL DSECT macro, to reference fields in the
RCPL. See ALCS Application Programming Reference – Assembler for more
information about the RCPL.

 Chapter 2. Communication management 49

 Logon and logoff

C language programmers use the <c$rc�pl.h> header to reference fields in the
RCPL. See ALCS Application Programming Reference – C Language for more
information about the RCPL.

Specify candidate paths for routing messages between ALCS and a system in a
different processor (for example, another ALCS system, or a TPF system) in the
ALCS communication generation. Candidate paths include Type 2 SLC links that
are reserved for use by the ALCS message router, and LU 6.1 links.

The ALCS message router sends and receives data messages on a message
routing path to another system in PPMSG format; that is, the RCPL precedes the
message text.

2.2.1 Addressing other-system resources
ALCS can communicate with resources (terminals and applications) that other
ALCS or TPF systems own and control. ALCS routes messages to other-system
resources using a cross-system ID. This is the 3-byte identifier (CRI or LN/IA/TA)
by which the resource is known to the other system.

Each communication resource known to ALCS has a unique CRI, a unique CRN,
and a unique ordinal number, whether or not ALCS owns the resource itself. Each
combination of terminal ID and communication ID is unique within ALCS.
Figure 43 gives an overview of the cross-system ID.

 CSID=lniata (LNIATA address)
────────────── Cross-system ID (CSID) ──────────────────────────────────────┐

 ALCS or

 ┌── ALCS ────────┐ ┌── TPF──────────┐ ┌──┐ ┌──┐Terminal
 │ │ │ ├──────────┤TI├────────┤ │
 │ │�───────────────�│ The terminal │ └──┘ └──┘
 │ Application │ │ is owned by │ LN IA TA
 ├────────┐ │ │ this system │ Line Interchange Terminal
 │ apname │ │ │ │ address adresss
 ├────────┘ │ │ │
 └────────────────┘ └────────────────┘
 System A System B

Figure 43. The cross-system ID (CSID)

Note: The application uses the local CRI to communicate with the terminal. The
mapping process of the local CRI to the link and terminal ID is performed by:

� System A or system B (when system B is ALCS)
� System A (when system B is TPF)

2.3 Logon and logoff, and sine in and sine out

Logon and logoff
ALCS is a VTAM application program. Before a terminal that is an SNA LU can
communicate with ALCS, there must be a session between the terminal and ALCS.
For example, the end user can enter a special VTAM message, called a logon, that
starts the session.

Logon is subject to the end user having sufficient SAF authority to use the terminal
with the current CRAS status of Prime CRAS or alternate CRAS.

50 ALCS 2.4.1 Concepts and Facilities

 Printer shadowing

The end user can use the ALCS ZLOGF command (described in ALCS Operation
and Maintenance) to log off from ALCS; that is, to stop the session with ALCS.
After ZLOGF, the end user can log on to another VTAM application program or can
log on to ALCS again.

In this way, logon and logoff start and stop the session between a terminal that is
an SNA LU and ALCS.

Logon and logoff do not apply to terminals that are not SNA LUs. For example,
ALC terminals that connect through NEF or ALCI are not LUs. Each NEF or ALCI
LU corresponds to many terminals. There must be a session between each NEF
or ALCI LU and ALCS, but the individual terminals cannot log on or log off.
Similarly, terminals that connect through an SLC or AX.25 HLN are not LUs; they
cannot log on or log off.

The CRAS status of a terminal remains across end user logon or logoff. However
other CRAS authorities of a terminal are removed across end user logon or logoff.

Sine in and sine out
Some applications provide different functions to different end users of the same
application. For example, an airline seat reservations application can provide one
set of functions for the end users who make seat reservations, and a different set
of functions for end users who update flight schedule information.

If an application provides different functions in this way, the end users must specify
the functions that they require. This process is called sine in. To sine in, the end
user must enter a sine-in message. Depending on the application, a sine-in
message can include:

 � End-user identification
 � Function required
 � Authorization code

Note that sine in is an application program function. ALCS does not require a sine
in and it does not require the application to support a sine in.

If the application supports a sine in, it can also support a sine out. If the sine in
includes an authorization code (password) an end user can sine out to prevent
unauthorized access to the functions.

 2.4 Printer shadowing
Printer shadowing is an ALCS facility that allows up to 16 printers to receive a copy
of every message sent to a particular printer. Any type of printer can be shadowed
and any type of printer can be used for shadowing. The user is responsible for
ensuring that the shadow printers are compatible (line length, character set and so
on) with the original printer.

Use the ALCS ZACOM command to control the use of shadow printers and the ZDCOM
command to display information about printer shadowing. ALCS Operation and
Maintenance describes these commands. See also installation-wide exits APR2
through APR4 in ALCS Installation and Customization.

 Chapter 2. Communication management 51

 OCTM

 2.5 Printer sharing
Printer sharing is an ALCS facility that allows 3270-type printer resources to be
shared between ALCS and other applications. You can set up any printer to be
shared.

Printer sharing is set up using the ISTATUS= parameter on either the COMDEF or
COMDFLT macro during the ALCS generation process.

 2.6 Printer redirection
Printer redirection is an ALCS facility that allows output messages for a particular
printer to be sent to another printer. You can redirect output for any printer; any
type of printer can be used for the redirected output. The user is responsible for
ensuring that both printers are compatible (line length, character set and so on).
The redirected output can again be redirected. ALCS allows up to 16 printers to be
redirected one to another in a chain (but not in a loop).

Use the ZACOM command to control the use of printer redirection, and the ZDCOM
command to display information about printer redirection. ALCS Operation and
Maintenance describes these commands. See also installation wide exits APR7
through APR9 in ALCS Installation and Customization.

2.7 Specifying communication resources
The method of specifying ALCS communication resources depends on whether it is
the initial definition of the ALCS communication configuration or an update to an
existing configuration.

Defining the initial communication configuration
To define the initial ALCS communication configuration, run the ALCS
communication generation to generate a base communication load module. ALCS
Installation and Customization describes how to generate a communication load
module.

Updating an existing communication configuration
The procedure to update an existing communication configuration depends on the
type of update. ALCS supports three different types of update:

� Adding, deleting, and replacing resources
� Changing the characteristics of an existing resource
� Adding a resource type

ALCS Operation and Maintenance describes how to generate and load a
communication load module.

2.8 Online Communication Table Maintenance (OCTM)
Online Communication Table Maintenance (OCTM) is an ALCS facility for
managing the ALCS communication table. OCTM allows communications network
changes to be defined in the ALCS communication table via an online process,
eliminating the need to perform an offline communications generation.

52 ALCS 2.4.1 Concepts and Facilities

 OCTM

The primary benefits of OCTM are:

1. Provides the ALCS end users with the ability to directly update the online
communication table.

2. Reduces the offline communications generation process to the management of
only non-terminal resources.

3. Eliminates the need for communication table consolidations.

ALCS customers who wish to use OCTM for managing their terminal and X.25 PVC
resources must implement a Communications End User System (CEUS). The
CEUS is a set of programs which provide a front-end to OCTM and which interface
with OCTM via the COMTC Communication Table Update monitor-request macro.
The CEUS will be unique for each ALCS system because it must provide
functionality that meets the specific operational and network requirements of that
ALCS system (and the users of that system).

A sample CEUS package can be obtained from IBM via the ALCS Web Site. This
CEUS utilizes the ALCS 3270 mapping support, providing various screen maps that
enable ALCS end users to submit online updates to the ALCS communication table
via OCTM. ALCS users can modify the IBM CEUS so that it fits their specific
requirements.

OCTM does not support the full range of communication resources that are
supported in the ALCS communication table. OCTM is specifically designed to
support all the terminal resource types, plus the X.25 PVCs which support terminal
connectivity (X.25 PVC types 1, 6, and 7).

 Chapter 2. Communication management 53

 OCTM

54 ALCS 2.4.1 Concepts and Facilities

 Data sharing

Chapter 3. ALCS data sharing and data management

There are a number of standard reference works that describe general database
design techniques. Many of these design techniques are equally applicable to
ALCS, but before applying them to ALCS you should be aware of some special
characteristics of ALCS databases. (These special characteristics also apply to
other members of the TPF family of products.)

3.1 Standard ALCS structures
The ALCS space-recovery facility (Recoup) supports a number of standard
structures for lists, indexes, and so on. Use these standard structures, where
possible, rather than inventing new ones.

 3.2 TPFDF
Designing and coding application programs to access data through structures of
lists, indexes, and so on can be a complex and time-consuming task. The amount
of data that you store can change after a time. If it increases, you may need to
introduce indexes to improve performance. If it decreases, the index structures
may become an unnecessary overhead. The cost of changing existing application
programs to do this can prevent you from optimizing your application's
performance.

IBM's Transaction Processing Facility Database Facility (TPFDF) product simplifies
the initial designing and coding of the application, and subsequent optimization.
With TPFDF, your program stores and retrieves data without knowing the indexes,
lists, and so on that TPFDF is using for the data. It also allows your data base
administrator to change the structures (adding or deleting indexes, and so on)
without requiring any changes to the application programs.

“Bibliography” on page 193 contains a list of TPFDF books.

3.3 Sharing data with non-ALCS applications
Some ALCS applications need to share data with applications that do not run under
ALCS.

For example, an airline might have applications such as seat reservation, check-in,
ticketing, and cargo running under ALCS. The same airline might have other
applications such as flight planning, accounting, and frequent flyer database
running under CICS, IMS, or other platforms.

Both the seat reservation and the flight planning applications might need access to
information about existing flight schedules. The reservations and check-in
applications may need access to the frequent flyer database, and so on.

© Copyright IBM Corp. 2003, 2010 55

 Data sharing

ALCS supports a number of methods for sharing data. The best method depends
on a number of factors, including:

� What platforms the different applications run on. Do all the applications run
under z/OS, or do some run on other IBM or non-IBM platforms?

� Whether or not all the applications need absolutely up-to-date information.

� What performance characteristics are required. Do many ALCS transactions
access the data (therefore you need fast access with a short path length) or
few ALCS transactions (therefore performance is less important)?

� How complex the data is.

Figure 44 shows the four methods that ALCS uses to share data.

Non-ALCS system

Real-time
database

ALCS online system

Relational database

Message queues

General file or GDS

General sequential file

Figure 44. ALCS data sharing: Overview of the available methods

 3.3.1 Relational databases
If you place the data in a relational database then both ALCS and non-ALCS
applications can access the data using SQL.

Relational databases are a powerful and flexible way of storing and sharing data.
They can also be distributed across a variety of platforms, including not only z/OS,
but also OS/400 and OS/2.

Accessing relational databases imposes much greater overheads than accessing
ALCS's own files. ALCS restricts the maximum number of transactions that can
concurrently access relational databases.

56 ALCS 2.4.1 Concepts and Facilities

 Data sharing

Shared relational databases are probably suitable if:

� Applications on different platforms (including non-z/OS platforms) need to share
the data.

� Both the ALCS and non-ALCS applications need access to absolutely
up-to-date information.

� Only a small proportion of the ALCS transactions access the data.

� Both the ALCS application and the non-ALCS application require the
sophisticated capabilities of SQL.

An example where a shared relational database might be suitable is an ALCS
application that changes an airline flight schedule and a non-ALCS flight planning
application. Only a very small proportion of the total ALCS transactions change the
flight schedules. But those that do may need to interrogate the flight planning
database in complex ways. Figure 45 shows how an ALCS application can use
SQL to share data with a non-ALCS system.

Non-ALCS system

Real-time
database

ALCS online system

Relational databaseSQL SQL

Figure 45. ALCS data sharing: Using a relational database

Note that although Figure 45 shows only two applications sharing the data, more
than two applications can share it if required.

3.3.2 Real-time data export and import
An alternative to sharing a relational database is to transmit data between
applications in real time – using, for example, WebSphere MQ. By transmitting
data with WebSphere MQ, ALCS applications can provide non-ALCS applications
with up-to-date information without incurring the overheads of direct updates to a
relational database.

The non-ALCS applications can either use the data immediately or use it to update
their own databases (which might be relational databases). Similarly, ALCS
applications can receive data which they can either use immediately or use to
update the ALCS database.

 Chapter 3. ALCS data sharing and data management 57

 Data sharing

WebSphere MQ is a powerful and flexible way of transferring data between
applications on a variety of platforms, including both IBM and non-IBM platforms.

Real-time data export and import are probably suitable if:

� Applications on different platforms (including non-IBM platforms) need to share
the data.

� Both the ALCS and non-ALCS applications need access to absolutely
up-to-date information.

� A large proportion of the ALCS transactions access the data.

� The ALCS application does not require the sophisticated capabilities of SQL.

An example where real-time data export might be suitable is an ALCS seat
reservation or check-in application passing the distance travelled by an airline
passenger to a non-ALCS frequent flyer application. Similarly, the non-ALCS
frequent flyer application might pass information such as seating and meal
preferences back to the ALCS check-in application.Figure 46 shows how an ALCS
application can use WebSphere MQ to share data with a non-ALCS system.

Message queues

Non-ALCS system

Real-time
database

ALCS online system MQI GET MQI PUT

MQI PUT MQI GET

Figure 46. ALCS data sharing: Real-time import and export (MQI)

Note that although Figure 46 shows only two applications exchanging data, much
more complex configurations are possible. For example, the message queue
managers, which service the MQ GETs and PUTs, can create multiple copies of a
piece of data (called messages in this context) placing each copy on a different
queue. This allows an application to broadcast data to multiple destination
applications.

3.3.3 Shared general file or GDS
ALCS can share access to general files (or GDSs) with other MVS applications.
ALCS applications access these data sets using ALCS DASD I/O services.
Non-ALCS application programs access them using the MVS VSAM access
method.

58 ALCS 2.4.1 Concepts and Facilities

 Data sharing

Although it is possible for both ALCS and non-ALCS application programs to
update general files (or GDSs), ALCS does not itself provide services to serialize
accesses between ALCS and non-ALCS application programs. This means that
you must design your applications so that:

1. Only the non-ALCS application program updates the data set, but ALCS
application programs can read the data, or:

2. Only ALCS application programs update the data set, but the non-ALCS
application program can read the data, or:

3. The ALCS and non-ALCS application programs use an agreed protocol to
avoid conflicting or lost updates.

Even in cases 1 and 2, you may need to establish an agreed protocol to ensure
that if one application program updates several records the other application
program sees a consistent database.

Shared general files (or GDSs) are probably suitable if:

� Only z/OS applications need to share the data.

� Only one application (ALCS or non-ALCS) updates the information.

� A large proportion of the ALCS transactions access the data.

� The ALCS application does not require the sophisticated capabilities of SQL.

An example where a shared general file (or GDS) might be suitable is a non-ALCS
application program that stores currency exchange rates that are used by ALCS
applications.

Figure 47 shows how an ALCS application can use a general file or general data
set (GDS) to share data with a non-ALCS system.

Non-ALCS system

Real-time
database

ALCS online system

General file or GDS

FILE

FIND

VSAM

Figure 47. ALCS data sharing: Using a general file or GDS

 Chapter 3. ALCS data sharing and data management 59

 Data sharing

3.3.4 Batch data export and import
For some application systems, ALCS and non-ALCS application programs need to
access the same data but either the ALCS program or the non-ALCS program does
not need absolutely up-to-date information. In these cases, the most efficient and
simple way to share the data may be for one application program to create a file
containing a snapshot of the data. Other application programs can then process
the file without serializing access to the file.

An example where batch data export might be suitable is a non-ALCS application
program that checks for airline passengers with similar or identical names who
have reservations for the same flight – helping the airline to identify and delete
duplicate reservations for the same passenger.

Many airlines implement this type of application by having the ALCS seat
reservation application write details of each reservation to a sequential file. Later,
the non-ALCS application program processes this file as a batch process (typically
executed once each day).

Figure 48 shows how an ALCS application can use a general sequential file to
share data with a non-ALCS system.

Non-ALCS system

Real-time
database

ALCS online system
General-sequential

file

TWRTC

TPRDC

SAM

Figure 48. ALCS data sharing: Using a general sequential file

60 ALCS 2.4.1 Concepts and Facilities

 Data sets

Chapter 4. ALCS database file management

This section describes the ALCS direct-access files. ALCS provides two types of
direct-access file for application use:

� ALCS real-time database, for online transactions

� General-file, to transfer data between the online and the offline system.
Application programmers further classify general files into:

 – General file
– General data set (GDS)

Figure 49 shows the basic types of direct-access data sets that ALCS supports.

Real-time
database
data sets

Configuration
data sets

General files
and

general data sets

Offline support programsALCS online system

ALCS
DASD I/O

MVS
VSAM

Figure 49. ALCS DASD files: Overview

ALCS uses a third type of direct access file to contain configuration information.
Application programs cannot access the configuration data set.

Figure 50 shows where you can find more information about ALCS files and data
sets.

Figure 50. Where to find more information about ALCS direct-access file management

Type.

Allocatable
space

4.4, “Allocatable space overview” on page 75

Fixed files “Fixed files” on page 63

General files 4.2, “General files and general data sets” on page 69

Pool files “Pool files” on page 64

Configuration
data set

4.9, “The ALCS configuration data sets” on page 89

© Copyright IBM Corp. 2003, 2010 61

 Data sets

4.1 The ALCS real-time database
ALCS applications that do not need to share data with non-ALCS applications
normally keep data on the ALCS real-time database.

ALCS application programs can access real-time database records at all times.
ALCS provides a number of facilities that make the real-time database particularly
suitable for transaction processing applications, including:

� Duplication of data to protect against DASD equipment failure (this is
sometimes called mirroring).

� Distribution of records across DASD actuators to avoid hot spots (this is
sometimes called striping).

� In-memory caching of highly accessed records (VFA).

� Short processor pathlengths (few instructions) to access database records on
DASD.

These facilities combine to provide high-speed data access with a high level of data
integrity.

The real-time database consists of a number of data sets. There are one or more
data sets for each record size, and there can be up to eight record sizes (L1
through L8). The system programmers chose these sizes when they install ALCS.

4.1.1 Organization of the database
The ALCS real-time database organization is designed to optimize DASD
performance and avoid hot spots. ALCS allows you to have multiple data sets for
each record size (and record type within this record size). Records of any one
record type can reside on more than one DASD volume.

To help to balance the number of I/O operations (accesses) for any record type,
ALCS spreads the records across these data sets. This means that there will be
approximately the same number of accesses to each of the data sets for a record
size.

 4.1.2 Duplicated database
If you wish, you can use the dual copy facility of the IBM 3990 DASD controller to
duplicate the ALCS database (and any other data sets) as well as (or instead of)
the ALCS facilities.

The ALCS duplicated database facility
ALCS optionally supports a duplicated database. The DUPLEX parameter of the
DBGEN macro specifies whether the database is duplicated.

A duplicated database has two copies of every real-time database data set,
including any spill data sets. The two copies are called copy 1 and copy 2.

A duplicated database provides some protection against the consequences of
equipment failures. Without database duplication, ALCS can execute only when all
real-time database data sets are available. With database duplication, ALCS can
execute when some database data sets are not available, provided one copy of
each data set is available.

62 ALCS 2.4.1 Concepts and Facilities

 Data sets

You should allocate the copy 1 and copy 2 data sets on different DASD volumes
(preferably attached by different paths) so that failure of a single hardware element
does not make both copies unavailable. E.1, “How ALCS uses the duplicated
database” on page 153 describes this facility in more detail.

4.1.3 Record classes – fixed file, short-term pool, and long-term pool
There are three different classes of records on the ALCS real-time database:

 � Fixed file

� Short-term pool file

� Long-term pool file

Short-term pool file and long-term pool file are sometimes referred to collectively as
pool file or just pool.

 Fixed files
ALCS application programs access fixed files in much the same way that any
applications access direct-access files (sometimes called random-access files).

ALCS application programs do not use data set names or file names for fixed files.
Instead, they use a special token called the:

Fixed-file record type in ALCS (the FACE ID in TPF).

To access a particular record, the application specifies the file (by type) and a
relative record number. The relative record number is called the:

Fixed-file record ordinal number in ALCS (the FACE ordinal in TPF).

Before actually reading or writing a fixed-file record, ALCS application programs
use an ALCS service to convert the fixed-file record type and ordinal into a 4-byte
token called the file address. Figure 51 shows the ALCS fixed files and file
address.

Fixed file Pool files

#XYZAB

#WAARI
DSNAME

DSNAMEGF-001

General files General
data sets

FACE

FACS
RAISA GDSNC

GDSRC

4-byte file address

Compression
algorithm

Fixed-file record typeClass

Type

Fixed-file record
ordinal number

Figure 51. ALCS direct-access files: Fixed files

 Chapter 4. ALCS database file management 63

 Data sets

ALCS application programs cannot create or delete fixed files, and they cannot
change the number of records in a fixed file. The system programmer or database
administrator makes these changes.

Miscellaneous file: One type of fixed-file record that an installation often defines
is a miscellaneous file. A miscellaneous file contains fixed-file records that can be
made available to applications without system programmer having to define a new
fixed-file record type. The system programmer allocates a range of ordinal
numbers to one application and other ranges of ordinal numbers to other
applications.

Miscellaneous files usually have names (fixed-file record type symbols) such as
#MISC1, #MISC2, and so on, where the last digit in the name indicates the record
size (L1, L2, and so on).

 Pool files
In addition to the fixed files, ALCS supports a number of large pools of records.
ALCS application programs cannot specify the file and the relative record number
of a particular pool file record. ALCS application programs must use an ALCS
monitor service to acquire a record from one of these pools. This service is called
dispense.

The monitor service returns a file address that the application stores as a pointer in
another record. For example, an application program can use a pool-file record as
an overflow record by storing its file address in the prime record. 4.1.6, “Overflow
and chaining” on page 66 describes this process. Alternatively, 4.1.7, “Lists and
indexes” on page 67 describes how an application program can store the file
address in a list or index record.

Note: It is not important to an application program which pool record ALCS
allocates. It only important that the record is not already in use for some other
purpose.

Subsequently, application programs access the record using the stored file address.

When the data contained in the record is no longer needed, the application
program clears the saved file address to zeros and uses an ALCS monitor service
to return the record to the available pool. This service is called release.

Note: If the file address is saved in more than one place, the application must
clear all of them.

Short-term pool file: Application programs can use short-term pool-file records to
store data for short periods of time (a few seconds or minutes).

An application must release a short-term pool record within (at most) a few hours
after the dispense. If the application does not release a short-term pool record
within a reasonable time (typically 24 hours) then ALCS assumes that there is a
programming error and releases the record itself.

The actual amount of time before ALCS itself releases a short-term pool record
depends on the rate at which the short-term pool is dispensed and released.

Your system programmer or database administrator can allocate one short-term
pool file for each record size. For example, your installation may have four
short-term pool files, one for each of the sizes L1, L2, L3, and L4.

64 ALCS 2.4.1 Concepts and Facilities

 Data sets

Long-term pool file: Application programs can use long-term pool-file records to
store data for long periods of time (days, weeks, or years).

Like short-term pool-file records, the application should release a long-term pool
record when the information it contains is no longer required. There is no time limit
within which your application must release a long-term pool record. A long-term
pool record does not become available immediately after the release, it is available
for reuse only when the ALCS space-recovery utility (Recoup) confirms that there
are no pointers to the record saved in the ALCS database.

Your system programmer or database administrator can allocate one long-term pool
file for each record size. For example, your installation may have four long-term
pool files, one for each of the sizes L1, L2, L3, and L4.

Minimum pool-file record requirement for ALCS: ALCS requires a minimum
allocation of the L3LTPOOL and L3STPOOL. ALCS Installation and Customization
lists all the record requirements for ALCS

4.1.4 Long-term pool integrity
Applications must use long-term pool-file records to store data that has a life longer
than a few minutes. ALCS protects long-term pool-file records against possible
loss or damage. Such loss or damage can arise in a number of ways as follows:

� Equipment failure can prevent the correct update of the DASD copy of a pool
file directory record. If this happens, the directory can indicate some records as
available when they are actually in use. If ALCS dispenses these records
again, the application loses the data they contain.

� Equipment failure or program errors can result in some records never being
released. Without some method of recovering these records (lost addresses),
the number of available records in the pool could eventually reduce to zero.
ALCS does not redispense these records (as it does with short-term pool
records).

� Application program errors can result in the release of some records even
though the application (or other applications) still requires the data they contain.

4.1.5 Pool dispense rate monitor
The pool file management routines monitor the dispense rates of the long-term
pools. If any dispense rate exceeds the appropriate pool dispense rate threshold
value, they send an Attention message to the RO CRAS.

Each time ALCS calculates a long-term pool dispense rate, it also calculates how
long the available file records in the pool can sustain that rate of dispense. If the
time until pool depletion drops below the appropriate threshold value, the pool file
management routines send an Attention message to the RO CRAS, stating the
estimated time until pool depletion.

You can use the ZPOOL command to review the threshold values for dispense rates
and depletion times set by ALCS and, if necessary, to alter them. See ALCS
Operation and Maintenance for a description of the ZPOOL command.

 Chapter 4. ALCS database file management 65

 Data sets

4.1.6 Overflow and chaining
In many cases, the amount of data you want to hold in a record varies dynamically.
For example, an airline seat reservation application might keep a list of the
passengers booked on each flight. This list will grow dynamically as more and
more passengers make reservations for the flight.

Standard forward chaining
To allow for this, it is usual to start building the list in one record (the prime
record). When this record is full, the application obtains an additional record (an
overflow record) in which to continue the list. This process can continue for as
long as required. As each overflow record fills, the application obtains another
overflow record. This process is called standard forward chaining.

The prime record and its overflow records are usually chained together by storing a
pointer to the first overflow record in the prime record, storing a pointer to the
second overflow record in the first overflow record, and so on. The actual pointers
are 4-byte tokens called file addresses (file addresses are explained in more detail
in 4.3, “Record addressing” on page 70) You can conveniently indicate the end of a
chain by setting the pointer in the last record to binary zeros (which is an invalid file
address).

Figure 52 shows how an application chains overflow records.

First
overflow

Prime

Second
overflow

Last
overflow

Figure 52. ALCS direct-access files: Standard forward chains

Note: Figure 67 on page 81 shows where the forward-chain pointer is stored in a
record header.

Standard backward chaining
There are two potential problems with standard forward chaining:

� To add an item to an existing chain, the application program must read all the
records in the chain. For chains which contain many records this can be a
substantial overhead and can degrade the performance of the application.

� If any record in the chain is overwritten (for example by program error) it is
impossible to find the remaining records in the chain.

A common way to avoid these problems is to use standard backward chaining
(as well as forward chaining). The prime record holds a pointer to the last overflow
record. The first overflow record holds a pointer to the prime record and so on.

66 ALCS 2.4.1 Concepts and Facilities

 Data sets

Figure 53 shows how an application creates forward and backward chains.

First
overflow

Prime

Second
overflow

Last
overflow

Forward chain Backward chain

Figure 53. ALCS direct-access files: Backward chains

Note: Figure 67 on page 81 shows where the backward-chain pointer is stored in
a record header.

By convention, if there are no overflow records both the forward and backward
chain fields in the prime record contain binary zeros.

By using standard backward chaining, an application program can locate the last
overflow record using the pointer stored in the prime record – this avoids reading all
the records in the chain.

Also, if one record in the chain is overwritten, it is possible to find all the records
before the corrupted one by following the forward chain pointers, and all the
records after the corrupted one by following the backward chain pointers.

4.1.7 Lists and indexes
You can use chains to create list structures. For example, you can hold a list of
names in a chain of records (prime and overflow). Each entry in the list points to
another record.

Figure 54 on page 68 shows a list structure where names are grouped
alphabetically (but not sorted) in chain. Each entry contains a pointer to a record
which contains details about that person. One of the records has an overflow
record to contain more information. This structure shows standard forward chaining
for both the list records and the detail records. You could also use standard
backward chaining for either (or both) if required.

 Chapter 4. ALCS database file management 67

 Data sets

ARCHER

ARCHER

overflow

ZARA ADAMS BRANDT

BROWN

AVALON

ZEBRA BAKER

Other
names

List records

Prime
list

record

Overflow
list

record

Detail records

ARCHER
BRANDT
AVALON
ADAMS
BAKER
BROWN

ZARA
ZEBRA

Figure 54. ALCS direct-access files: Lists

If the list contains many names (and pointers) an application program may need to
read the prime list record and many overflow list records before it finds the pointer
for the required detail record.

You may be able to reduce the number of reads by using an index structure.
Figure 55 on page 69 shows an index structure based on the 26 letters of the
English alphabet. Each of the 26 entries on the index record contains a pointer to
a list record which contains all the names that begin with the letter. The list records
contain a pointer to the detail records.

68 ALCS 2.4.1 Concepts and Facilities

 Data sets

Detail records

Index records

ARCHER

ARCHER

overflow

ZARA ADAMS BRANDT

BROWN

AVALON

ZEBRA BAKER

BAKER
BRANDT
BROWN

A
B
C

Z

ZARA
ZEBRA

List records

ARCHER
ADAMS
AVALON

Figure 55. ALCS direct-access files: Indexes

4.2 General files and general data sets
General files can be used to transfer data to or from application programs that do
not run under the control of the ALCS monitor. 3.3.3, “Shared general file or GDS”
on page 58 gives an overview of sharing files.

General files are single-extent VSAM entry-sequenced data sets. There can be a
maximum of 256 general files, each identified by a decimal number in the range 0
through 255.

Note: ALCS reserves general file 0 for its own use.

There is one data set for each ALCS general file. Application programs can access
a general file only if the data set is allocated to ALCS. In some predecessor
systems, general files and general data sets are different and application programs
must access a file as either a general file or a GDS. In ALCS they are physically
identical, but ALCS supports both methods of access. Application programmers
identify:

� General files by the general file number
� General data sets by the data set name

However to the system programmer general files and general data sets are the
same. In this book the term general file is used to mean either general file or
general data set.

 Chapter 4. ALCS database file management 69

 Record addressing

ALCS provides the ZDASD command to allocate and deallocate general files and
data sets. ALCS Operation and Maintenance describes the ALCS ZDASD command.

 4.3 Record addressing
ALCS application programs use a 4-byte file address to refer to records in:

� The real-time database
� General files or general data sets (GDS)

This file address is different from ALCS/VSE and TPF file addresses (see 4.3.3,
“Multiple file address format support” on page 73).

 TPF compatibility

Applications that require compatibility with TPF can use an 8-byte file address,
by using a DECB data level. ALCS applications that use a DECB data level
must use an 8-byte file address in 4x4 format. You can obtain an 8-byte file
address by specifying a DECB address when you request a monitor service to
get a file address, or by requesting the FA4X4C monitor-request macro
(tpf_fa4x4c C function) to convert an existing 4-byte file address to an 8-byte
file address in 4x4 format. For more information about the 8-byte file address in
a DECB see ALCS Application Programming Guide.

4.3.1 Constructing the file address
ALCS provides monitor services that application programs can use to construct the
file address from:

Class Fixed file or general file (or GDS)
Type Fixed file record type or general file number
Ordinal Record ordinal (relative record number within type).

Notes:

1. Application programs do not construct a file address for pool file records.
Application programs request a pool-file record and ALCS gives the file
address.

2. Application programs do not construct a file address for configuration data sets
or system fixed-file records. These records are not intended for application
use.

General files and general data sets (GDS) are the same thing. Applications that
use RAISA call them general files, applications that use GDSNC and GDSRC call them
general data sets. Figure 56 on page 71 summarizes the ALCS class, type, and
ordinal to file address compression technique.

70 ALCS 2.4.1 Concepts and Facilities

 Record addressing

Class

Type

Fixed files Pool files

#XYZAB

#WAARI

L2LTPOOL

L2STPOOL

L1STPOOL

GF-002 DSNAME

DSNAMEGF-001

General files
General
data sets

Compression
mechanism

Realtime
database

FACE

FACS
RAISA GDSNC

GDSRC

4-byte file address

Figure 56. ALCS file address: Compressing the class, type, and ordinal

ALCS provides the RONIC monitor-request macro to determine the class, type, and
ordinal from the file address.

ALCS also provides C language functions that perform similar services. See ALCS
Application Programming Reference – C Language for further details.

4.3.2 File address format
The file address format that ALCS uses is called the band format. A band format
file address consists of two parts (that is, two binary numbers). The two parts are
the band and the band ordinal. For any one band, there is a maximum band
ordinal. Different bands can have different maximum band ordinals.

 ┌───────┐ ┌───────────────┐
 │ band │ │ band ordinal │
 └───────┘ └───────────────┘

The ALCS generation allocates one or more bands for each record type. It never
allocates the same band to more than one record type. The ALCS generation must
allocate more than one band if the number of records of that type is greater than
the maximum band ordinal for the first band.

If there is only one band for a record type, ALCS constructs the file address using
the band, with the band ordinal equal to the record ordinal. If there is more than
one band for a record type, ALCS uses the first band for record ordinals up to the
maximum band ordinal, and it uses the second band with band ordinals starting
from 0, and so on.

Suppose, for example, that you decide to allocate band number 4387 (X'1123') to
a particular record type. If there are 5000 records of this type, then ALCS forms
the file addresses like this:

 Chapter 4. ALCS database file management 71

 Record addressing

Note that in this case, band ordinals greater than 5000 are unused – the
corresponding file addresses are not valid.

Band number 4387 has a maximum band ordinal number of 65 535 – allowing up
to 65 536 records. If there are 80 000 record of the type then you might allocate
two band numbers, for example 4387 and 4388 (X'1123' and X'1124'), then
ALCS forms the file addresses like this:

Record Ordinal Band Band ordinal

0 X'1123' 0

1 X'1123' 1

2 X'1123' 2

...

4999 X'1123' 4999

Record Ordinal Band Band ordinal

0 X'1123' 0

1 X'1123' 1

2 X'1123' 2

...

65 535 X'1123' 65 535

65 536 X'1124' 0

65 537 X'1124' 1

...

79 999 X'1124' 14 463

 Allocating bands
ALCS Installation and Customization describes how to select and allocate ALCS
bands.

How bands and band ordinals appear in the file address
The ALCS file address contains the 1, 2, or 3 bytes of the band in reverse order
starting at byte 3 of the file address. The remaining bytes of the file address are
the band ordinal as an unsigned binary number (see Figure 57 on page 73).

72 ALCS 2.4.1 Concepts and Facilities

 Record addressing

 byte � byte 1 byte 2 byte 3

┌────────────────┬────────────────┬────────────────┬────────────────┐
│ band ordinal │ band byte 2 band byte 1 band byte � │ 3-byte
└────────────────┴────────────────┴────────────────┴────────────────┘ band
(up to 256 ordinals)

┌─────────────────────────────────┬────────────────┬────────────────┐
│ band ordinal │ band byte 1 band byte � │ 2-byte
└─────────────────────────────────┴────────────────┴────────────────┘ band

(up to 65 536 ordinals)

┌──┬────────────────┐
│ band ordinal │ band byte � │ 1-byte
└──┴────────────────┘ band

(up to 16 777 216 ordinals)

Figure 57. ALCS file address formats

For example, if you decide to allocate band number 4387 (X'1123') to a record
type, then ALCS forms the file address for the record ordinal number 500 (X'1F4')
as follows:

Band Band ordinal File address

X'1123' X'1F4' X'01F42311'

4.3.3 Multiple file address format support
Records in an ALCS database can contain references to other records. These
references are usually file addresses. Typical examples include chains of pool
records, where each pool-file record contains the file address of the next pool-file
record in the chain. It is possible, but less common, for a record to contain the file
address of another fixed file or general file record.

When a database migrates from TPF or ALCS/VSE, the records contain file
addresses that are valid in the migrate-from database (TPF or ALCS/VSE).

TPF and ALCS/VSE do not use the ALCS file-address format (band format), they
use:

� File-address format 3 (FARF3), 4 (FARF4), and 5 (FARF5) for TPF
� Record-ordinal-number (RON) format file addresses for ALCS/VSE

TPF also supports two obsolete file address formats that can coexist with FARF3,
they are:

� Module, cylinder, head, record (MCHR)
� Symbolic ordinal number (SON)

Some TPF users implement other file address formats. Figure 58 on page 74
summarizes the different file addressing schemes that have evolved.

 Chapter 4. ALCS database file management 73

 Record addressing

ALCSTPF

MCHR

SON

FARF3

FARF4

FARF5

(FARF1)

(FARF2)
RON

(VSE)

(MVS)

Band

Other
proprietary
schemes

Figure 58. File address: Different formats for TPF and ALCS

To simplify migration from TPF and ALCS/VSE, ALCS can support more than one
file address format. That is, at the same time it can support the ALCS band format
file address, and one of:

RON ALCS supports ALCS/VSE RON format file addresses, provided that the
fixed-file type values are the same for ALCS/VSE and ALCS. If the
fixed-file type values are different, ALCS can support the file addresses
only as user-defined format (see below).

FARF3 ALCS supports TPF FARF3 format file addresses provided that:

� The fixed-file type values are the same for TPF and ALCS.
� Fixed file FARF3 addresses contain the fixed-file type in bits 1

through 12.
� There are no 4KB pool FARF3 addresses

If not, ALCS can support the file addresses only as user-defined format
(see below).

user Any user-defined format (or TPF FARF4 and FARF5 file address
formats). ALCS can support:

� A file address format that coexists with the ALCS band format.
� A file address format that cannot coexist (for example FARF4).

ALCS supports these by calling an installation-wide exit routine. ALCS
Installation and Customization describes how to use the USRFAR
installation-wide exit routine.

File addresses returned to applications
The DBGEN generation macro specifies the file address formats ALCS supports.

Applications normally use band format file addresses. ENTRC FACE, GETFC, RAISA,
and so on always return the band format file address. However FIND and FILE
macros, RELFC, and so on, can use either the band format file address or another
file address format (for example, FARF3).

74 ALCS 2.4.1 Concepts and Facilities

 Allocatable space

The record hold facility works correctly with multiple file address formats. That is, a
record hold using one file address format correctly, holds against another record
hold that uses a different file address format for the same record (see E.3, “Record
hold facility” on page 155).

Because ALCS monitor-request macros can use both file address formats, almost
all ALCS functions can specify either format. For example, the ALCS ZDFIL and
ZAFIL commands can specify either file address format. The ALCS ZDATA and
ZRSTR commands can load data from magnetic tapes that ALCS/VSE or TPF create
(provided that the format is compatible).

TPF duplicated and nonduplicated pools
TPF supports three pool types for each record size: short-term, long-term
duplicated, and long-term nonduplicated. ALCS/VSE and ALCS only support two
pool types, short-term and long-term.

ALCS multiple file address format support interprets both long-term duplicated and
long-term nonduplicated FARF3 addresses as the same type – long-term. To do
this, ALCS partitions long-term pool into two ranges of ordinal numbers. It then
uses one range for long-term duplicated FARF3 ordinals, and the other for
long-term nonduplicated FARF3 ordinals. The POOLMIG parameter of the DBGEN
macro controls this partitioning.

4.4 Allocatable space overview
Figure 59 on page 76 shows (schematically) the initial allocation for:

 � Fixed file
 � Short-term pool
 � Long-term pool

For all releases after ALCS Version 2 Release 1.1, this is the way the ALCS
generation allocates your database initially (before you add or delete records). If
you are migrating from a predecessor ALCS version (or release), this layout is
identical to your existing (predecessor) layout.

Figure 59 on page 76 shows some space that is not available (addressable). The
extra space exists because the VSAM clusters which contain the ALCS database
comprise an integral number of DASD cylinders. The cluster allocation process
rounds up the number of records defined in the ALCS generation to the next higher
whole number of cylinders.

1.6.1, “How ALCS stores DASD records” on page 32 describes how ALCS uses
VSAM control intervals. E.3.3, “Data sets” on page 157 describes how ALCS uses
VSAM clusters.

 Chapter 4. ALCS database file management 75

 Allocatable space

Allocatable pool

Fixed
file (FF)

Short-term
pool (ST)

Long-term
pool (LT)

Type 1
Allocatable

Not available

Figure 59. Allocatable pool: Initial allocation

Figure 60 shows the following records dispensed from long-term (LT) pool:

� System fixed-file dispensed for ALCS purposes
 � Fixed-file records
 � Short-term pool

It also shows some fixed-file records which are marked for deletion. These records
cannot be recovered (undeleted) until they are purged.

Fixed
file (FF)

Short-term
pool (ST)

Short-term pool (ST)

Long-term
pool (LT)

Type 1

System fixed file (SF)
Fixed file (FF)

Deleted fixed files

Marked for deletion

Figure 60. Allocatable pool: Dispensing from LT-pool

Figure 61 shows the situation when the fixed-file records are purged from the
database. This database space is not available for re-use until you start to use
type-2 long-term pool support.

Fixed
file (FF)

Short-term
pool (ST)

Long-term
pool (LT)

Type 1

Purged fixed files

Not available

Figure 61. Allocatable pool: After some fixed files are deleted (and purged)

When you change to type-2 dispensing, the previously-unavailable space (including
the space occupied by the purged fixed-files) is now available (allocatable).
Figure 62 on page 77 shows this new allocatable space.

76 ALCS 2.4.1 Concepts and Facilities

 Allocatable space

Fixed
file (FF)

Short-term
pool (ST)

Long-term
pool (LT)

Type 2Allocatable

Figure 62. Allocatable pool: After changing to type-2 dispensing

ALCS type-2 long-term pool support uses the same dispense mechanism to obtain
records for any class of ALCS record on the real-time database. ALCS does not
use contiguous space for each class of record, it treats records in allocatable pool
as either:

� Allocatable (available for dispensing)
� In use for one of the following:

– Fixed file (FF)
– Short-term pool (ST)
– Long-term pool (LT)
– System fixed file (SF)

When ALCS dispenses a record from allocatable pool, it marks the record as
in use for that class.

Note: Figure 63 shows the same database as Figure 62, but from the perspective
of records in use.

FF FF FF FF ST

In use for FF, ST, LT, or SF

Allocatable

SF SF FF STLT

Type 2

Figure 63. Allocatable pool: Records in use

Figure 64 shows how the record classes are distributed over the allocatable pool
space. In particular it shows:

1. Long-term pool records in what were previously fixed-file records.
2. Fixed-file and short-term records in what were previously long-term pool

records.
3. Short-term pool records in space that was previously not available.

FF FF

(1) (2) (3)
FFSTFF ST STSF SF SFFFLTLTLTLT

Type 2

Figure 64. Allocatable pool: Using and reusing allocatable pool

 Chapter 4. ALCS database file management 77

 Allocatable space

 4.4.1 Algorithm-based addressing
Predecessor ALCS systems use an algorithm to convert a file address to a data set
name, and a relative byte address (RBA) within the data set to perform an I/O
operation.

ALCS continues to support algorithm addressing. The algorithm uses the DASD
configuration tables produced by the ALCS DASD generation. Figure 65 shows
algorithm addressing.

Class Class Class

Type Record

Class and
Type

Class and
Type

Class and
Type

Class and
Type

Class and
Type

Type Type

Algorithm

A B C D E

Figure 65. Algorithm file addressing: Class, type, and ordinal to data set and RBA

78 ALCS 2.4.1 Concepts and Facilities

 Allocatable space

 4.4.2 Table-based addressing
ALCS uses tables to convert file addresses into the corresponding data set and
RBA information to locate the physical record.

Note: ALCS still supports algorithm-based addressing, but uses tables for added
records. Figure 66 gives an overview of the two types of file addressing.

Class Class Class

Type Record Type Type

Algorithm

A B C D E F

L2LTPOOL

Algorithm
addresing

Table
addressing

Allocatable
pool space

Figure 66. Table-based file addressing: Class, type, and ordinal to data set and RBA

Every record on the real-time database has an allocatable-pool file address.
These are conventional ALCS band-format file addresses with one or more bands
defined for each record size. There is, of course, only one allocatable pool type for
each record size.

Note: When you are migrating from ALCS/MVS/XA or ALCS Version 2 Release
1.1, you must define additional bands for the allocatable-pool types (sizes).

The index tables exist in memory and are built up using:

 � Fixed-file directories

 � Segment tables

 Chapter 4. ALCS database file management 79

 Allocatable space

 Fixed-file directories
The fixed-file directories exist on the real-time database as chains of
allocatable-pool records. Application programs cannot access these system
records. Any attempt is treated as an invalid file address. When ALCS is
executing, they also exist as in-memory tables.

Some of the real-time database records are used for fixed-file, short-term pool, and
system records. Application programs access these records using the
corresponding fixed-file or pool-file address. If an ECB-controlled program attempts
to update a fixed-file or short-term pool record using its allocatable-pool file
address, ALCS treats this as an invalid file address.

System records cannot be updated by ECB-controlled programs. If an
ECB-controlled program attempts to update a system record using its
allocatable-pool file address, ALCS treats this as an invalid file address.

The remainder of the real-time database records are available for use as long-term
pool records. Application programs can access these records using the
allocatable-pool file address. Databases migrated from ALCS/MVS/XA or ALCS
Version 2 Release 1.1, require the following special considerations:

� The existing records contain embedded references to long-term pool. ALCS
allows application programs to access these records using the algorithm file
addresses (ALCS/MVS/XA or ALCS Version 2 Release 1.1).

� Fall back to the predecessor system (ALCS/MVS/XA or ALCS Version 2
Release 1.1). Long-term pool file records can be dispensed with the
predecessor system file addresses until fallback capability is no longer required.

Fixed-file directories (which are also used for short-term pool) map each valid
fixed-file or short-term pool file address into the corresponding allocatable-pool file
address.

 Segment tables
In TPF and previous versions and releases of ALCS, addressability of records on
the real-time database is a natural consequence of the algorithms used to convert
file addresses.

For old fixed-file and pool-file records (ALCS/MVS/XA or ALCS Version 2 Release
1.1), the conversion uses algorithm file addressing. For fixed-file and short-term
pool records added since migration, the conversion uses the fixed-file directories.

The allocatable-pool record ordinal numbers are then mapped on to physical record
locations using segment tables. The segment tables map segments of
addressability on to portions of the database data sets. Each segment of
addressability comprises 65 536 consecutive allocatable-pool ordinal numbers, and
maps onto 65 536 consecutive records within one database data set.

80 ALCS 2.4.1 Concepts and Facilities

 Record header

This addressing scheme has the following important effects:

� Addressability can be allocated independent of the actual number of physical
records. Normally, at least enough addressability must be allocated to equal or
exceed the number of physical records. But excess addressability can be
allocated to allow for planned increases in the number of records (any file
address that does not correspond to a real physical address is treated as
invalid).

� Long-term pool dispense cannot dispense allocatable pool by scanning
consecutive ordinal numbers (like ALCS Version 2 Release 1.1 does). Such a
mechanism would create unacceptable hot spots because consecutive
dispenses would come from the same data set. Instead, it explicitly strobes
the database data sets so that consecutive dispenses come from different data
sets.

� Adding addressability in the form of additional data sets can have the effect of
unbalancing the even distribution of records previously provided by striping. To
correct this there is a restripe facility (ZDASD STRIPE) which redistributes parts of
the data base evenly over all the real-time datasets.

 4.5 Record header
Each DASD record contains a header which ALCS applications use for the
following purposes:

 � Record identification
� Audit information (program stamp)
� Chain information (if record chaining is used)

Figure 67 shows the layout of the ALCS standard record header.

Record ID
│ Record code check

 │ │ Control byte

 Optional fields
┌───┬───┬─────┬───┬───┬───┬───┬───┐┌ ─ ┬ ─ ┬ ─ ┬ ─ ┐┌ ─ ┬ ─ ┬ ─ ┬ ─ ─┐
│ i d │ rcc │ c │ program name │ Forward chain Backward chain
└───┴───┴─────┴───┴───┴───┴───┴───┘└ ─ ┴ ─ ┴ ─ ┴ ─ ┘└ ─ ┴ ─ ┴ ─ ┴ ─ ─┘
┌──┐
│ Area for user data │
: :
│ │
└──┘

Figure 67. Record header

ALCS defines a standard 16-byte header format for DASD records. The header
consists of a mandatory 8-byte part with optional extensions to 12 bytes (if standard
forward chaining is used) or 16 bytes (if standard backward chaining is used).

In assembler programs use the STDHD DSECT macro to reference the fields in the
standard record header. See the ALCS Application Programming Guide for details.

In C programs use the header file <c$stdhd.h> to reference the standard record
header. See the ALCS Application Programming Reference – C Language for
details.

Note: The $ character is the national currency symbol (X'B5').

The IBM program TPFDF uses an extended header for DASD records. TPFDF
references the STDHD DSECT macro and <c$stdhd.h> C header file which describe

 Chapter 4. ALCS database file management 81

 VFA

an extended record header containing 4-byte file addresses. TPFDF may also
reference the ISTD8 DSECT macro and <c$std8.h> C header file which describe an
extended record header containing 8-byte file address fields for compatibility with
TPF.

The standard header contains the following fields:

Record ID
A 2-byte field that identifies the type of data in the record.

Record code check (RCC)
A 1-byte field that (optionally) distinguishes between records that contain the
same type of data (the record ID is the same) but that are on different chains.

Control byte
A 1-byte field that (optionally) contains the characteristics of the record (for
example, record size, type of record chaining, and so on). ALCS does not
access the record control byte.

Program name
The 4-byte program name of the application program that last filed the record.

Chain fields
By convention, for records that use chaining (forward or backward), a 4-byte
forward chain field and a 4-byte backward chain field complete the standard
header.

4.1.6, “Overflow and chaining” on page 66 describes record chaining.

The system programmer can change the default attributes of a record type.

4.5.1 Record ID and RCC checking
When an application program reads a DASD record, it can specify the expected
record ID (or record ID and RCC). ALCS checks that the actual ID (or ID and
RCC) matches the expected ID (or ID and RCC). Application programs can
suppress these checks.

When an application program writes a DASD record, it must specify the expected
record ID (and optionally the RCC). ALCS checks that the actual ID (or ID and
RCC) matches the expected ID (or ID and RCC).

4.6 Virtual file access
ALCS reduces the number of I/O operations by using virtual file access (VFA) to
process all FIND and FILE macros issued by application programs. VFA holds the
most recently used database records in buffers (caches) in processor storage.
Figure 68 on page 83 gives an overview of VFA.

82 ALCS 2.4.1 Concepts and Facilities

 VFA

Application
FIND

FILE

Database
fixed and pool

VFA large
buffer pool

Virtual
storage

Figure 68. Virtual file access (VFA) overview

The more VFA buffers of each size that are specified at generation time, the
greater the benefits in DASD and processor performance.

VFA combines the required level of data integrity and the minimum number of I/O
operations by handling FILE macros according to the record VFA option specified
at generation time. Different types of record have VFA options to determine
whether changed records should be written to DASD at once, deferred for a short
time, or held in the buffer.

For example, IPARS AAA records are referred to and perhaps updated several
times for every transaction by the associated terminal. Holding these records in
VFA buffers provides a faster response and greatly reduces the physical I/O for
active terminals. The record is not written to DASD until the buffer is required by
more active records. All updated records, regardless of VFA option, are written out
when ALCS terminates.

The number of I/O operations to DASD depends on the size of the VFA buffer area.
With large numbers of VFA buffers, VFA processes many FIND and FILE macros
without doing any DASD I/O. This results in a reduced load on the DASD
subsystem, and a lower processor utilization at a given message rate, because of
the reduced number of I/O instructions and I/O interruptions. Use the VFABUF
parameter of the ALCS SCTGEN macro to specify the number of VFA buffers during
the ALCS generation.

VFA satisfies FILE macros by copying data records from the application's storage
to a VFA buffer. It schedules the I/O operation to write the record to DASD from
the VFA buffer, depending on the VFA options.

ALCS has the option of using hiperspace to provide additional buffering for DASD
I/O.

If specified, ALCS will write the contents of VFA buffers that are about to be reused
to hiperspace. This could further reduce DASD I/O if a subsequent FIND request
for a record can be satisfied from its hiperspace copy.

ALCS Installation and Customization describes the VFAOPT parameter of the ALCS
database generation macros to specify the characteristics of VFA. You can specify:

� The filing frequency

 – Immediate
– Delayed (only when a buffer is required)

 Chapter 4. ALCS database file management 83

 Test database facility

– Time-initiated (flagged records are filed periodically)

 � Permanence

– Permanently resident (the buffer is never re-used)
– Not permanently resident (VFA re-uses the buffer with the longest time

since last referenced)

� New or update record

– Update mode (VFA ensures that the VFA buffer contains the old record
contents). This action is used for update logging; see E.2, “Update logging”
on page 154.

– Not update mode (VFA gets a new buffer and stores the record if
necessary).

� Expanded Storage Option

– Use Hiperspace backing to hold reused VFA buffers
– No Hiperspace backing

� Online and offline access to the same general file

– Forced read (always reads the record from DASD to use the latest copy of
the record)

– Not forced read (reads the record from DASD only if it is not in VFA buffers
or Hiperspace)

4.7 Spill file on predecessor ALCS systems
Predecessor ALCS systems use spill data sets to reduce the need for frequent
database reorganizations. These systems use spill data sets to extend (add
records) to the database without moving any existing records.

For example, to add a new record type that is size L2, or to add more records to an
existing record type that is size L2, ALCS uses one or more additional size L2 spill
data sets.

ALCS Version 2 Release 4.1 supports any spill data sets (from predecessor ALCS
systems) and allows you to add more spill data (using algorithm addressing) until
you no longer need to fall back to a previous version of ALCS, or have migrated to
type-2 long-term pool support.

You can then start to use the table-based addressing to extend the database.

4.8 The ALCS test database facility
New and changed application programs can contain errors capable of damaging
the database. They must, therefore, be tested in such a way as to avoid damage
to the existing database, while ensuring realistic testing.

One way of doing this is to copy all or part of the existing database to a test
database; but the number of test databases for testing different programs could
exceed the hardware available. This is especially true because ALCS allows any
number of test systems to be in operation at one time, so that application
programmers can test their different programs simultaneously and independently.
The ALCS test database facility allows many application programmers (or groups of

84 ALCS 2.4.1 Concepts and Facilities

 Test database facility

programmers) to have their own test system without needing multiple copies of the
entire test database.

Note: Do not use the test database facility if your configuration data sets have not
been initialized. The note in “Creating configuration data sets” on page 90 explains
this in more detail. Also, do not use the communication configuration data set
(CDS2) on ALCS systems that use the test database facility. “Using CDS's with
the test database facility” on page 91 explains this in more detail.

4.8.1 How the test database facility works
The ALCS test database facility gives a program read-only access to a database.

Test system

Test database

Test data set

First read

Figure 69. Test database: Read a record from the test database

When the program updates a record, ALCS writes it to a separate data set (the
test data set) instead of updating the database from which it was read.

Test system

Test database

Test data setAny write

Figure 70. Test database: Write a record to the test data set

When the program next reads the record, ALCS gets it from the test data set.
Thus the application seems to have normal read-write access to the database,
which however remains unchanged.

 Chapter 4. ALCS database file management 85

 Test database facility

Test system

Test database

Test data set
Read of any record updated
by the test system

(Read of any record not yet
updated by the test system)

First read

Any write

Figure 71. Test database: Read and write on the test data set

The ALCS test database facility makes it safe to test programs using the production
database. However, most users prefer to use this facility with a stable test
database that meets all the testing requirements of the programmers, with minimum
impact on production work and without excessive demands on DASD space.

 4.8.2 Benefits
Some of the benefits of the test database facility are:

Recovering from database damage
During a test, an application program can write bad data that makes the database
unusable. If this happens, it is not necessary to restore the test database.
Deleting all the records in the test data set has the same effect. An easy way of
doing this is to delete the test data set and allocate a new (empty) data set.

If a series of tests takes several days or weeks, it is possible to back up the test
data set at convenient times. If a particular test writes bad data, then it is easy to
recover by restoring a backup of the test data set.

Sharing the test database
Several programmers may need a test database. The test database facility allows
them all to share the same copy of the test database. If each programmer (or
group of programmers) has a separate test data set, they can run tests
simultaneously without interfering with one another.

86 ALCS 2.4.1 Concepts and Facilities

 Test database facility

Test system 1

Test system 1

Test database

Test data set 1

Test data set 2

R/W

RO

RO

R/W

Figure 72. Test database: Shared testdata base, separate test data sets

Also, programmers who are running a series of tests do not put other tests at risk
by changing or damaging their data.

A programmer can create a new test data set by copying an existing test data set.
In this way, programmers can run tests against a database that already includes
updates from previous testing. For example, one programmer might initialize a
number of records, then a second programmer might copy the test data set. Both
programmers can then run tests that use these records.

You can also use the ZRELO command to move records from a sequential file to
your test database. This is described in ALCS Operation and Maintenance.

 Chapter 4. ALCS database file management 87

 Test database facility

4.8.3 Test pool files
If your test database is a copy of all or part of your production database then you
may wish to update it from time to time by making a new copy from the production
database. But if you do this, you may find that some pool file addresses (both
long-term and short-term) that were available when you made your previous copy
from the production database have since been dispensed on both the production
database and on one or more test data sets. This can cause some strange effects
– for example:

Suppose that at the time you made a copy of the production database pool-file
record L1LTPOOL(200) was available. A program running on the production
system dispenses the record for use as an overflow for the fixed-file record
#FIXEDA(20). It saves the address of L1LTPOOL(200) in #FIXEDA(20).
Meanwhile, a program running on a test system dispenses the record for use as an
overflow for the fixed-file record #FIXEDB(30). It saves the address of
L1LTPOOL(200) in #FIXEDB(30). Figure 73 shows the two versions of the pool
record.

Production database

Test data set
#FIXEDB(30)

#FIXEDA(20)

L1LTPOOL(200)

L1LTPOOL(200)

Test system view

Production view

Figure 73. Test database: Copy record to test data set

If you now make a new test database from the production system, there are two
“versions” of record L1LTPOOL(200). The one on the test data set is an overflow
for the fixed-file record #FIXEDA(20), the one on the test database is an overflow
for the fixed-file record #FIXEDB(30).

If a program running on the test system needs to access the overflow record for
#FIXEDB(30) then it will read L1LTPOOL(200) and find the data that it expects.
But if the program needs to access the overflow for #FIXEDA(20) – assuming that
#FIXEDA(20) has not been updated on the test system – then it will read
L1LTPOOL(200) and find the overflow for #FIXEDB(30). Figure 74 on page 89
shows the two versions of the pool record.

88 ALCS 2.4.1 Concepts and Facilities

 Test database facility

Test database

Test data set
#FIXEDB(30)

#FIXEDA(20)

L1LTPOOL(200)

L1LTPOOL(200)

Test system view

Figure 74. Test database: Incorrect overflow file address

To avoid these strange effects, you can partition pools to reserve pool records for
test database use.

For example, you can reserve 1 percent of pool records for test database use, and
leave 99 percent for production use.

This avoids the problem of incorrect pool addresses between the test database and
the production database, because it is impossible to dispense the same record on
both the test system and the production system.

See ALCS Installation and Customization for more information about the
PARTITION parameter of the DBGEN macro.

4.9 The ALCS configuration data sets
ALCS provides three configuration data sets. They contain system configuration
information that is used when the ALCS system is restarted. The three
configuration data sets are:

� the database configuration data set, CDS0
� the program configuration data set, CDS1
� the communication configuration data set, CDS2

The database CDS is required by all ALCS systems, but the other two CDS's are
optional.

ALCS system configuration information is also held in load modules whose names
are in the PARM list on the EXEC statement that starts the ALCS job. During
ALCS restart, configuration data may be obtained from the CDS's and from the
configuration load modules referenced by the PARM list.

 Chapter 4. ALCS database file management 89

 Test database facility

Creating configuration data sets
The ALCS database configuration contains the data set names of the CDS's. The
CDS's are created using the z/OS IDCAMS utility. Each CDS must contain 4096
records, and the records in each CDS must have a CI size of 4096 and a record
size of 4088. When the ALCS system is restarted, it obtains the names of all the
CDS's from the database configuration referenced by the PARM list. If the CDS's
are newly created, ALCS automatically preformats them. When the preformat is
complete, ALCS copies the information held in the configuration load modules
(referenced by the PARM list) to the CDS's. For example, the information held in
the database configuration load module is copied to the database configuration
data set (CDS0). On subsequent ALCS restarts, ALCS will use configuration
information in the CDS's.

Note: ALCS cannot preformat your CDS's if you are using the test database
facility. This is because the CDS's are opened as read only data sets. In this
situation, you need to run your ALCS system once without the test database facility.
Once the CDS's have been preformatted you may use them with the test database
facility.

Updating the configuration data sets
The ALCS system provides operator commands that update the contents of the
CDS's.

� Updating CDS0, the database configuration data set

This CDS is updated when you load a new database configuration table using
the ZDASD LOAD command. When you wish to update the ALCS database
configuration, you must create a new database configuration table and load it
onto CDS0.

� Updating CDS1, the program configuration data set

This CDS is updated when application programs (for system wide use) or
installation-wide monitor exits are loaded using the ZPCTL LOAD command.
When you wish to consolidate the application programs and monitor exits that
have been loaded online, you can create a new program configuration table
and load it onto CDS1.

� Updating CDS2, the communication configuration data set

This CDS is updated when communication configuration load modules are
loaded using the ZACOM LOAD command. These communication configuration
load modules enable you to reconfigure your ALCS communication network.
When you wish to consolidate the ALCS communication configuration load
modules, you can create a new communication configuration load list and load
it onto CDS2.

All updates to the CDS's are performed by operator commands that include a
LOAD parameter (ZDASD LOAD, ZPCTL LOAD and ZACOM LOAD). After a successful
load, if the update is to be retained over a system restart, it must be confirmed.
This is achieved by entering the relevant command with the CONFIRM parameter.
After the confirm, the update that has been loaded onto the CDS is used by ALCS
during the next system restart. After a successful restart of the ALCS system, the
updates on the CDS that are in the confirmed status should be committed. This is
achieved by entering the appropriate command with the COMMIT parameter.
While an update is in the load or confirmed status, it can be backed out from the
CDS by entering the relevant command with the BACKOUT parameter.

90 ALCS 2.4.1 Concepts and Facilities

 Test database facility

The ALCS CDS's therefore enable online updates of the database and
communication configuration (plus online loads of programs and exits) to be
automatically reloaded after a system restart.

Using CDS's with the test database facility
The database CDS is required by all ALCS systems, therefore it must be available
to ALCS systems that use the test database facility.

The program CDS is optional, therefore you must decide if it is required on your
ALCS systems that use the test database facility.

Although the communications CDS is optional, it should not be used on ALCS
systems that use the test database facility. Each ALCS system requires a different
communication configuration. For example, each ALCS system requires its own
VTAM ACB name, its own prime and RO CRAS terminals, etc. and should not
share its communication configuration with other ALCS systems.

 Chapter 4. ALCS database file management 91

 Test database facility

92 ALCS 2.4.1 Concepts and Facilities

 Sequential file management

Chapter 5. Sequential file management

ALCS uses the MVS sequential access method (SAM) to create and access
physical sequential data sets, which are called sequential files. The online
monitor creates some physical sequential data sets directly. It also supports
monitor-request macros that allow application programs to create and access
physical sequential data sets.

ALCS supports six types of sequential file as follows:

� Four types of system sequential files (sequential files that the ALCS online
monitor creates). Application programs cannot write records to system
sequential files.

� Two types of application sequential files (sequential files that ALCS
application programs create or access).

Figure 75 shows the ALCS sequential data sets, this includes:

� The six types of sequential file
� The ALCS direct-access data sets (these are only included to differentiate

between the sequential data sets and the direct-access data sets)

Real-time database
data sets

Real-time database
data sets

General files
and

general data sets

General files
and

general data sets

DASD
management

DASD
management

Database
update log
Database
update log

User Data
collection

Data
collection

ALCS
Diagnostic

ALCS
Diagnostic

System sequential filesSystem sequential files

ALCS online systemALCS online system

Application sequential filesApplication sequential files

Real-time
sequential
Real-time
sequential

General
sequential
General

sequential

Figure 75. ALCS sequential files: Overview

© Copyright IBM Corp. 2003, 2010 93

 Sequential file management

Figure 76 gives an overview of how each type is used.

System sequential files Application sequential files
 ┌──────────────────────────┐ ┌───────────────────────────────────┐
 ┌┴─────────────────────────┐│ ┌┴──────────────────────────────────┐│
 │ Update log file ││ ┌┴──────────────────────────────────┐││
 ├──────────────────────────┤│ ┌┴──────────────────────────────────┐│││
 │ Changes to the real-time ││ │ Real-time sequential file ││││
 │ database ││ ├───────────────────────────────────┤│││
 │ ││ │ Output only: ││├┘
 │ ├┘ │ Any entry can write to this file │├┘
 └──────────────────────────┘ │ at any time. ├┘
 ┌─────────────────────────┐ └───────────────────────────────────┘
 │ Data collection file │ ┌───────────────────────────────────┐
 ├─────────────────────────┤ ┌┴──────────────────────────────────┐│
 │ Data collection records │ ┌┴──────────────────────────────────┐││
 │ │ ┌┴──────────────────────────────────┐│││
 │ │ │ General sequential file ││││
 │ │ ├───────────────────────────────────┤│││
 └─────────────────────────┘ │ Output or input (not both): ││││

│ An entry must own this file when ││├┘
 ┌────────────────────────────┐ │ it uses it. Ownership can be │├┘
 │ Diagnostic file │ │ passed between entries. ├┘
 ├────────────────────────────┤ └───────────────────────────────────┘
 │ System error dumps │
 │ Trace facility records │
 │ Pool usage error records │
 │ System test vehicle output │
 └────────────────────────────┘

 ┌──────────────────────────────┐
 │ User file │
 ├──────────────────────────────┤
 │ Data which you may define. │
 │ For example log data written │
 │ by an installation-wide exit │
 │ and processed offline. │
 └──────────────────────────────┘

Figure 76. Sequential files: Types and contents

For sequential files, ALCS supports the device types that MVS SAM supports.
However some device types can be unsuitable for some sequential files. For
example, to dump records from the ALCS real-time database, DASD or magnetic
tape can be suitable; punched cards or paper listings are probably unsuitable.

5.1 System sequential files
The ALCS online monitor creates the following system sequential files:

� ALCS diagnostic file

� ALCS update-log file or files

� ALCS data-collection file

� ALCS user file

5.1.1 ALCS diagnostic file
Every sequential-file generation must define an ALCS diagnostic file. ALCS writes
diagnostic information to the ALCS diagnostic file. This data includes:

� System error dumps
� ALCS trace facility records
� Pool usage error records
� ALCS system test vehicle output
� Data-collection output (if you do not define a separate ALCS data-collection file)
� User output (if you do not define a separate ALCS user file)

94 ALCS 2.4.1 Concepts and Facilities

 Sequential file management

The ALCS diagnostic file processor formats and prints the diagnostic information
contained by the ALCS diagnostic file. The ALCS statistical report generator
formats and prints the performance statistics contained in the ALCS diagnostic file.

5.1.2 ALCS update-log file(s)
Every sequential file generation must define an ALCS update-log file. The ALCS
monitor logs changes to the real-time database in the ALCS update-log file. When
ALCS writes a record to the real-time database, it can also write a copy of the
record to the ALCS update-log file. ALCS uses the ALCS update-log file to restore
the real-time database after an equipment or program error destroys it.

ALCS supports two types of logging:

Forward ALCS logs the record contents after they are updated
Backward ALCS logs the record contents before they are updated

You can specify the following combinations of logging in the ALCS generation
process:

� A forward log, or
� A backward log, or
� Both a forward and a backward log
� A single merged file for both a forward and a backward log

5.1.3 ALCS data-collection file
When data collection is active, ALCS writes data-collection records to a
system-sequential file. This file can be either:

� The ALCS data-collection file. To do this, you simply define an ALCS
data-collection file.

� The ALCS diagnostic file. If you do not define an ALCS data-collection file
then ALCS writes the records to the ALCS diagnostic file (the data-collection
records are intermixed with other information).

Subsequently, you can process this sequential file to produce performance reports
using:

� The ALCS statistics report generator (SRG)
� The IBM Service Level Reporter (SLR)
� Any similar utility

5.1.4 ALCS user file
ALCS itself does not write to this system sequential file. It is provided for you to
write data from an installation-wide monitor exit. To do this you must use the
callable service UWSEQ (see ALCS Installation and Customization).

To process the data written to the user sequential file you must write your own
offline program.

If you do not define an ALCS user sequential file then ALCS writes the records to
the ALCS diagnostic file (the user records are intermixed with other information).

 Chapter 5. Sequential file management 95

 Sequential file management

5.2 Application sequential files
Application programs can use sequential files.

ALCS supports the following types of application sequential file:

� Real-time sequential files
� General sequential files.

Real-time sequential files
Real-time sequential files are output data sets.

Application programs do not open and close real-time sequential files. Instead,
ALCS initialization allocates and opens them. They remain open all the time that
ALCS is executing.

Real-time sequential files are shared resources. An entry does not own a real-time
sequential file. Instead, any entry can write a record to it at any time.

General sequential files
ALCS supports both input and output general sequential files. A general sequential
file can be either an input or an output data set; it cannot be both. However,
“Multiple sequential files on one MVS data set” on page 97 explains how to use a
data set for both input and output.

Application programs must open and close general sequential files. ALCS supports
monitor-request macros and C language functions to do this. When an application
program issues TOPNC or topnc, the ALCS online monitor allocates and opens the
data set. When an application program issues TCLSC or tclsc, the ALCS online
monitor closes and deallocates the data set.

General sequential files are not shared resources. An entry must own a general
sequential file before the entry can use it. A general sequential file is assigned
when an entry owns it. In additon to TOPNC (topnc) and TCLSC (tclsc), ALCS
supports monitor-request macros and C language functions that allow application
programs to pass ownership from one entry to another.

5.3 Symbolic names for sequential files
Every ALCS sequential file has a unique 3-character symbolic name. Application
programs use this symbolic name to identify the sequential file. For example, the
TOPNC and TCLSC monitor-request macros include the symbolic name as a
parameter. ALCS commands use this symbolic name to identify the sequential file.
For example, the ZDSEQ command has a parameter that limits the display to a single
sequential file; the parameter is the 3-character symbolic name.

The ALCS sequential file generation must include one SEQGEN macro for every valid
3-character symbolic name. The SEQGEN macro associates the 3-character symbolic
name with an MVS data set.

96 ALCS 2.4.1 Concepts and Facilities

 Sequential file management

Multiple names for the same file
ALCS allows more than one 3-character symbolic name to refer to the same
sequential file (the 3-character names are synonyms). This can be useful with
real-time sequential files. Application programs can use different symbolic names
for different types of data. The sequential file generation can specify that all the
names refer to the same real-time sequential file. Later, a new sequential file
generation can specify that the names refer to different sequential files. In this
way, a system can generate a small number of sequential files at first. Later, if the
volume of output increases, the system can write the data to a larger number of
sequential files. Figure 77 gives an overview of this particular mapping.

 Initial mapping Changed mapping
 ┌─────────────────┐ ┌─────────────────┐

│ Sequential-file │ │ Sequential-file │
 │ generation │ │ generation │
 Name └─────────┬───────┘ Name └─────────┬───────┘
 ┌─┬─┬─┐
 ┌─┬─┬─┐

 │A B A├─┐ ┌──────────────┬ │A B A├─┐ ┌───────────────┐ ┌──────────┐
 └─┴─┴─┘ │ │ │ ┌──────────┐ └─┴─┴─┘ └─�│───────┐ │ │ MVS │
 ┌─┬─┬─┐ └─�│──────┐ │ │ MVS │ ┌─┬─┬─┐ ┌─�│───────┴─────────�│ data set │
 │A B B├─└─�│──────┼──────────�│ data set │ │A B B├─┘ │ Configuration │ └──────────┘
 └─┴─┴─┘ ┌─�│──────┘ │ │ │ └─┴─┴─┘ │ tables │
 ┌─┬─┬─┐ │ │ │ └──────────┘ ┌─┬─┬─┐ │ │ ┌──────────┐
 │A B C├─┘ │ Configuration│ │A B C├───�│───────┐ │ │ MVS │
└─┴─┴─┘ │ tables │ └─┴─┴─┘ │ └─────────�│ data set │
 └──────────────┴ └───────────────┘ └──────────┘

Figure 77. Sequential files: Changing the mapping of symbolic names

Multiple sequential files on one MVS data set
The ALCS sequential file generation can define more than one sequential file with
the same data set name. In this case, the different 3-character names are not
synonyms. Although they refer to different ALCS sequential files they refer to the
same MVS data set. This can be useful if one ALCS application creates a
sequential file, and another ALCS application reads the same data set. The first
application must use an output sequential file; the second application must use an
input sequential file. To do this, the application programs must use different
symbolic names. Figure 78 gives an example of this type of mapping.

 ┌─────────────────┐
│ Sequential-file │

 │ generation │
 └─────────┬───────┘

 Name ┌───────────────┐
 ┌─┬─┬─┐ │ │ Output

│X O P│─�│──────────────────┐ ┌──────────┐
└─┴─┴─┘ │ Configuration │ └─�│ MVS │

│ tables │ ┌──┤ data set │
 ┌─┬─┬─┐ │ ┌───────│�─┘ └──────────┘

│X I P│�─────────┘ │ Input
 └─┴─┴─┘ └───────────────┘

Figure 78. Sequential files: Mapping input and output to a data set

The symbolic names refer to different ALCS sequential files; the first is output,
disposition NEW, and so on; the second is input, disposition OLD, and so on. But
the sequential files have the same data set name – they are the same data set.

 Chapter 5. Sequential file management 97

 Sequential file management

5.4 Cataloged sequential file data sets
When a data set is cataloged, the catalog entry specifies the volume serial number.
Before an application program can use an input data set that is not cataloged, you
must tell ALCS the volume serial number: use either the SEQGEN macro or the
ZASEQ command (see ALCS Operation and Maintenance) to do this.

5.5 Sequential file data set switch
ALCS initialization opens system sequential files and real-time sequential files.
That is, it allocates and opens MVS data sets. ALCS continues to write data to the
system sequential files all the time that ALCS is executing. Application programs
continue to write to real-time sequential files all the time that ALCS is executing.
But the ALCS diagnostic file processor cannot process (for example) an ALCS
diagnostic file data set until ALCS closes and deallocates the data set.

To satisfy these requirements, an ALCS system sequential file (or an ALCS
real-time sequential file) is not a single MVS data set. Instead, it is a sequence of
MVS data sets. The data set names are the same except for the last qualifier; the
last qualifier is a sequence number. For example, a sequence of ALCS diagnostic
file data sets might be:

 ALCS.DIAG.A�������
 ALCS.DIAG.A������1
 ALCS.DIAG.A������2

The ALCS sequential file generation specifies how much data (the number of
blocks) ALCS writes to one data set. ALCS then closes and deallocates the data
set and starts to use the next data set in the sequence. This process is called
sequential file switch. After a sequential file switch, other programs can use the
previous data set in the sequence.

ALCS automatically performs a sequential file switch when the data set is full (that
is, after it writes the specified number of blocks). The ALCS command, ZSSEQ, also
performs a sequential file switch. Use ZSSEQ, for example, to switch to a new data
set so that the ALCS diagnostic file processor can print a system error dump from
the current ALCS diagnostic file data set; otherwise you would have to wait until
ALCS fills up the data set.

To reduce the time for a sequential file switch, ALCS allocates and opens in
advance the next data set in the sequence. As soon as ALCS starts to write data
to one data set, it allocates and opens the next data set in the sequence. In this
way, ALCS does not need to wait for volume mounts, and so on, when it performs
a sequential file switch.

If sequential file data sets are on magnetic tape, you can set up the data sets as
single volume data sets so that ALCS switches data sets at the end of the volume.
To do this, specify the SPACE parameter on the ALCS generation SEQGEN macro to
reflect the capacity of a reel of tape or tape cartridge.

98 ALCS 2.4.1 Concepts and Facilities

 Entry management: Creating entries

 Chapter 6. Entry management

An entry is an ALCS unit of work. ALCS can create and dispatch entries. This
section describes how ALCS creates and dispatches entries. See also 1.7,
“Multiprogramming and multiprocessing” on page 35.

6.1 How ALCS creates entries
To create entries, ALCS uses the following:

 � Input messages
� Create-type monitor-request macros (CREMC, CREDC, CRETC, CREXC)

 � Monitor-created entries
� The time available supervisor (TAS)

Input messages: ALCS creates a new entry for every input message; that is,
whenever ALCS receives an input message. To create this new entry the online
monitor does the following (not necessarily in this order):

� Initializes storage to contain an ECB and an attached storage block. The
attached storage block contains the input message on ECB level 0.

� Updates internal counters and control fields to indicate that there is one more
entry.

� Indicates that the entry is an input message entry and saves origin information
in the ECB and the ECB descriptor. This origin information includes the
communication resource identifier (CRI) of the originating communication
resource.

� Adds the entry to the input list. The input list is a queue of entries that are new
input messages. It is one of the ALCS entry dispatcher work lists. Figure 79
on page 102 shows the structure of an ALCS entry-dispatcher work list.

Create-type services: ALCS provides services that allow application programs to
create new entries. When an entry requests one of these services, ALCS creates a
new entry as follows (not necessarily in this order):

� Initializes storage to contain the new ECB. If the create-type macro passes
storage block contents, ALCS initializes attached storage blocks as required.

� Updates internal counters and control fields to indicate that there is one more
entry.

� Indicates that the entry is a created entry and copies origin information from the
creating entry to the ECB and the ECB descriptor.

� Adds the entry to one of the ALCS entry dispatcher work lists described in 6.2,
“How ALCS dispatches entries” on page 101.

© Copyright IBM Corp. 2003, 2010 99

 Entry management: Creating entries

In the same way, ALCS creates new entries for other services that can create new
entries. These include:

� System error macros (SYSRA and SERRC). These services can create a new
entry that sends a system error dump message to RO CRAS.

� Send-type monitor-request macros. Some send services create a new entry
that processes the output message. SENDC T (that is, SENDC with the T
parameter) is an example.

Monitor-created entries: ALCS sometimes creates new entries that do not arise
from input messages or create-type services. For example, the monitor timer
routines create a new entry every minute. The new entry is for
application-dependent timer functions.

These new entries are called monitor-created entries. ALCS creates them as
follows (not necessarily in this order):

� Initializes storage to contain the new ECB and attaches storage blocks as
required.

� Updates internal counters and control fields to indicate that there is one more
entry.

� Indicates that the entry is a monitor-created entry and clears origin information
in the ECB and the ECB descriptor.

� Adds the entry to one of the ALCS entry dispatcher work lists described in 6.2,
“How ALCS dispatches entries” on page 101.

Time available supervisor: ALCS supports a facility called time available
supervisor (TAS). TAS allows an entry to create other entries with very low
priority. To use TAS, entries issue the TASTC and TASBC monitor services TASTC
starts TAS (and makes TAS active) and TASBC stops it (makes it inactive).

Unlike the create-type services, TASTC does not create a new entry and add it to an
ALCS entry dispatcher work list. TASTC sets a switch to indicate that there is low
priority work waiting. The entry dispatcher checks the switch when there is no
other work that ALCS can dispatch. If the switch is set, ALCS creates a new entry
and dispatches it immediately. See 6.2, “How ALCS dispatches entries” on
page 101 for more information. ALCS does this as follows (not necessarily in this
order):

� Initializes storage to contain an ECB.

� Updates internal counters and control fields to indicate that there is one more
entry.

� Indicates that the entry is a TAS-created entry and clears origin information in
the ECB and the ECB descriptor.

� Dispatches the new entry by transferring control to the application program
TIA1.

ALCS continues to create and dispatch new entries in this way while TAS is active
(that is, until an entry requests TASBC monitor service). In this way, an entry can
create a number of low priority entries.

100 ALCS 2.4.1 Concepts and Facilities

 Entry management: Dispatching entries

6.2 How ALCS dispatches entries
This section contains Diagnosis, Modification, and Tuning Information. Do not use
this information as a programming interface.

This section summarizes the normal way in which ALCS dispatches entries. Do not
develop application programs that depend on the way that ALCS dispatches
entries. Programs that depend on the ALCS dispatching method can fail
unpredictably.

For example, do not develop application programs that depend on the priority order
of the ALCS entry dispatcher work lists. In some situations the ALCS entry
dispatcher checks work lists in a different order.

To dispatch an entry, the ALCS entry dispatcher (often called the CPU loop)
checks lists of entries, called ALCS entry dispatcher work lists. Each list
contains only entries that are dispatchable. For example, if an entry waits for an
I/O operation to complete, ALCS does not add the entry to an ALCS entry
dispatcher work list until the I/O completes.

All the entry dispatcher tasks check the same set of work lists.

The ALCS entry dispatcher checks its work lists in sequence. In this way, each list
corresponds to a priority. The ALCS entry dispatcher work lists are, in order of
priority:

IOCB list ALCS uses the IOCB list internally to dispatch system functions.

Ready list ALCS uses this list mainly for entries that can resume processing after
I/O completion. For example, if an entry requests a FINWC monitor
service to read a DASD record, it loses control until I/O completes.
When I/O completes, ALCS adds the entry to the ready list.

Delay list ALCS uses this list mainly for entries that request DEFRC or DLAYC
monitor services. Entries request monitor services to avoid
monopolizing resources. Refer to 6.5, “Delay and defer processing”
on page 104.

Input list ALCS uses this list mainly for new entries. For example, when ALCS
receives an input message, it creates a new entry and adds the new
entry to the input list.

Defer list ALCS uses this list mainly for entries that request DEFRC or DLAYC
monitor services. Entries request monitor services to avoid
monopolizing resources. Refer to 6.5, “Delay and defer processing”
on page 104.

Deferred IOCB list ALCS uses the deferred IOCB list internally to dispatch system
functions.

 Chapter 6. Entry management 101

 Entry management: Dispatching entries

If the ALCS entry dispatcher can dispatch an entry from the first list, it does so, and
does not check subsequent lists. If it cannot dispatch an entry from the first list, it
normally checks the second list, and so on. However, if the system load is heavy
the ALCS entry dispatcher does not service the delay, input, or defer lists.
Regardless of load, the ALCS entry dispatcher does not service the delay and defer
lists in certain situations described in 6.5, “Delay and defer processing” on
page 104.

Figure 79 shows the format of an ALCS entry dispatcher work list.

 List header Block descriptor
 ┌──────────────────────────────�┌───────┬─────────┬──
 ┌───│───┬───────┬───────┬───────┐ │ Chain │ Pointer │
 │ First │ � │ Last │ � │ ├───┬───┴────│────┘
└───────┴───────┴───│───┴───────┘ │
 └─────────────────�┌─────────────────

│ ┌───────┬─────────┬── │ Entry storage
│ │ Chain │ Pointer │ │ (includes ECB)

 │ ├───┬───┴────│────┘
 │ │
 └──────────────�┌─────────────────

└────────────────────�┌───────┬─────────┬── │ Entry storage
│ � │ Pointer │ │ (includes ECB)

 ├───────┴────│────┘
 │ └───────────�┌─────────────────

│ Entry storage
│ (includes ECB)

Figure 79. Entry dispatcher work list (schematic)

An ALCS entry dispatcher work list is a first-in-first-out (FIFO) queue. That is,
ALCS adds an entry to the bottom of an ALCS entry dispatcher work list; the ALCS
entry dispatcher starts checking at the top of the list.

However on a multiprocessor, the ALCS entry dispatcher cannot always dispatch
the first entry on a list. For example, the first entry might need exclusive control of
a global area field that is already controlled by another entry in shared or exclusive
mode. If the ALCS entry dispatcher cannot dispatch the first entry on a list, then it
checks the next entry, and so on.

When ALCS adds an entry to an ALCS entry dispatcher work list, it saves the
address of the post-interrupt routine in the ECB descriptor. To dispatch an entry,
the ALCS entry dispatcher removes the entry from the work list and branches to the
post-interrupt routine. Generally, the post-interrupt routine does one of the
following:

� Add the entry to another ALCS entry dispatcher work list and branch to the
ALCS entry dispatcher.

� Exit the entry and branch to the ALCS entry dispatcher.

� Transfer control to an application program.

In the last case, eventually the application program must request a monitor service
that loses control. The macro service routine branches to the ALCS entry
dispatcher.

If the ALCS entry dispatcher cannot dispatch any entry, it enters the MVS task wait
state. When an event makes an entry dispatchable, ALCS posts the ALCS entry
dispatcher tasks. The ALCS entry dispatcher then checks the work lists again.

102 ALCS 2.4.1 Concepts and Facilities

 Entry management: Losing control

6.2.1 Entry processing limits
ALCS can detect and cancel (exit) entries that monopolize or misuse resources.
For example, if an entry dispenses too many pool file record addresses, then ALCS
cancels the entry with a system error dump.

To do this, ALCS uses entry processing limits specified by the generation
parameters ENTxxxx of the SCTGEN macro.

ALCS Installation and Customization describes the SCTGEN macro.

ALCS can also detect application programs that loop without losing control, see
6.3.1, “Application loop timeout”.

6.3 How entries lose control
Many multiprogramming systems invoke the dispatcher at every interrupt. In these
systems, a task can lose control at any time (unless the task can mask the
processor against interrupts). This is because an interrupt can make a higher
priority task dispatchable. If it does, the multiprocessing system stops processing
the active task and dispatches the higher priority task instead. This is called
preemptive dispatching.

ALCS does not use preemptive dispatching. Instead, ALCS invokes its entry
dispatcher only when an application program requests a monitor service. If an
interrupt makes an entry dispatchable, ALCS adds it to an ALCS entry dispatcher
work list; the active entry continues to execute. This is called non-preemptive
dispatching. Whether or not ALCS invokes the entry dispatcher depends on which
service the entry requests. Each service does one of the following:

� Always loses control; that is, invokes the entry dispatcher (for example, the
DEFRC monitor service).

� Never loses control (for example, the TIMEC monitor service).

� Sometimes loses control (for example, the ENTRC monitor service loses control
only when the global serialization requirements for the entering program and for
the entered program differ).

ALCS Application Programming Reference – Assembler and ALCS Application
Programming Reference – C Language contain descriptions of all assembler and C
language services respectively. These descriptions indicate whether the service
causes the entry to lose control (that is, whether or not the routine invokes the
entry dispatcher).

6.3.1 Application loop timeout
An ALCS entry does not normally lose control until it requests a monitor service.
However, an entry can monopolize a processor when it goes into a loop and does
not request any monitor service (or requests only monitor services that do not lose
control).

To prevent this, ALCS imposes a maximum time for an entry to execute before it
must lose control. If an entry does not lose control within this time limit, then ALCS
cancels (exits) the entry with a system error dump. This procedure is called
application loop timeout.

 Chapter 6. Entry management 103

 Entry management: Delay and defer processing

Do not develop application programs that depend on the exact size of the
application loop timeout. Instead, ensure that entries lose control at least after
every 10 000 instructions.

6.4 Input/output counter and wait service
ALCS provides monitor services that request input/output (I/O) operations. For
example, FILEC requests a write to a DASD data set, TPRDC requests a read from a
sequential file (physical sequential data set), and so on. Generally the I/O can
proceed independently; the entry can continue processing while the I/O takes place.
An entry that requests an input operation must ensure that the data input completes
successfully before it uses the data. To do this, the entry uses the ALCS wait
service. The wait service:

� Suspends the entry until the I/O completes
� Tests for I/O errors

If an entry requests input when a buffer already contains the data, the wait service
does not suspend the entry. Even so, the entry must always request the wait
service. The entry cannot know that a buffer already contains the data.

The ALCS WAITC monitor service and the waitc C language function request the
wait function. Some other monitor services and C language functions request both
I/O and the wait service. For example, FINWC requests a DASD read followed by
the wait service.

ALCS does not support the wait service for all monitor services that request I/O.
For example, FILEC requests a DASD write. The wait service does not wait for I/O
that FILEC requests. Also, the wait service does not test for FILEC I/O errors. So
there are two types of monitor service or C language function that request I/O:

� The I/O request requires the wait service. The entry must request the wait
service to check that the I/O completes successfully.

� ALCS does not support the wait service for the I/O request (to reduce response
time). The entry cannot check that the I/O completes successfully.

The description of each service in ALCS Application Programming Reference –
Assembler and ALCS Application Programming Reference – C Language indicates
whether or not it requires the wait function.

6.5 Delay and defer processing
Delay and defer list service: 6.2, “How ALCS dispatches entries” on page 101
describes how the ALCS entry dispatcher services the ALCS entry dispatcher work
lists in the following order of priority:

 1. Ready list
 2. Delay list
 3. Input list
 4. Defer list

It only checks the input list when it cannot dispatch any entry on the ready list, and
so on. Also, the ALCS entry dispatcher does not service the input, delay, and defer
lists if ALCS is too busy.

104 ALCS 2.4.1 Concepts and Facilities

 Entry management: Delay and defer processing

Sometimes the ALCS entry dispatcher does not service the delay and defer lists
even when there are no other dispatchable entries and ALCS is not too busy. This
allows other MVS tasks to have priority over ALCS entries that are on the delay
and defer lists. It also allows time for write operations to complete before the ALCS
entry dispatcher redispatches an entry that requests a DEFRC monitor service.

In particular, once the ALCS entry dispatcher has serviced the defer list, it does not
do so again until 0.05 seconds later.

Attention

You should be aware of the dangers of defer/delay loops waiting for some external
event that never happens. You can overcome these dangers either by using EVNTC,
EVNWC, and POSTC, or by incorporating a check to limit the amount of time spent in
the defer/delay loop.

Entry write limits: Some ALCS monitor services request output operations that
proceed independently of the entry. See 6.4, “Input/output counter and wait
service” on page 104. For example, FILEC requests a DASD output operation
(write) but the entry does not wait for the output to complete. However an entry
can use all the available DASD I/O buffers if it goes into a loop that requests a
FILEC monitor service.

To prevent this, ALCS requires entries to request DEFRC monitor service (or DLAYC).
DEFRC and DLAYC suspend processing of an entry to allow other entries to proceed.
The ENTWRT= parameter of the SCTGEN macro specifes two limits (ew1 and ew2)
to regulate this.

The ew1 value is the maximum number of writes that an entry can request before it
must defer. When an entry requests more than ew1 writes without issuing a DLAYC
or DEFRC macro, ALCS forces the entry to defer. That is, for one write in every ew1
writes, ALCS adds the entry to the defer list during the write monitor service. This
gives a time delay (on average 0.025 seconds) that allows the writes to complete.

When the entry continues to request writes, ALCS forces it to defer again after the
next ew1 writes, and so on.

An entry can prevent these forced defers by issuing DLAYC or DEFRC more often than
every ew1 writes.

When an entry requests DLAYC or DEFRC monitor service, the other limit of the pair,
ew2, decides whether ALCS puts the entry on the delay list or the defer list. If
there have been ew2 (or more) writes since the entry lost control, ALCS adds the
entry to the defer list during the DLAYC or DEFRC monitor service. This gives a time
delay (approximately 0.025 seconds) to allow any writes to complete.

When an entry requests a write and requests a DEFRC monitor service every time
round a loop, for example:

LOOP EQU �
...
 FILEC D1
 DEFRC ,
...
 B LOOP

 Chapter 6. Entry management 105

 Entry management: Communication

then ALCS puts the entry on the delay list each time round the loop, except that
every ew2 times round the loop ALCS puts the entry on the defer list.

 TPF compatibility

TPF implements DLAYC and DEFRC slightly differently from ALCS. The
differences are not normally significant to application programmers, but do not
request DEFRC monitor service with records held if you wish to maintain
compatibility with TPF.

6.6 Communication between entries
Sometimes entries need to communicate with other entries. That is, they must
pass data to or share data with other entries. But an ALCS entry must not access
ECB fields or storage blocks that belong to another entry.

6.6.1 How entries pass data
ALCS provides monitor services that allow an entry (the creating entry) to create a
new entry (the created entry). These are the create-type services. Create-type
services have parameters that allow the creating entry to pass data to the created
entry. The creating entry can specify:

� The address and length of a parameter area. ALCS copies the contents of the
parameter area into the ECB work area of the created entry.

 Creating entry Created entry
 ┌────────────────┐ ┌────────────────┐
 Addr─�├─────────────┐ │ ├─────────────┐ │

│ppppppppppp ────────────────────────────────�│ ppppppppppp │ │
├─────────────┘ │ The create macro specifies ├─────────────┘ │
│�──── L ────� │ the address and length of │ │
│ │ the parameter area. │ │

 └────────────────┘ └────────────────┘
Parameters in EBW���

Figure 80. Passing data between entries: parameter areas

� One or more storage blocks attached to the ECB of the creating entry. ALCS
copies the contents of the storage blocks into the new storage blocks attached
to the ECB of the created entry.

 Creating entry Created entry
 ┌────────────────┐ ┌────────────────┐
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │

├────────────────┤ ├────────────────┤ New blocks attached
│ Data levels │ │ Data levels │ to contiguous levels
│ D� D1 D2 .. DF │ │ D� D1 D2 .. DF │

 └─┬─────┬────────┘ └─┬──┬───────────┘
│ │ Storage blocks │ │ Storage blocks

 │ └────�┌────────────┐ Copy contents │ └─�┌────────────┐
│ │ abcdefghij │── ─ ─ ─ ─ ─ ─ ─ ─ ─│─ ─ �│ abcdefghij │

 │ └────────────┘ │ └────────────┘
 └──────────�┌────────────┐ └────�┌────────────┐

│ xxxyyyzzz │── ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ �│ xxxyyyzzz │
 └────────────┘ └────────────┘

Figure 81. Passing data between entries: storage blocks

106 ALCS 2.4.1 Concepts and Facilities

 Entry management: Multiple entries

ALCS Application Programming Reference – Assembler and ALCS Application
Programming Reference – C Language explain how to use these services and their
parameters.

6.6.2 How entries share data
Creating entries can share data with created entries.

The main types of data that ALCS entries can share are:

� Application global area
 � DASD records

ALCS supports facilities designed to help entries to share data.

ALCS supports an area of storage that entries can share. This is called the
application global area. This area is not protected; any entry can store
information in the global area.

It can be complex to use the application global area in a multiprocessor
environment for anything except constants. It is much simpler to store variable
data in DASD records (appropriate use of virtual file access (VFA) makes physical
I/O unnecessary).

However, if you cannot avoid using the application global area, ALCS Installation
and Customization describes how to use the application global area.

E.3, “Record hold facility” on page 155 describes facilities that help entries to
share DASD records.

6.7 Transactions that create multiple entries
Many transactions require only one entry each for their processing – that is, they do
not need to request create-type services. But you may find it more efficient to
implement some complex transactions by creating a number of entries that can
process in parallel.

For these transactions, the original entry (called the parent entry) creates a number
of child entries, which can run parallel with each other and with the parent entry.

The child entries can in turn create more grandchild entries, and so on.

Application programs that create child and grandchild entries in this way can
efficiently exploit ALCS's multiprogramming and multiprocessing capabilities – but
these types of program can cause serious problems unless they are carefully
designed. When designing new programs or installing purchased programs of this
type, you should observe the following points:

Avoiding too many create-type services
In most ALCS configurations, ALCS services create-type services in preference to
new input transactions. This is to ensure that in-flight transactions complete even
when there is a high input message rate. Otherwise an in-flight transaction that
requests a create-type monitor service might have to wait while ALCS processes
new input transactions, which might in turn request create monitor services, and so
on. This could cause a deadlock in ALCS.

 Chapter 6. Entry management 107

 Entry management: Multiple entries

But because of this, a parent entry that creates many child and grandchild entries
can flood ALCS with entries, and so lock out new transactions. Application
programs can avoid this by regulating their use of create-type services with the
LODIC monitor service (or the lodic C language function). But note that
transactions that create only one or two entries should not use LODIC in this way.

Avoiding create-type services in loops
Parent entries that create many child entries typically do this by issuing a
create-type macro in a loop. The parent entry can lose control if there are too
many entries in the system. There may be too many entries because the parent
entry is issuing many create-type services. This situation is compounded if the
child entries themselves loop creating grandchild entries.

Other, unrelated, entries that request create monitor services may also be forced to
wait in this situation.

 Parent entry │
 ┌────────�│
 │ ┌───────┴──────┐

│ │ Processing │
│ └───────┬──────┘ Child entries (one for each iteration of the parent loop)
│ ┌───────┴──────┐ ┌───────────┐┌───────────┐┌ ─ ─ ─ ─ ─ ┐┌ ─ ─ ─ ─ ─ ┐
│ │ Create entry │── ─ ─� │ ││ │
│ └───────┬──────┘ │ ││ ││ ││ │
└─────────┘ │ ││ │

│ ││ ││ ││ │
└───────────┘└───────────┘└ ─ ─ ─ ─ ──┘└ ─ ─ ─ ─ ─ ┘

 ┌────────�│
 │ ┌───────┴──────┐

│ │ Processing │
 │ └───────┬──────┘

│ ┌───────┴──────┐ Grandchild entries created by each child entry
│ │ Create entry │── �┌───────────┐┌───────────┐┌ ─ ─ ─ ─ ─ ┐
│ └───────┬──────┘ │ ││ │
└─────────┘ │ ││ ││ │

│ ││ │
│ ││ ││ │
└───────────┘└───────────┘└ ─ ─ ─ ─ ─ ┘

Figure 82. Multiple entries: create-type services in loops

In this way, the ALCS system can be flooded with entries, all of which are trying to
request create-type services – but they cannot do so because there are already too
many entries in the system.

You can avoid this problem by ensuring that the parent entry regulates its use of
create-type services with LODIC, and the child entries do not request more than one
or two create-type monitor services. Grandchild entries should not request create
monitor services at all.

Holding resources for too long
If a parent entry is holding a record or other resource (or has a general sequential
file assigned) while it is looping, creating child entries, it may lose control because
there are already too many entries in the system. This is similar to, but worse than,
the situation shown in Figure 82.

In additon to the danger that other entries might also be waiting to request
create-type services, a queue of entries can build up, all waiting to hold the record
or resource or to assign the general sequential file.

108 ALCS 2.4.1 Concepts and Facilities

 Entry management: SQL, CPI-C, APPC, MQI and TCP/IP

This is particularly likely to occur if child or grandchild entries need to hold the
record or resource, or to assign the general sequential file.

Generally, it is wise for application programs to unhold records or other resources
(or reserve general sequential files) before requesting create-type services –
especially large numbers of create-type services.

6.8 Entries using SQL, CPI-C, APPC, MQI and TCP/IP

6.8.1 Normal and abnormal termination
SAA defines some automatic processes that occur as part of normal or abnormal
termination when application programs use SAA common programming interfaces
such as SQL and CPI-C.

ALCS performs these processes when an entry terminates.

Normal termination: ALCS defines normal termination as any of:

� Assembler language EXITC monitor-request macro

� Assembler language BACKC monitor-request macro when there is no calling
program.

� C exit function

� C return function when there is no calling program.

Abnormal termination: ALCS defines abnormal termination as any system error
with exit, including:

� Monitor detected errors that exit the entry.

� Assembler language SERRC, SYSRA, or SNAPC macro, with exit option.

� C serrc_op or snapc function, with exit option.

6.8.2 SQL threads and application processes
DB2 for z/OS publications refer to threads. Corresponding SAA publications refer
to application processes. Threads and application processes are the same, and
correspond to ALCS entries.

For example, SQL associates a cursor with a thread or application process.
Similarly, it associates a unit of recovery with a thread or application process.

In ALCS, SQL cursors and units of recovery are associated with entries. An SQL
cursor or unit of recovery is preserved across ENTER/BACK linkages for one entry,
but cannot be passed between entries.

The first SQL statement that an entry executes identifies the entry as an SQL
thread. When the entry terminates, that SQL thread ceases to exist. A normal
termination implies a COMMIT for any unit of recovery not yet terminated; an
abnormal termination implies a ROLLBACK for any unit of recovery not yet
terminated (see 6.8.1, “Normal and abnormal termination”).

ALCS and DB2 for z/OS restrict the number of SQL threads that can exist at the
same time (within one ALCS).

 Chapter 6. Entry management 109

 Entry management: SQL, CPI-C, APPC, MQI and TCP/IP

See the description of the DB2 parameter in SCTGEN macro in ALCS Installation and
Customization.

6.8.3 CPI-C and APPC transaction programs
CPI-C and APPC/MVS publications refer to LU 6.2 conversations between
transaction programs, application programs, or programs. These are all the
same, and correspond to ALCS entries (not to ALCS application programs). An LU
6.2 conversation is preserved across ENTER/BACK linkages for one entry, but
cannot be passed between entries.

Entries that initiate or accept LU 6.2 conversations should deallocate them explicitly
before exiting. If they do not, ALCS takes the following action:

� When an entry terminates normally, ALCS deallocates any conversations that
are still allocated (provided they are in the correct state).

� When an entry terminates abnormally, ALCS deallocates with an abend
condition (Deallocate_abend) any conversations that are still allocated.

6.8.4 MQI transaction programs
In WebSphere MQ for z/OS, an open object is identified by its object handle. In
ALCS, object handles are associated with entries. An object handle is preserved
across ENTER/BACK linkages for one entry, but cannot be passed between
entries.

Entries that open MQ objects should close them explicitly before exiting. If they do
not, ALCS closes any objects that are still open.

6.8.5 TCP/IP Sockets transaction programs
In TCP/IP for MVS or Communication Server, a socket is identified by its socket
descriptor. In ALCS, socket descriptors are associated with entries. A socket
descriptor is preserved across ENTER/BACK linkages for one entry, but cannot be
passed between entries.

Entries that create TCP/IP sockets should close them explicitely before exiting. If
they do not, ALCS closes any sockets that are still open.

| 6.8.6 WebSphere Application Server for z/OS transaction programs
| When you use optimized local adapters (OLA) calls to register a service or get a
| connection, mutliple entries can share that service or connection handle (not just
| the entry which registered the service or got the connection). ALCS does not
| unregister services or release connections when an entry exits.

110 ALCS 2.4.1 Concepts and Facilities

 Storage layout

 Chapter 7. Storage management

This section describes ALCS entry and high level language storage management.

 7.1 Storage layout
ALCS runs as a single MVS region. The storage associated with the region
includes:

Home-address space Contains:

 � MVS
 � ALCS
� ALCS application programs
� All storage accessible by ALCS application programs
� Most of the ALCS tables (including VFA)

Dataspaces ALCS uses dataspaces to hold tables that it cannot
conveniently keep in the home address space. Application
programs cannot access these tables.

Hiperspaces ALCS can (optionally) use Hiperspace to provide additional
buffering for DASD I/O. This Hiperspace buffering is in
addition to the buffering provided by VFA.

The remainder of this section describes the storage in the home address space.

ALCS requests MVS to make the address space non-swappable. After obtaining
storage with the MVS GETMAIN macro, or loading a module, ALCS requests the
MVS PGSER macro to fix the storage. For storage above the bar, ALCS issues the
MVS IARV64 macro to obtain and fix the storage if required

The PAGE parameter of the ALCS generation macro SCTGEN can override this action
for some storage areas. Figure 83 shows where the PAGE parameter can be used,
and how the ALCS initialization process formats the user area of the MVS address
space.

Figure 83 (Page 1 of 2). Protected storage locations and characteristics

 Below
16MB

Page
fixed

PAGE= override

Monitor
ALCS monitor program Yes Yes
Monitor work areas Yes Yes
Monitor tables area Yes Yes
System configuration table No Yes
Area for I/O control blocks No Yes

DASD I/O
DASD configuration table No Yes
Data set descriptor blocks No Yes
VFA record locator table No Yes
VFA buffer headers No Yes
VFA data buffers Note 5 Yes ALL or VFA
Sequential file configuration table Yes Yes
Sequential file buffers No Yes

© Copyright IBM Corp. 2003, 2010 111

 Storage layout

Figure 83 (Page 2 of 2). Protected storage locations and characteristics

 Below
16MB

Page
fixed

PAGE= override

Communication
Communication configuration table No No
Communication hash tables No No
SLC control blocks, including I/O buffers (Note 1 on page 112) Yes Yes
SLC I/O message buffers (Note 1 on page 112) No No
SLC link and channel keypoints (see Figure 84 on page 112)
APPC data and vector table No Yes
TCP/IP extended buffer Note 6 No

Application programs
Program configuration table No Yes
Module load table No Yes
Program hash table No Yes
Program control table No Yes
Application program load modules Note 2

on page
112

Yes ALL or PROGRAM

Figure 84. Unprotected storage locations and characteristics

 Below
16MB

Page
fixed

PAGE= override

Application storage
Application global area 1 Note 3 Yes ALL or GLOBAL
Application global area 2 Note 3 Yes ALL or GLOBAL
Application global area 3 No Yes ALL or GLOBAL
Storage units Note 4 Yes ALL or STORE

Communication
SLC link and channel keypoints (Note 1) No No

Notes:

1. Storage is allocated only if there is an SLC network.

2. Specify AMODEnn at link-edit time for ALCS to load programs:

Below 16MB, AMODE24 (24-bit addressing)
Above 16MB, AMODE31 (31-bit addressing).

3. Global areas 1 and 2 are below 16MB if you specify
AMODE31=(FORCE,NOTGLOBAL) in SCTGEN, or omit AMODE31. They can be anywhere
if you specify:

 AMODE31=(FORCE,GLOBAL) or
 AMODE31=FORCE

in SCTGEN.

4. Storage units can be anywhere if you specify AMODE31=FORCE.

5. If you specify SCTGEN AMODE64=VFA in your system configuration, then ALCS
will obtain page-fixed virtual storage needed for the VFA buffers above the bar.

112 ALCS 2.4.1 Concepts and Facilities

 Storage layout

If you do not specify SCTGEN AMODE64=VFA in your system configuration, then
ALCS will obtain virtual storage needed for the VFA buffers above the line,
but below the bar.

6. Storage is above the bar.

7.2 Real and virtual storage
z/OS is a Multiple Virtual Storage system where each batch job or started task has
its own virtual address space. ALCS makes use of virtual addresses which are
transformed to reference real storage, by hardware use of the Page and Segment
tables. The availability of 64-bit addressing allows ALCS to use real and virtual
memory above the 2GB bar, thus removing memory constraints and freeing
memory for use by applications and other subsystems.

 7.3 Entry storage
1.7.2, “Entry control block” on page 36 describes how each entry requires an area
of storage for its ECB. During processing, the entry requires additional areas of
storage; for example, to contain an input message, to read or write a DASD record,
to contain DECBs, to construct and send a response message, and so on. The
storage for the ECB, together with these additional areas of storage, is called entry
storage.

The ALCS online monitor allocates additional storage to the entry in blocks of a
predetermined length, called storage blocks. ALCS allows up to nine different
storage block sizes (Figure 31 on page 34 shows these sizes). For size L0, the
block size is the same as the block size for size L1, but only 127 bytes are
available to the application program.

7.4 Heap storage used by assembler programs
Assembler programs may use the CALOC, MALOC, RALOC, and FREEC monitor-request
macros to obtain or release heap storage.

Whenever an assembler program obtains heap storage, a type 3 storage unit is
allocated, in addition to any other storage units that are already in use.

If the program requires more heap storage than fits in the first type 3 storage unit,
ALCS allocates additional type 3 storage units.

You need to be aware that the largest contiguous amount of heap storage that a
application can use is a whole type 3 storage unit. You must choose the size of
your type 3 storage units so that they are large enough to hold the largest variable
(which can be an array or structure) that your application uses.

Note: The system programmer allocates the number and size of type 3 storage
units using the NBRSU= and SUSIZE= parameters of the SCTGEN system generation
macro, as described in ALCS Installation and Customization.

 Chapter 7. Storage management 113

 Storage layout

7.5 High-level language storage
ALCS provides services that allow C language application programs to obtain, use,
and release standard size storage blocks (L0, L1, and so on). C language
application programs can also access fields in the ECB. But ALCS does not
provide these services for other high-level languages.

The usual way for high-level language (including C) programs to obtain and use
storage is by using dynamic variables. C language programs also obtain storage
using the malloc, calloc, and related functions.

At execution time, high-level language programs obtain and manage storage to
contain dynamic variables and to satisfy C language malloc, calloc, and related
function calls. They also obtain and manage storage for register save areas, for
library routines to use as work areas, and so on.

Application programmers do not need to understand in detail how their programs
obtain and manage this storage at execution time. The compiler generates code
that obtains the storage, as required, by requesting ALCS services. The services
allocate entry storage so that different transactions use different storage even when
the same program is executing. Note that these services are intended for use only
by compiler-generated code – application programmers should not attempt to
invoke the services directly.

7.5.1 Initial storage allocation
When an ALCS ENTER-type service transfers control to a high-level language
program, the high-level language application program obtains a storage area called
the initial storage allocation (ISA).

The size of the ISA depends on the version and release of the compiler and library
environment, but is on the order of 100KB.

The ISA storage is released when the high-level language program returns to the
calling program, or if it exits without returning control.

Note that the compiler automatically generates code to obtain and release the ISA.
The high-level language source code does not include any instructions to do these
things.

7.5.2 Stack and heap storage
High-level language programs use stack and heap storage to contain dynamic
variables. C language programs can also obtain heap storage using the malloc,
calloc, and related functions.

During execution, the programs obtain and release stack and heap storage when
required. The compiler generates code that manages this storage. This code does
not request storage separately for each variable. Instead, it requests storage in
amounts that are a multiple of 64KB for stack storage and 256KB for heap storage.
(In other environments the amounts can be multiples of a different constant.)
Typically a program can store many variables within 256KB, but it is possible that a
single variable (for example a large array) can require more than 256KB. For a
description of how stack and heap are used, see z/OS Language Environment
Programming Guide.

114 ALCS 2.4.1 Concepts and Facilities

 Storage units

When the program requires stack or heap storage, it requests the required amount
(in multiples of 64KB and 256KB respectively) from ALCS. ALCS allocates stack
storage in type 2 storage units (also called HLL storage units). ALCS allocates
heap storage in type 3 storage units.

Whenever an ALCS ENTER-type service transfers control to an HLL program, the
entry needs at least one type 2 storage unit (to hold the ISA) additional to any
storage units it is already using. The type 2 storage unit size must be at least large
enough to hold the ISA – any remaining space in the first type 2 storage unit is
available for use as stack storage.

If the program requires more stack storage than fits in the first type 2 storage unit,
ALCS can allocate additional type 2 storage units. If the program requires more
heap storage than fits in the first type 3 storage unit, ALCS can allocate additional
type 3 storage units.

You need to be aware that the largest contiguous amount of stack storage that an
application can use is a whole type 2 storage unit. You must choose the size for
type 2 storage units so that they are large enough to hold the largest stack frame
that any HLL program requires (the stack frame includes storage for all
function-scoped variables defined in the function, plus the save area and other work
areas used by the compiled code). Similarly, the largest contiguous amount of
heap storage that an application can use is a whole type 3 storage unit. You must
choose the size for type 3 storage units so that they are large enough to hold the
largest area requested by malloc or a similar C language function.

Note: The system programmer allocates the number and size of type 2 and 3
storage units using the NBRSU= and SUSIZE= parameters of the SCTGEN macro, as
described in ALCS Installation and Customization

 7.6 Storage units
The ALCS online monitor satisfies all requests for entry storage from areas of
storage called storage units. Each entry needs at least one storage unit. This is
called the prime storage unit. Both the ECB and the ECB prefix are in the prime
storage unit. The ALCS online monitor uses the ECB prefix to hold information
about the entry (for example, the entry macro trace details). Application programs
must not alter any part of the ECB prefix. The ALCS online monitor keeps critical
details of the entry in the ECB descriptor for the prime storage unit. Application
programs cannot modify these details because the ECB descriptors are in protected
storage.

The remainder of the prime storage unit is available to satisfy storage block
requests. If the ALCS online monitor cannot service a storage block request from
the prime storage unit, it allocates an overflow storage unit to the entry. The
ALCS online monitor then allocates storage requests from the overflow storage unit.
The entry can overflow into further overflow storage units until its total storage
allocation exceeds its entry storage limit. Overflow storage units do not contain an
ECB prefix or an ECB.

ALCS uses a separate storage unit to contain DECB information. The first time the
ALCS online monitor receives a request to create a DECB for the entry, it allocates
a new overflow storage unit for the entry and reserves the first section for use as
part of a DECB frame. The remainder of this overflow storage unit is available to

 Chapter 7. Storage management 115

 Storage units

satisfy storage block requests. The ALCS online monitor keeps critical DECB data
in another part of the DECB frame, referred to as the DECB descriptor, which is in
protected storage. A DECB frame contains multiple DECBs. If the ALCS monitor
cannot service a create DECB request from this DECB frame it will allocate a new
overflow storage unit to contain a new DECB frame.

ALCS uses different types of storage unit for allocating heap storage (for assembler
and high-level language application programs) and stack storage (for high-level
language application programs). Figure 85 shows entry storage using a prime and
overflow storage units, an HLL storage unit, and a heap storage unit.

Prime storage unit Overflow storage unit Overflow storage unit HLL storage Unit Heap storage unit
┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐
│ Storage control │ │ │ │ │ │ │ │ │
│ area │ │ │ │ │ │ │ │ │
├───────────────────┤ │ │ │ DECB frame │ │ │ │ │
│ ECB Prefix │ │ │ │ │ │ ISA │ │ │
│ │ │ │ │ │ │ │ │ │
├───────────────────┤ │ ALCS allocates │ │ │ │ │ │ │
│ │ │ │ ├───────────────────┤ │ │ │ │
│ │ │ storage blocks │ │ │ │ │ │ │
│ ECB │ │ │ │ ALCS allocates │ ├───────────────────┤ │ │
│ │ │ from this area │ │ │ │ │ │ │
├───────────────────┤ │ │ │ storage blocks │ │ ALCS allocates │ │ ALCS allocates │
│ Data collection │ │ │ │ │ │ │ │ │
│ area │ │ │ │ from this area │ │ HLL stack │ │ heap storage │
├───────────────────┤ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ storage from │ │ from this area │
│ ALCS allocates │ │ │ │ │ │ │ │ │
│ storage blocks │ │ │ │ │ │ this area │ │ │
│ from this area │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │
└───────────────────┘ └───────────────────┘ └───────────────────┘ │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 │ │ │ │
 └───────────────────┘ └───────────────────┘

Figure 85. Entry storage: Prime and overflow storage units

Use the NBRSU= and SUSIZE= parameters of the SCTGEN macro (in the ALCS
generation) to specify the number of storage units and the storage unit size. The
storage unit size must be larger than the largest storage block size. When
specifying the storage unit size, consider the following:

� Too large a storage unit size is economical on time but extravagant on storage.
That is, although few entries need an overflow storage unit, a lot of storage is
unused.

� Too small a storage unit size is economical on storage but extravagant on time.
That is, although little storage is unused, most entries need an overflow storage
unit.

� The maximum amount of stack increment that ALCS can allocate for an HLL
program is one HLL storage unit. Therefore the HLL storage unit must be large
enough to hold the largest stack frame that any HLL program requires, where
the stack frame includes storage for all function scoped variables defined in the
function plus the save area and other work areas used by the compiled code.

� The type 3 storage unit size must be large enough to contain the largest single
area requested by MALOC or a similar assembler macro, or by malloc or a
similar C language function.

Specify the storage unit size so that the frequently occurring types of entry need
only one storage unit (or two if using DECBs).

116 ALCS 2.4.1 Concepts and Facilities

 Storage units

Note: High-level language application programs need at least one HLL storage
unit as well as the prime storage unit.

Use the ENTSTOR1, ENTSTOR2, and ENTSTOR3 parameters of the SCTGEN
macro to set the initial entry storage limit and the maximum entry storage limit for
different storage unit types. The entry storage limit for each entry is this initial
value, unless the entry requests a SLIMC monitor service to alter it. SLIMC can
decrease the limit, or increase it up to the maximum entry storage limit. The ALCS
online monitor terminates the entry with a dump when the total size of the storage
units required by the entry exceeds the storage limit. Due to fragmentation of
storage within the storage units, the total amount of storage actually in use by the
entry can be less than the entry storage limit when the entry is terminated. Be sure
to consider this fragmentation when setting the initial and maximum entry storage
limits.

When ALCS initialization allocates storage for the storage units, it allocates a page
as a trap between each storage unit. The monitor sets the key of these trap pages
to 7; it sets the storage unit key to 8. This provides some protection from
corruption of storage due to application program errors.

ALCS uses these trap pages to contain control information (for example the ECB
and DECB descriptors).

 Chapter 7. Storage management 117

 Storage units

118 ALCS 2.4.1 Concepts and Facilities

 Chapter 8. Automated operations

NetView offers a variety of system and network management capabilities for the
MVS environment including support for automated operations. The NetView
Program-to-Program Interface (PPI) allows application programs (for example
ALCS) to exchange data with NetView or with another application running in the
same MVS image. NetView acts as a server and manages the queues and
message forwarding services to enable CRAS operation from NetView operator
terminals.

With the appropriate changes defined, ALCS uses the PPI to forward messages to
the ALCS Prime, RO and Alternate CRAS terminals.

Messages sent to these CRAS devices may be selected for automation and
thereby initiate a programmed response. A typical programmed response will be
controlled by a NetView command list (CLIST) program written in REXX*.

ALCS events that require a programmed response are identified by the entry of
specific messages in the NetView message automation table. For example the
programmed response can be:

� Responding to ALCS with an operator command

� Highlighting the message on NetView

� Producing a Network Problem Determination Application (NPDA) alert

Use of automated operations techniques provide several benefits, these include:

� Improvement in system and network availability

� The ability to respond quickly to any system message

� Accurate and consistent message response 24 hours a day

� Reduced levels of human intervention

� Unmanned management of remote systems

© Copyright IBM Corp. 2003, 2010 119

120 ALCS 2.4.1 Concepts and Facilities

 Pool file support

Appendix A. ALCS pool file support

This section describes the pool file support that ALCS Version 2 Release 4.1
provides.

A.1 Recoup and emergency pool recovery
A short-term pool-file record can be reused immediately after the application
program releases it.

ALCS does not automatically reuse long-term pool-file records. These are only
made available for reuse by emergency pool recovery (PDU) or by running Recoup.
Recoup is a database validation routine that runs under the control of the ALCS
online monitor, without interrupting normal message processing. Based on
parameters provided by the database administrator, Recoup checks all chains of
long-term pool file records and identifies the records that can safely be used.

The emergency pool recovery (PDU) function is a process that automatically reuses
released records when a pool is exhausted. See ALCS Installation and
Customization for a description of PDU.

“Pool files” on page 64 gives an overview of pool file usage.

A.2 Long-term pool support – type 1 and type 2
The long-term (LT) pool support supplied in ALCS/MVS/XA and ALCS Version
2 Release 1.1 is called type 1 LT-pool support.

ALCS Version 2 Release 1.3 and later releases provide type 1 LT-pool support
and also an improved support called type 2 LT-pool support, which can be used
instead.

For both type 1 and type 2 LT-pool support ALCS provides integrity for long-term
pool records by the use of:

� Pool directory records
� Record control fields in the long-term pool records
� The ALCS database-validation utility called Recoup

LT-pool directories are built and written to the database by Recoup. They are not
keypointed at other times. Recoup comprises two phases as follows:

� In the first phase, called chain chase, Recoup identifies all the records that are
in use and stores the information in the Recoup general file.

� In the second phase, called directory build, Recoup builds the directories
using the information in the Recoup general file (placed in the file during the
first phase).

The directories contain 1 bit for each long-term pool record to show if that record is
available for dispense or is already in use. However, the pool-file management
routines use the long-term pool directories only as a preliminary indication of the
status of the record.

© Copyright IBM Corp. 2003, 2010 121

 Type 1 long-term pool support

The routines determine the exact status of the record from control information held
in the record itself. ALCS places this control information in an area of the record
that application programs do not normally reference.

Whenever the pool file management routines dispense, write, or release a
long-term pool record they check and update this control information. Pool file
management routines also check the control information when application programs
read the record.

Each time these routines detect an error (for example, a program writing an
undispensed record) they write a pool-record usage error message to the ALCS
diagnostic file. You can print these pool record usage error messages by running
the ALCS diagnostic file processor with POOLERR=YES.

ALCS Operation and Maintenance gives details of the error reports and diagnostic
actions.

ALCS does not make long-term pool records available for reuse immediately when
application programs release them. Instead, the pool file management routines
mark the release in the control information in the DASD record. ALCS will
redispense the record when:

� Recoup is run to confirm that there are no data structures referencing the
record.

� The ALCS emergency pool recovery function is activated for record dispensing.

Long-term pool control information
The control information in the long-term pool records consists of four fields. Each
field contains a 4-character program name and a time (the high-order 4 bytes of the
time-of-day (TOD) clock). The four fields are:

Dispense Set when ALCS dispenses the record to an application. ALCS clears
the other 3 fields.

Write Set when an application writes the record.
Recoup Set when Recoup chain-chase reads the record.
Release Set when an application releases a record.

ALCS checks these fields against information in the control program keypoint
(CTKB). The pool-file management routines update the information in CTKB which
contains, (among other items), the start time of the last completed Recoup run.

A.2.1 Type 1 long-term pool support
With type 1 LT-pool support it is not possible to increase the number of records in
an LT-pool, or to add LT-pools of a different record size, without an ALCS outage
and a time consuming database reorganization.

With type 1 LT-pool support only a portion of the LT-pool directories is held in main
storage at any one time. This means that a number of scans of the Recoup
general file are required during directory build. Directory build can take several
hours on a large system.

122 ALCS 2.4.1 Concepts and Facilities

A.2.2 Type 2 long-term pool support

Adding LT-pool records
With type 2 LT-pool support it is possible to increase the number of pool records in
the LT-pool, and to add LT-pools of a new record size (in NORM state without a
restart of ALCS). You can do this by:

� Adding one or more data sets

� Increasing the size of one or more data sets

ALCS Installation and Customization gives more information about specifying
database requirements.

A.2.3 Migration from type 1 LT to type 2 LT-pool support
Migration from type 1 LT-pool support to type 2 LT-pool support is controlled by
means of the DBHIST macro in the DASD generation. ALCS Installation and
Customization gives more information about DBHIST.

This migration can be done in NORM state without a restart of ALCS.

You can fall back from type 2 LT-pool support to type 1 LT-pool support by
backing out the DASD generation which specified type 2 LT-pool support.

You cannot do this after the load of the DASD generation is committed. ALCS
Operation and Maintenance describes this procedure.

When you load a new DASD generation which calls for a migration (from type 1
LT-pool support to type 2 LT-pool support) the migration takes effect at the
completion of the next Recoup run. Similarly fallback (from type 2 LT-pool support
to type 1 LT-pool support) takes effect at the completion of the next Recoup run.

Note: Once you run Recoup to activate type 2 LT-pool support you cannot safely
fall back to ALCS/MVS/XA or ALCS Version 2 Release 1.1 (even if you fall back to
type 1 LT-pool support first). This is because your database may contain
embedded references to type 2 LT-pool file addresses. ALCS/MVS/XA and ALCS
Version 2 Release 1.1 cannot support these file addresses.

 A.2.4 Performance
In type 2 LT-pool support the pool directories are held in main storage all the time.
The directory build of all LT-pool directories can be performed with one scan of the
Recoup general file. This is considerably faster than the directory build for type 1
LT-pool support.

A.3 Short-term pool support – type 1 and type 2
The short-term pool support supplied in ALCS/MVS/XA and ALCS Version 2
Release 1.1 is called type 1 ST-pool support.

ALCS Version 2 Release 4.1 provides type 1 ST-pool support and also an
improved support called type 2 ST-pool support, which can be used instead.

 Appendix A. ALCS pool file support 123

 Type 2 short-term pool support

A.3.1 Type 1 short-term pool support
Type 1 ST-pool support controls the use of pool by a directory for each pool. The
directory contains 1 bit for each pool record which indicates whether the pool
record is available for dispense. Logically there is 1 bit for every record in the pool.
Physically, however, only 8256 bit switches for each ST-pool are held in main
storage at one time so that only a maximum of 8256 records are properly
controlled.

Because of the small amount of ST-pool information held in the directory it is not
possible for ALCS to detect most ST-pool usage errors. Errors in application
programs, such as writing a record after it has been released, are not detected by
ALCS and can cause corruption of the database. Once a record is released by an
application it can be dispensed again immediately and this increases the probability
of application program errors resulting in database corruption.

With type 1 ST-pool support it is not possible to increase the number of records in
the ST-pool, nor is it possible to add ST-pools of a new record size, without an
ALCS outage and a time-consuming database reorganization.

A.3.2 Type 2 short-term pool support
Type 2 ST-pool support also controls the use of pool by a directory for each pool.
The directory contains 1 byte of information for each record in the pool. The entire
directory is held in main storage all the time ALCS is running (except for a short
time after ALCS restart). The directory is keypointed to the database at appropriate
intervals and reloaded into main storage from the data base if ALCS is restarted.

Contents of directory byte
The contents of the directory byte for a short-term pool record show the status of
the record. The status is usually one of:

 � Never dispensed

The contents of the directory byte is 0. The record is available for dispense.

� Record dispensed and not yet released

A range of values in the directory byte is reserved for records which are
dispensed and not yet released. This range is 50 through 239.

When a record is dispensed, ALCS sets the corresponding directory byte to a
number in this range. Over a period of time ALCS decrements the directory
byte for a record which is dispensed but not released to the low end of the
range (50).

If the directory byte reaches this low value it usually indicates an error in the
application, because either:

– The application has finished using the record and failed to release it.
– The application used a short-term record when it should have used a

long-term record.

ALCS redispenses the record and places a timed out attention message on
the diagnostic file.

ALCS searches the directory to find records which are available for dispense.
The length of time between dispense and redispense of a timed-out record
depends on the time to search a directory. This is a function of both:

124 ALCS 2.4.1 Concepts and Facilities

 Type 2 short-term pool support

 – System activity,

– The number of directory searches between dispense and timed-out status.

The number of searches is called the N1 value. The default is 100, but you
can use the ZPOOL operator command to set any value in the range 1 thru 189.

ALCS Operation and Maintenance describes the ZPOOL command.

Alterations by the ZPOOL command are kept across a restart. You can use the
USRSTD installation-wide monitor exit to alter the N1 value for individual
records.

ALCS Installation and Customization describes the USRSTD installation-wide
monitor exit.

Note: If you set N1 to a low value the record may be treated as timed out
when the application still needs it.

� Record released and not yet redispensed

A range of values in the directory byte is reserved for records which have been
released and not yet redispensed. This range is 1 through 25.

When a record is released ALCS sets the corresponding directory byte to a
number in this range. Over a period of time ALCS decrements the directory
byte for a record which has been released but not redispensed to the low end
of the range. This is 1.

When the directory byte reaches this low value ALCS assumes the record is
available for redispense.

The length of time between the release and the redispense of a record
depends on the time to search a directory. This is a function of both:

 – System activity
– The number of directory searches between release and redispense

The number of searches is called the N2 value. The default is 1, but you can
use the ZPOOL operator command to set any value in the range 1 through 25.

ALCS Operation and Maintenance describes the ZPOOL command.

Alterations by the ZPOOL command are kept across a restart. You can use the
USRSTR installation-wide monitor exit to alter the N2 value for individual
records.

ALCS Installation and Customization describes the USRSTR installtion-wide
monitor exit.

Note: If the N2 value is set to a high value there may be performance
implications because ALCS needs to do extra directory searches.

With type 2 ST-pool support the length of time between release and
redispense is typically much greater than for type 1 ST-pool support. This
reduces the probability that application programming errors result in database
corruption.

 Appendix A. ALCS pool file support 125

Reserved values of the directory byte
Other values of the directory byte are used by ALCS to control special situations
such as restart after an unplanned outage.

ST-pool usage errors
ALCS uses the information (in the directory byte) on the status of each ST-pool to
detect application errors in ST-pool usage. When ALCS detects such an error, it
places an Attention message in the diagnostic file.

You should use the information in the error messages to locate and correct
application programming errors and so prevent database corruption. Error
messages are produced in the following situations:

� Write of a record that is:
 – Already released
 – Never dispensed
 – Timed out

� Read of a record that is:
 – Already released
 – Never dispensed
 – Timed out

� Release a record that is:
 – Already released
 – Never dispensed
 – Timed out

� Dispense of a timed-out record

ALCS Operation and Maintenance describes pool usage errors.

A.3.3 Migration from type 1 ST to type 2 ST-pool support
You control migration from type 1 ST-pool support to type 2 ST-pool support (or
back from type 2 to type 1 if required) with the DBHIST macro in the DASD
generation.

ALCS Installation and Customization describes the DBHIST macro.

You can do these migrations in NORM state without a restart of ALCS.

A.3.4 Tagging of ST-pool records
Before a record can be dispensed by type 2 ST-pool support it must be identified
as an ST-pool record by a process known as tagging. The Recoup process
performs the tagging of ST-pool records. This means that type 2 ST-pool support
is not used until at least one Recoup run has completed.

A.3.5 Adding ST-pool records
With type 2 ST-pool support it is possible to increase the number of records in the
ST-pool, and it is possible to add pools of new record sizes, in NORM state without
a restart of ALCS. This is done by a new DASD generation and the ZDASD
command.

ALCS Operation and Maintenance describes the ZDASD command.

126 ALCS 2.4.1 Concepts and Facilities

These new records and new pools are not available for dispense if you fall back to
type 1 ST-pool support.

When ST-pool records are added, or new ST-pools are added, by means of a new
DASD generation, the records are not available for dispense until they are tagged
by a Recoup run.

For new ST-pool records to be tagged by Recoup, the DASD generation must
be loaded and confirmed.

For new ST-pool records to be dispensed by type 2 ST-pool support, the
DASD generation must be loaded and committed.

 Ignored requests
When ST-pool records are added, or new ST-pools are added, by means of a new
DASD generation, the records are obtained from the LT-pool of the same size. If
there are insufficient LT-pool records of that size then ALCS ignores the request to
add the ST-pool records.

When ST-pool records are added, ALCS needs a number of L3 records for internal
purposes, (whatever the size of the added pool records). Shortage of L3LT-pool is
another reason why ALCS may ignore a request to add ST-pool records.

A.3.6 Deleting ST-pool records
When ST-pool records are deleted, or ST-pools are deleted, by means of a new
DASD generation, the deleted records cease to be dispensed as soon as the
DASD generation has been loaded.

The application to which these records were dispensed can use these records until
they are purged by a subsequent DASD generation.

When ST-pool records are purged, or ST-pools are purged, by means of a new
DASD generation, the purged ST records are added to the LT pool of the same
size.

 A.3.7 Coexistence
Type 1 ST-pool support can coexist with either type 1 LT-pool support or type 2
LT-pool support.

Type 2 ST-pool support can coexist with either type 1 LT-pool support or type 2
LT-pool support.

This means that a user can move to type 2 ST-pool support without moving to
type 2 LT-pool support, and a user can move to type 2 LT-pool support without
moving to type 2 ST-pool support.

 A.4 Dispense rings
For each LT-pool and each ST-pool file, ALCS keeps a short list of file addresses
which are pre-checked as available for dispense to the application. This list is
called the dispense ring.

When an application requests a pool record, ALCS takes an address from the
appropriate dispense ring and passes it to the application.

 Appendix A. ALCS pool file support 127

The use of the dispense ring allows a faster response to the application because:

� ALCS does all the pre-dispense checking before the file address is placed on
the dispense ring.

� ALCS takes addresses from the dispense ring in such a way that different
dispatcher tasks do not interfere with each other.

ALCS varies dynamically the number of addresses held on a dispense ring to suit
the load on the system. If the system is busy it may be as high as several
hundred.

 A.5 Release rings
For each LT-pool and each ST-pool file, ALCS keeps a short list of file addresses
which the application has released but are not yet processed by the post-release
checking. This list is known as the release ring.

When an application releases a pool record, ALCS places the file address on the
appropriate release ring and returns control to the application. Later ALCS
removes the address from the release ring and performs the post-release
processing.

The use of the release ring allows faster response to the application because:

� ALCS does all the post-release checking without holding up the application.

� ALCS places addresses on the release ring in such a way that different
dispatcher tasks do not interfere with each other.

128 ALCS 2.4.1 Concepts and Facilities

 Recoup: Specifying data structures

Appendix B. Long-term pool space recovery – Recoup

This section describes the ALCS Recoup utility.

The prime function of Recoup is to recover long-term pool space for redispensing.
Recoup is not used with short-term pool-file records (these are returned to the
system automatically). Recoup identifies long-term pool-file records that are no
longer in use. To do this, it first identifies all the long-term records that are in use.
It then indicates the remaining long-term records as being available.

 Released records
When an application program releases a long-term pool-file record, ALCS marks
the release in the control information in the pool record itself. The pool file
directory record is not updated and the released long-term pool record is not
immediately available for redispensing.

Records in use
An application may (by mistake) release a long-term pool record that is used by
other applications. Recoup guards against this by verifying that a released record
is not in use by other records before it makes it available.

You should run Recoup regularly to make the long-term pool records available for
redispensing.

B.1 Specifying data structures to Recoup
To allow Recoup to identify the long-term pool-file records that are in use, you
supply a description of the application database. ALCS provides the INDEX macro
to describe how one record points to another, and the GROUP macro to describe sets
of records with the same features.

This section explains the terminology used in ALCS application databases, and also
the data structures that the descriptor macros (INDEX and GROUP) support. ALCS
Installation and Customization describes how to use these macros.

Refer to the following sections for a more general explanation of ALCS data
structures:

� 4.1, “The ALCS real-time database” on page 62, gives a overview of the data
structures in an application database.

� 4.1.6, “Overflow and chaining” on page 66, describes how records can be
linked together.

© Copyright IBM Corp. 2003, 2010 129

 Recoup: Specifying data structures

B.1.1 Chaining pool-file records
When an application uses a pool record to store information, it must record
information to identity the pool record that it has used. The simplest way to do this
is to store the file address of the pool record in another record. If the address of
record B is stored in record A, then record B is chained from record A.

A pool record can be chained from a fixed-file record or from another pool-file
record, but every chain must start from a fixed file record. Figure 86 shows this
data structure.

 Record A Record B
Fixed Pool Pool Pool

┌──────────┐ ┌�┌──────────┐ ┌�┌──────────┐ ┌�┌──────────┐ ┌�┌ ─ ─ ─
│ ────┘ │ ────┘ │ ────┘ │ ────┘
└───┬──────┘ └──────────┘ └──────────┘ └──────────┘ └ ─ ─ ─
 │

 Pool Pool Pool
┌──────────┐ ┌�┌──────────┐ ┌�┌──────────┐ ┌�┌ ─ ─ ─
│ ────┘ │ ────┘ │ ────┘
└──────────┘ └───┬──────┘ └──────────┘ └ ─ ─ ─
 │

 Pool

┌──────────┐ ┌�┌ ─ ─ ─
 │ ────┘

└───┬──────┘ └ ─ ─ ─
 │

 Pool

┌──────────┐ ┌�┌ ─ ─ ─
 │ ────┘

└──────────┘ └ ─ ─ ─

Fixed = Fixed file record Pool = Pool file record

Figure 86. Example of chained records

 B.1.2 Standard chain
Two records are connected by a standard chain when one record contains the file
address of the second record. The reference is contained in a chain field. The
second record can have chains to subsequent pool-file records, and so on.
Figure 87 shows a standard chain.

┌──────────┐ ┌�┌──────────┐ ┌�┌──────────┐ ┌�┌ ─ ─ ─
│ Chn────┘ │ Chn────┘ │ Chn────┘
└──────────┘ └──────────┘ └──────────┘ └ ─ ─ ─
Chn = chain field

Figure 87. Standard chain

The chain field is normally at the same displacement in every record of the chain.
The first record in a chain is called the first-in-chain; the last record is called the
last-in-chain.

There are two types of chain: forward chain and an optional backward chain.
The forward chain address is in the forward chain field. The backward chain
address (if there is one) is in the backward chain field.

The forward chain field of the first record contains the address of the second
record, the forward chain field of the second record contains the address of the
third record, and so on. The forward chain field of the last-in-chain contains zeros.

130 ALCS 2.4.1 Concepts and Facilities

 Recoup: Specifying data structures

The backward chain field of each record contains the address of the previous
record in the chain. The backward chain field of the first-in-chain points to the
last-in-chain. Figure 88 shows forward and backward chains.

 First-in-chain Last-in-chain
┌ ─ ─ ─ ─ ─ ─ ┐┌─ ─ ─ ─ ─ ─ ─┐┌ ─ ─ ─ ─ ─ ─ ┐┌ ─ ─ ─ ─ ─ ─ ┐

┌──────────┐ ┌�┌│─────────┐ ┌�┌│─────────┐ ┌�┌│─────────┐ ┌�┌│─────────┐
┌�──Bwd Fwd────┘ │└Bwd Fwd────┘ │└Bwd Fwd────┘ │└Bwd Fwd────┘ │└Bwd Fwd=�│
 │ │ │ │ │ │ │ │ ┌�│ │
│ └──────────┘ └──────────┘ └──────────┘ └──────────┘ └──────────┘
└ ─ ┘

Fwd = Forward chain field Bwd = Backward chain field

Figure 88. Forward and backward chains

Recoup makes use of these backward chains, if they exist.

 B.1.3 Index references
In additon to standard chain fields, records can contain index references. Each
index reference points to the first record of another group. (Groups are explained
in detail in B.2, “Group macro” on page 132.) A reference can be a file address, or
some other information. For example, if the reference is to a fixed-file record, it
could be an ordinal number. Recoup and the application program can both use this
index reference to locate the referenced record.

The record that contains the reference is called the refer-from record. The record
to which the reference points is called the refer-to record. The refer-to record and
refer-from record belong to two different groups, the refer-from group and the
refer-to group.

Figure 89 shows three groups of records which summarize the terminology used so
far. All the groups contain standard (forward) chains. All the records in Group 1
also contain index references to two other groups.

 GROUP 1 ──┐
┌───────────────┐ ┌─�┌───────────────┐ ┌─�┌───────────────┐ │

 │ Fwd─────┘ │ Fwd─────┘ │ Fwd=�│ │
│ │ │ │ │ │ │ Prime group
│ INDEX1 INDEX2 │ │ INDEX1 INDEX2 │ │ INDEX1 INDEX2 │ │ (Refer-from group)
│ ┌────┐ ┌────┐ │ │ ┌────┐ ┌────┐ │ │ ┌────┐ ┌────┐ │ │
│ └──┬─┘ └──┬─┘ │ │ └──┬─┘ └──┬─┘ │ │ └──┬─┘ └──┬─┘ │ │ (refers to GROUP 2
└────│──────│───┘ └────│──────│───┘ └────│──────│───┘ │ and GROUP 3)

 │ │ │ │ ──┘
│ │ │ └──� Other records defined in GROUP 3

 │ │ │
│ │ └──� Other records defined in GROUP 2

 │ │
│ │ GROUP 3 ──┐
│ └──�┌──────────┐ ┌�┌──────────┐ ┌�┌──────────┐ ┌�┌ ─ ─ ─ │

 │ │ Fwd────┘ │ Fwd────┘ │ Fwd────┘ │
│ └──────────┘ └──────────┘ └──────────┘ └ ─ ─ ─ │
│ │ Non-prime groups

 │ GROUP 2 │
└──�┌──────────┐ ┌�┌──────────┐ ┌�┌──────────┐ ┌�┌ ─ ─ ─ │ (Refer-to groups)

 │ Fwd────┘ │ Fwd────┘ │ Fwd────┘ │
└──────────┘ └──────────┘ └──────────┘ └ ─ ─ ─ ──┘

Fwd = Forward chain field
INDEXn = Index reference to another group

Figure 89. Group of records with index references

 Appendix B. Long-term pool space recovery – Recoup 131

The INDEX macro describes the location and characteristics of references to other
groups. Group 1 requires one INDEX macro to locate the reference to group 2, and
a second INDEX macro to locate the reference to group 3.

 B.2 Group macro
Every record that Recoup examines must belong to a group of records. A group
consists of a number of records that have features in common which you describe
to Recoup by using a GROUP macroinstruction.

There are two types of group: prime group and nonprime group:

 B.2.1 Prime group
A prime group normally consists of one or more fixed-file records, all with the same
record ID and internal record structure.

Fixed file records in a prime group can be either:

� Records with the same fixed-file record type, and with ordinal numbers in a
given range, or

� Records with the record type #GLOBL, all with the same record ID

An additional form of prime group is a logical global record in the application global
area.

ALCS also lets you group records into prime groups using conditions that you
choose yourself. If you do this, you must provide installation-wide exits to find the
records that belong to the group.

ALCS Installation and Customization describes installation-wide exits.

 B.2.2 Non-prime group
A nonprime group of records has the following characteristics:

� It consists of one or more pool (and/or fixed) file records, linked together by a
standard chain. The first record in the group must be pointed to by an index
reference from a record in another group.

If the chain contains more than one record:

– All records in the group have the forward chain field at the same
displacement from the start of the record

– All records in the group have the same record ID.

– The end of the chain must be identified by 4 bytes of hexadecimal zeros or
4 bytes of X'FF' in the forward chain field. (Optionally, you can use an
installation-wide exits to implement a different way of identifying the end of
chain.

132 ALCS 2.4.1 Concepts and Facilities

 B.2.3 Chain-chasing
Recoup uses a technique called chain-chase to work through every defined group
of records to find long-term pool file records that are in use.

Recoup starts each chain-chase from a prime group. To read a nonprime group, it
first reads a record (the refer-from record) that contains the reference to the first
record (the refer-to record) in the nonprime group.

If the refer-from record is itself in a nonprime group, there must be another record
that refers to it. So all these references originate directly or indirectly from a prime
group.

 B.3 Index macro
You use the INDEX macro to define where an index reference appears in a record.

The simplest use of the INDEX macro is when a reference appears only once in a
record. In this case, you specify in the INDEX macro the location of the index
reference from the start of the record (its displacement).

A record can contain more than one index reference to other records. Usually,
these index references will be contained in items or subitems within the record.
The INDEX macro supports record structures that include items and subitems. Items
and subitems can be fixed-length or variable length.

 B.3.1 Items
Some physical records contain one or more logical collections of data, each of
these logical collections is called an item. Figure 90 shows items in a record.

┌───────────────────────── Physical record ───────────────────────────┐
┌── items in a record ──┐

┌────────┬───────┬───────┬───────┬───────┬────────────────────────────┐
│ Record │ │ item1 │ item2 │ item3 │ │
│ Header │ │ │ │ │ │
└────────┴───────┴───────┴───────┴───────┴────────────────────────────┘
 │ │
 ┌──────────────┘ └─────────────────┐

 Logical collection of data in an item

 ┌────────┬────────┬────────────┬──────────┐
│ Field1 │ Field2 │ Field3 │ Field4 │

 └────────┴────────┴────────────┴──────────┘

Figure 90. Items in a record, fields in items

In the simplest case, each item in the record has the same format. For example, a
record that contains a list of passengers for a flight might contain an item for each
passenger. Each item could contain the following fields:

 � Passenger name
� File address of a chain of passenger name records (PNRs)

 � Boardpoint
 � Other fields

 Appendix B. Long-term pool space recovery – Recoup 133

┌────────┬───────┬───────┬───────┬───────┬────────────────────────────┐
│ Record │ │ item1 │ item2 │ item3 │ │
│ Header │ │ │ │ │ │
└────────┴───────┴───────┴───────┴───────┴────────────────────────────┘
 │ │
 ┌──────────────┘ └───────────────────────────────┐

 ┌──────┬──────┬────────────┬────────────────────────────┐
 │ Name │ FAD │ Boardpoint │ Other fields │
 └──────┴──┬───┴────────────┴────────────────────────────┘
 │ PNR

└───�┌──────────┐ ┌�┌──────────┐ ┌�┌──────────┐
 │ Chn────┘ │ Chn────┘ │ │

└──────────┘ └──────────┘ └──────────┘

Figure 91. Example fields in an item

The second field in Figure 91 contains a file address field (FAD) which is an index
reference to another record.

B.3.2 Variable numbers of items
The INDEX macro supports three different methods for handling items in records.
They are as follows:

 Item count
You specify either:

Constant The number of items in the record. Use this method if the number of
items in the record is fixed.

┌────────┬─────────┬───────┬───────┬───────┬──────────────────────────┐
│ Record │ │ item1 │ item2 │ item3 │ │
│ Header │ │ │ │ │ │
└────────┴─────────┴───────┴───────┴───────┴──────────────────────────┘

Figure 92. INDEX macro: Example using a constant for the item count

Field A field in the record which contains a count of the number of items. Use
this method if the number of items in the record is variable.

┌────────┬──┬───┬───┬───────┬───────┬───────┬──────────────────────────┐
│ Record │ │ │ │ item1 │ item2 │ item3 │ │
│ Header │ │� 3│ │ │ │ │ │
└────────┴──┴─┴─┴───┴───────┴───────┴───────┴──────────────────────────┘

Figure 93. INDEX macro: Example using a field for the item count

Next available byte
You specify that the record contains a next available byte (NAB) field. The NAB
field contains the displacement from the start of the record to the next available
byte (for the next item). Figure 94 shows how NAB works when items are in the
normal order. Figure 95 on page 135 shows how NAB works when items are in
reversed order.

 �──────────── xx offset to next item ──────────�
(next available byte)

┌────────┬──┬───┬───────┬───────┬───────┬───────┬─────────────────────┐
│ Record │ │ │ │ item1 │ item2 │ item3 │ │
│ Header │ │x x│ │ │ │ │ │
└────────┴──┴─┴─┴───────┴───────┴───────┴───────┴─────────────────────┘

Figure 94. INDEX macro: Use of NAB (normal order)

134 ALCS 2.4.1 Concepts and Facilities

 �──── xx offset to next item ─────�
(next available byte)

┌────────┬──┬───┬───────────────────┬───────┬───────┬───────┬───────┬─┐
│ Record │ │ │ │ item4 │ item3 │ item2 │ item1 │ │
│ Header │ │x x│ │ │ │ │ │ │
└────────┴──┴─┴─┴───────────────────┴───────┴───────┴───────┴───────┴─┘

Figure 95. INDEX macro: Use of NAB (reversed order)

Add item index (AIX) and delete item index (DIX)
Specify the delete item index (DIX) field in a record to locate the item before the
first item in use, and specify the add item index (AIX) to locate the item after the
last item in use.

Recoup supports AIX and DIX only for fixed length items. Figure 96 shows the use
of AIX and DIX fields.

DIX is the item number of the item
before the first item in use

 ┌──────────────────┐
 │ ┌──┴──┐
┌────────┬──────────│───┬─────┬─────┬─────┬─────┬─────┬─────┬───┐
│ │ ┌─┬─┐ ┌─┬─┐ │item1│item2│item3│item4│item5│item6│ │
│ │ │ 6│ │ 3│ │.....│.....│.....│xxxxx│xxxxx│.....│ │
└────────┴──┴─│─┴─┴─┴─┴─┴─────┴─────┴─────┴─────┴─────┴─────┴───┘
 AIX│ DIX └──┬──┘
 └──┘

AIX is the item number of the item
 xxxxx = in use after the last item in use
 = not in use

Figure 96. INDEX macro: Use of AIX and DIX

 B.3.3 Item keys
A record can contain a number of items of different types. In this case, the index
reference field is likely to be in different displacements in the record. You need to
give Recoup some method of identifying the record type, so that it can find the
displacement of the file address.

One way of distinguishing between item types is to have an item key at a fixed
position in each item to identify its type. This position is usually byte 1 of a
fixed-length item and byte 3 of a variable-length item.

You must code a separate INDEX macro for each different item key. Each of these
macros specifies the same list of items but can, for example, specify a different
refer-to GROUP macro. For each of these INDEX macros, Recoup only processes the
items with matching item keys.

Notes:

1. If some of the items do not contain references to other groups, you need not
code INDEX macros for the corresponding item key or keys.

2. If a record contains different types of items that are not differentiated by
standard item keys, then code multiple INDEX macros as described above, but
use different user-supplied routines to select the items to process with each
INDEX.

 Appendix B. Long-term pool space recovery – Recoup 135

 B.3.4 Subitems
Items can be broken down into smaller units of data called subitems. You can
hold an index reference in each subitem and define each reference in an INDEX
macro.

Subitems can be fixed-length or variable-length.

136 ALCS 2.4.1 Concepts and Facilities

 Communication management (SLC network)

Appendix C. Communication management for the SLC
network

This section discusses SLC concepts and procedures.

 C.1 SLC concepts
This section provides a brief overview of SLC concepts. For a full discussion of the
SLC protocol, see the ATA/IATA Interline Communcations Manual.

ALCS SLC support allows connection between ALCS systems and other systems
that support the ATA/IATA SLC processor-to-processor protocol. In particular, it
allows connection with processors that are high-level network (HLN) switching
centers, and consequently communication between ALCS application programs and
communication terminals connected to the HLN.

SLC processor-to-processor communication takes place across an SLC link. Each
link consists of from one to seven SLC channels. The relative number of the
channel within the link, from 1 to 7, is called the link channel number (KCN).
Each SLC channel consists of two communication lines, known as the send side
and the receive side, which together form a full-duplex connection. Each
full-duplex connection is accessed through a pair of EP/VS subchannel addresses
(send and receive). The send side of an SLC channel is for outgoing data from the
ALCS system. The receive side is for incoming data to the ALCS system. ALCS
supports up to a maximum of 255 SLC links.

Up to seven SLC channels
for each SLC link

 ┌───────────┐ ───┐ ──┐
│ ├── send side ───── KCN 1 ───────────────� │ │
│ │�── receive side ─ KCN 1 ──────────────── │ │
│ │ up to KCN 7 │ │

 │ │ │ │
│ ├ ─ ─ ─ ─ ─ ─ ─ ─ ─ KCN n ─ ─ ─ ─ ─ ─ ─ ─� │ │
│ │�─ ─ ─ ─ ─ ─ ─ ─ ─ KCN n ─ ─ ─ ─ ─ ─ ─ ── │ │
│ │ ───┘ │ Up to 255 SLC links

 │ ALCS │ │
│ │ ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐ │
│ │�─ ─ ─ ─ ─� SLC link up to 7 channels �─ ─ ─ ─ ─� │
│ │ └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘ │
│ │ ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐ │
│ │�─ ─ ─ ─ ─� SLC link up to 7 channels �─ ─ ─ ─ ─� │
│ │ └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘ ──┘

 └───────────┘

Figure 97. Overview of SLC terminology

Two types of blocks are transmitted across SLC links:

� Link data blocks (LDBs), which transmit data across the link.

� Link control blocks (LCBs), which maintain the integrity of the SLC link; for
example, they acknowledge the receipt of LDBs.

© Copyright IBM Corp. 2003, 2010 137

 Communication management (SLC network)

 C.1.1 LDBs
There are two types of LDB:

� Information blocks, which transmit message data across the link.

� Network control blocks (NCBs), which transmit control data and status
information across the link.

In additon to data, LDBs contain control information, such as:

Traffic type
The message data contained in the LDB is:

Type A, low-integrity high-priority
Type B, high-integrity low-priority

Message label
One LDB can contain only a limited amount of data. Long messages
occupy several LDBs; message label information in each LDB allows the
receiver to reconstruct the message from several LDBs.

When the SLC link communicates with terminals through an HLN, the LDBs contain
routing information as well as the message data and control information. This
routing information includes:

High-level entry address (HEN)
The 2-byte address that identifies the HLN switching center where the
transmitting processor or communication terminal connects.

High-level exit address (HEX)
The 2-byte address that identifies the HLN switching center where the
receiving processor or communication terminal connects.

Terminal address
Typically this consists of:

� A 1-byte terminal circuit identity (TCID)
� A 1-byte terminal interchange address (IA)1

� A 1-byte terminal address (TA)

In the case of the SITA HLN, only Type A traffic LDBs contain TCID/IA/TA routing
information. Type B traffic LDBs contain instead ATA/IATA 7-character message
switching destination and origin codes.

C.1.2 SLC terminal addressing
Applications use the terminal's CRI to address a terminal that is connected through
an HLN. You provide the information required to convert terminal CRIs to and from
SLC addresses (SLC link CRI, terminal HEX, TCID, IA, and TA) in the ALCS
communication generation. The SLC address is called the SLC ID. An
LDTYPE=SLCALC (in the COMDEF macro) indicates the definition of an SLC ALC
terminal.

1 This is the address of a terminal control unit.

138 ALCS 2.4.1 Concepts and Facilities

 Communication management (SLC network)

C.1.3 SLC link characteristics
The owners of processors that connect by an SLC link must define the way the link
is to be used. Specify this definition, including the link interval timers (i values) and
link counters (c values), in the ALCS communication generation. An
LDTYPE=SLCLINK (in the COMDEF macro) indicates the definition of an SLC link.

ALCS generation uses this information to build the communication configuration
table.

ALCS supports the following types of SLC links:

� Type 1 SLC protocol
� Type 2 SLC protocol
� Type 3 SLC protocol

C.1.4 Type 1 SLC protocol
The link operates according to the P.1024 specification in the SITA publication
Synchronous Link Control Procedure.

For input messages, the translation code is in the MCI byte in the envelope of the
link data block. For output Type A messages, the translation code is specified
using the CODE= parameter for the COMDEF macro that defines the terminal. For
output messages transmitted by the monitor-request macro SENDC K (send direct to
link), the translation code is in the message status byte. There are no ACI bytes in
the envelope.

The link operates as follows:

� It transmits and receives all the blocks of a multiblock message down the same
SLC channel, except under error conditions.

� It transmits and receives clear message label (CML) LCBs as appropriate.

� To stop all the SLC channels, it sends a stop (STP) LCB on each SLC channel.

� If an I/O error occurs during the transmission of a multiblock message, and if
another SLC channel is available on the same link, it retransmits only the
blocks that have not yet been successfully transmitted.

It sets and tests the loop test bit in LCBs (except when performing an SLC loop
test).

� It acknowledges every link data block.

Note: The response for an enquiry (ENQ) LCB or idle (ILB) LCB is either a
resume (RSM) LCB or a stop (STP) LCB.

C.1.5 Type 2 SLC protocol
The link operates according to the Character Oriented Synchronous Link Control
specification in ATA/IATA Interline Communications Manual.

For input messages, the translation code is in the ACI byte in the envelope of the
link data block. For output messages, the translation code is in the message status
byte. There is one ACI byte in the envelope.

The link transmits and receives all the blocks of a multiblock message down the
same SLC channel, except under error conditions.

 Appendix C. Communication management for the SLC network 139

 Communication management (SLC network)

C.1.6 Type 3 SLC protocol
The link operates according to the P.1124 specification in the SITA publication
Synchronous Link Control Procedure. Type 3 also allows the exchange of network
control blocks, as described in the same document.

For input messages, the translation code is in the MCI byte in the envelope of the
link data block. For output Type A messages, the translation code is specified
using the CODE= parameter for the COMDEF macro that defines the terminal. For
output messages transmitted by the monitor-request macro SENDC K (send direct to
link), the translation code is in the message status byte. There are no ACI bytes in
the envelope.

The link operates as follows:

� It transmits and receives all the blocks of a multiblock message down the same
SLC channel, except under error conditions.

� It transmits and receives CMLs as appropriate.

� To stop all the SLC channels, it sends an STP on each SLC channel.

� It sets and tests the loop test bit in LCBs (except when performing an SLC loop
test).

� It acknowledges every link data block.

Note: The response for an ENQ or ILB is either an RSM or an STP. If an I/O
error occurs during the transmission of a multiblock message, and if another SLC
channel is available on the same link, it retransmits only the blocks that have not
been successfully transmitted.

C.2 ALCS SLC procedures
This section summarizes the way in which ALCS controls the operation of SLC
links and channels. ALCS Installation and Customization describes the COMDEF
macro and the TIMER and COUNTER parameters associated with
LDTYPE=SLCLINK. The TIMER parameter defines i values, and the COUNTER
parameter defines c values used in this section.

� An SLC link is open when at least one SLC channel of the link is open.

� An SLC link is started when at least one SLC channel of the link is started.

C.2.1 Starting a channel
When ALCS starts an SLC channel, it starts a timeout of i12 seconds running for
that channel. ALCS does not send any link control blocks (LCBs) or link data
blocks (LDBs) on the channel, and discards any LCBs or LDBs that it receives on
the channel, while the timeout is running. During this period the channel is down.

When the timeout expires, ALCS sends enquiry LCBs on the channel at intervals of
i4 seconds, but does not send any LDBs. It continues to discard any LCBs or
LDBs that it receives on the channel. During this period the channel is out of
service.

140 ALCS 2.4.1 Concepts and Facilities

 Communication management (SLC network)

 C.2.2 Out-of-service period
For a Type 2 SLC link, the channel remains out of service until ALCS receives an
enquiry response LCB on the channel (that is, a resume LCB, a stop LCB, or a
positive acknowledgment LCB).

For a Type 1 or Type 3 SLC link, the channel remains out of service until ALCS
receives an enquiry LCB followed by an enquiry response LCB on the channel.

When these conditions are met, the channel is up; ALCS then sends and receives
LCBs and LDBs on the channel according to the SLC protocol for the link.

� An SLC link is up when at least one channel of the link is up.

� An SLC link is down when no channel of the link is up.

C.2.3 When an SLC link changes state
When an SLC link comes up, ALCS:

1. Retransmits any outstanding, unacknowledged, Type B messages that are
stored on DASD.

2. Creates an entry to the ALCS printer package for each printer on the link. The
printer package then tries to restart each printer. If the printer restarts
satisfactorily, the entry enters the application communication exit program
ACE1 (if it is loaded) to inform the application that the printer is now available.

3. Creates an entry to application communication exit program ACE2 (if it is
loaded) to inform the application that data transmission can start on this SLC
link.

If an SLC link goes down, ALCS creates an entry to ACE2 to inform the application
that data transmission must stop on this SLC link.

C.2.4 When ALCS changes state
During ALCS state change from idle state to a higher state, ALCS creates an entry
to ACE2 (if it is loaded) for every SLC link to inform the application that the SLC
link exists.

 C.2.5 Positive acknowledgement
If ALCS receives a positive acknowledgment LCB (ACK) for a single block Type B
message, or a clear message label (CML) LCB for a multiblock Type B message,
ALCS creates an entry to ACE2 to inform the application that a subsequent
message can be sent on the SLC link.

C.2.6 Queuing messages on DASD
An application can optionally request ALCS to queue output Type B messages on
DASD (SENDC K with the TYPE=QUEUE parameter). ALCS creates an entry to
ECB-controlled program ACE2 as soon as the message is stored on DASD, instead
of waiting for an ACK or CML. This can improve throughput, because the
application can pass up to eight messages to ALCS without transmission delays.

 Appendix C. Communication management for the SLC network 141

 Communication management (SLC network)

C.2.7 Idle output line condition
If no LDB is received on an SLC channel during an interval of i1 seconds, ALCS
sends an idle line LCB on the channel (that is, a resume LCB, a stop LCB, or a
positive acknowledgment LCB) and repeats this at intervals of i2 seconds.

C.2.8 Negative acknowledgement (sequence errors)
ALCS sends a negative acknowledgment (sequence error) LCB on the channel if
the transmission sequence number (TSN) of an incoming LDB is not the expected
next in sequence. ALCS discards the out of sequence LDB, and all subsequent
incoming LDBs, until an LDB with the expected next in sequence TSN is received
on the channel. The negative acknowledgment LCB is repeated at intervals of i3
seconds.

C.2.9 Negative acknowledgement (parity errors)
ALCS sends a negative acknowledgment (parity error) LCB on the channel when
an incoming LDB has incorrect format, excessive block length, or parity error.
ALCS discards the error LDB, and all subsequent incoming LDBs, until an LDB with
the expected next in sequence TSN is received on the channel. The negative
acknowledgment LCB is repeated at intervals of i3 seconds.

 C.2.10 Error recovery
ALCS uses the SLC channel enquiry procedure to recover from any of the following
conditions:

No block received
No LCB or LDB is received on the channel during an interval of i9
seconds.

No ACK received
No acknowledgment is received on the channel within i5 seconds after
the last LDB was sent on the channel.

Too many unacknowledged LDBs
The number of outstanding, unacknowledged LDBs for the channel
reaches c6 (the transmission sequence number (TSN) exhaustion
value).

ATSN error
An LCB is received on the channel with a zero or illogical acknowledge
transmission sequence number (ATSN). If it is an enquiry LCB, ALCS
sets all open and started channels of the link down, and follows the
procedure for starting SLC channels, as described above.

NAK limit exceeded
ALCS sends c2 repeated negative acknowledgment LCBs without
receiving the correct LDB.

Stop all channels
A stop all channels LCB is received; ALCS starts the enquiry procedure
on each open and started channel of the link.

142 ALCS 2.4.1 Concepts and Facilities

 Testing the SLC network

C.2.11 SLC channel enquiry procedure
ALCS stops sending LDBs on the channel and sends an enquiry LCB. The enquiry
LCB is repeated at intervals of i4 seconds until an enquiry response LCB is
received. Any LDBs received on the channel during this period are discarded. If
no enquiry response LCB is received after c5 repeated enquiry LCBs, ALCS sets
the channel down and follows the procedure for starting an SLC channel, as
described above.

When ALCS terminates an SLC channel, it sends a stop LCB to stop the exchange
of LDBs on the channel. If there are any outstanding, unacknowledged LDBs for
the channel, ALCS also sends an enquiry LCB.

C.3 Testing the SLC network
ALCS includes functions designed to test the SLC network. These functions are
the link test facility (ZLTST command), used for loop tests and functional tests, and
the link trace facility (ZLKTR command), used for tracing activity on SLC links to a
printer, to the ALCS diagnostic file, or to the SLC link trace block.

C.3.1 Performing an SLC loop test
Before a functional acceptance test (see C.3.2, “Performing a SITA functional
acceptance test” on page 144), you should consider performing an SLC loop test to
check the EP/VS, the communication equipment, and the MVS I/O configuration.

Loop the send and receive sides of the full-duplex communication line through a
modem, or through a modem simulator, so that any data transmitted on the send
side of the line is received on the receive side of the same line. ALCS then
functions as the send station and receive station on the SLC link simultaneously.

 ┌─────────┐
 │ ALCS │
 │ ┌──┤ Send ┌─┐
 │ │ ├─────────�│ ├─┐ Modem or simulator
 │ │ │�─────────┤ │�┘
 │ └──┤ Receive └─┘
 └─────────┘

Figure 98. SLC loop test using one channel – with and without modems

Alternatively, you can connect the send and receive sides of one full-duplex
communication line to the receive and send sides of another, so that any data
transmitted on one line is received on the other. Make sure that each line has the
same SLC link channel number (KCN); for example, define them as channel 1 on
link 1 and channel 1 on link 2. ALCS then functions simultaneously as the send
station on one SLC link and the receive station on the other.

 ┌─────────┐
 │ ALCS │
 │ ┌──┤ Send ┌─┐ Modem a
 │ │ ├─────────�│ ├───┐
 │ │ │�─────────┤ ├─┐ │ Channel 1 on SLC link 1
 │ └──┤ Receive └─┘ │ │
 │ │ │ │
 │ ┌──┤ Send ┌─┐ │ │
 │ │ ├─────────�│ ├─┘ │ Channel 1 on SLC link 2
 │ │ │�─────────┤ ├───┘
 │ └──┤ Receive └─┘ Modem b
 └─────────┘

Figure 99. SLC loop test using two channels – and two modems

 Appendix C. Communication management for the SLC network 143

 Testing the SLC network

ALCS Operation and Maintenance provides the information you need to use the
ZLTST command for a loop test. Use this command to set test parameters to suit
your ALCS configuration.

C.3.2 Performing a SITA functional acceptance test
ALCS is certificated by SITA for SLC connection to the SITA HLN, and a loop test
should assure you that all your components of the SLC network are working
satisfactorily.

However, before making the connection to the network, you must obtain SITA's
approval, and they may require a formal functional acceptance test before you use
the links in a production environment.

� If SITA require a test based on the P.1024 Test Guide, you can again use the
ZLTST command for this purpose, though not necessarily with exactly the same
parameters as you used for loop testing.

� If SITA require a UCTF test2, follow the SITA procedures.

IBM does not supply SITA publications; see “Bibliography” on page 193 for more
information on how to obtain them.

C.3.3 SLC link trace facility
Use the SLC link trace facility to obtain a printed record of LCBs and LDBs
transmitted or received, or both, on SLC channels. The ZLKTR command controls
the link trace facility, and is described in ALCS Operation and Maintenance.

2 See the two SITA publications P1X24 automatic testing (with UCTF on DIS) and P1X24 protocol acceptance tool.

144 ALCS 2.4.1 Concepts and Facilities

 ALCS services

 Appendix D. ALCS services

This section describes the services that ALCS provides for application
programmers.

D.1 ALCS services for communication
Application programs use monitor-request macros to request communication
operations. ALCS Application Programming Reference – Assembler describes the
communication monitor-request macros. They are:

AUTHC Check whether an entry has authority to access data, ALCS, or
application facilities. Allow an entry to retrieve installation-defined data
from the external security manager.

COMCC Updates an entry in the communication table. An application does not
have access to the communication tables and this is the only way to
alter an entry in the communication table. Application programs can
alter only selected fields.

COMIC Obtains information about a communication resource. An application
does not have access to the communication tables and this is the only
way to obtain information about a resource. The CRI does not contain
information about the resource.

CRASC Sends a message to the CRAS printer terminal, or to the CRAS printer
terminal associated with a CRAS display terminal.

DISPC Builds a multiline output message and optionally sends it to a terminal or
printer. DISPC can invoke the ALCS scrolling package.

ROUTC Sends a message to a terminal, to another application, to an MQ queue,
| to a WebSphere Application Server for z/OS, or across a communication

link (LU6.1, APPC or TCP/IP). The destination terminal or application
can be owned (hosted) by the same ALCS system as the originating
application, or by another system in the same or in a different processor.

SENDC Sends a message. A macro parameter, the type code, allows a variety
of message types to be transmitted.

SLMTC Sends a special message to a printer. This monitor-request macro
enables the application to control the printer. The application is notified
when the message has been printed successfully. It is the application's
responsibility to handle error conditions that occur on the printer.

WTOPC Builds and optionally sends an output message. The message can
include a header and variable text. WTOPC can suppress blanks (space
characters) so that two or more blanks are replaced with a single blank.

The following monitor-request macros are for WTTY communication only. Other
application programs should not use them.

REQSC Request to send. This monitor-request macro waits for any incoming
data on a half-duplex WTTY line to complete, so that output data can be
transmitted.

SCDCC Checks the status of a WTTY line (before transmitting output data).

© Copyright IBM Corp. 2003, 2010 145

 ALCS services

STXTC Sends a block (segment) of a multi-block WTTY message. Use STXTC to
send all blocks except the last. Use SEOMC to send the last block.

SEOMC Sends the last or only block of a WTTY message.

POLLC Start input on a WTTY line. Signals that transmission of output data on
a half-duplex WTTY line is complete, and that input data can be
accepted.

The equivalent C language functions which are implemented in this release of
ALCS are:

 comic
 routc

These are described in ALCS Application Programming Reference – C Language.

D.2 ALCS services for DASD processing
ALCS application programs use ALCS monitor services to request DASD I/O. For
a more detailed description of the ALCS monitor services that initiate DASD I/O to
or from:

 � Fixed-file records
 � Pool-file records
� General file records

refer to:

� ALCS Application Programming Reference – Assembler
� ALCS Application Programming Reference – C Language

This following list shows the assembler macros; see the ALCS Application
Programming Reference – C Language for descriptions of the equivalent C
language functions.

FILEC Files (writes) a DASD record.
FILNC Files (writes) a DASD record without detaching the storage block.
FILUC Files (writes) a held DASD record and unholds the record.
FINDC Finds (reads) a DASD record.
FINHC Finds (reads) a DASD record and hold for update.
FINWC Finds (reads) a DASD record. The requesting entry loses control until

the read completes.
FIWHC Finds (reads) a DASD record and hold for update. The requesting entry

loses control until the read completes.

The following monitor-request macros allocate and release pool file addresses:

GETFC Gets (dispenses) a pool-file record address, and optionally attaches a
storage block.

RELFC Releases a pool file address, and optionally detaches the storage block.

The following monitor-request macros request functions related to file addresses:

FACEC (application program codes ENTRC FACE)
Calculates a fixed-file address from the fixed-record type number and
record ordinal.

FAC8C Calculates an 8-byte fixed-file address in 4x4 format from the fixed-file
record type name or number and record ordinal.

146 ALCS 2.4.1 Concepts and Facilities

 ALCS services

FA4X4C Converts a 4-byte file address to an 8-byte file address in 4x4 format, or
an 8-byte file address in 4x4 format to a 4-byte file address.

GDSNC Opens or closes general data set.
GDSRC Gets a general data set file address.
HLDTC Check if a file address at a data level is held by a specified ECB.
RAISA Calculates a general file address for the first record of a general file; or

increments the general file address by record ordinal increment.
RIDIC Extracts information about a record ID.

Note: Although ALCS provides the RIDIC macro, there is no equivalent
C language function.

RONIC Extracts information about a fixed, pool or general file address; or
calculates the file address from the record type symbol and record
ordinal.

UNFRC Unhold a held DASD record.

D.3 ALCS services for sequential file processing
Application programs use monitor-request macros to request sequential file
operations.

ALCS Application Programming Reference – Assembler describes the sequential
file monitor-request macros.

There are different monitor-request macros for general sequential files and for
real-time sequential files.

The following monitor-request macros control ownership of a general sequential file:

TASNC Assigns a general sequential file to the entry. The general sequential
file data set must be allocated and open. If the general sequential file is
assigned to another entry, TASNC waits until the other entry unassigns it
(TRSVC); TASNC then assigns it to the entry. If the general sequential file
is unassigned (reserved), then TASNC immediately assigns it to the entry.

TCLSC Closes and deallocates a general sequential file data set and unassigns
the general sequential file from the entry.

TOPNC Allocates and opens a general sequential file data set, then assigns the
general sequential file to the entry.

TRSVC Unassigns (reserves) a general sequential file from the entry, but does
not close or deallocate the general sequential file data set. This allows
another entry to assign the general sequential file using TASNC.

The following monitor-request macros read and write general sequential file
records:

TPRDC Reads a standard size (L1, L2, ...) record from a general sequential file.
TWRTC Writes a standard size (L1, L2, ...) record to a general sequential file.
TDTAC Reads or writes any size record from or to a general sequential file.

The following monitor-request macros write real-time sequential file records:

TOURC Writes a standard size (L1, L2, ...) record to a real-time sequential file.
TOUTC Writes any size record to a real-time sequential file.

Another sequential file monitor-request macro is:

 Appendix D. ALCS services 147

 Entry management: ALCS services

TDSPC Extracts information about real-time, general, and system sequential
files.

D.3.1 ALCS C language functions for sequential file processing
The assembler macros in D.3, “ALCS services for sequential file processing” on
page 147 are all available in ALCS as equivalent C language functions which can
be used for sequential file processing.

ALCS also provides these C language functions, for compatibility with TPF:

tape_open Open a general sequential file.
tape_close Close a general sequential file.
tape_read Read a record.
tape_write Write a record.

All these C language functions are fully described in ALCS Application
Programming Reference – C Language.

D.4 ALCS entry management services
The following entry-related monitor services are available for application
programmers and are described in ALCS Application Programming Reference –
Assembler.

CORHC Define and hold a resource.
CORUC Unhold a resource.
CREDC Create a new entry and put it into the defer list.
CREEC Create a new entry with attached storage block.
CREMC Create a new entry and put it into the ready list.
CRETC Create a new entry for scheduling after a time delay.
CREXC Has identical function to CREDC.
DEFRC Defer processing of this entry to allow other entries to proceed. Entries

request DEFRC monitor service to avoid monopolizing resources.
DEQC Dequeue (unhold) a resource.
DLAYC Has identical function to DEFRC.
ENQC Define and enqueue (hold) a resource.
EVNTC Define an event for EVNWC and POSTC.
EVNWC Wait until an event completes.
LODIC Calculates the number of additional entries you can create without

performance degradation.
POSTC Signal that an event is complete. Some events can require more than

one POSTC to complete them.
SAVEC Save and restore the contents of requested information (for example

registers, ECB work areas) in a local save stack.
SYNCC Synchronize access to application global area.
TASTC Start TAS (see “Time available supervisor” on page 100).

TASBC stops TAS.
WAITC Wait for I/O to complete (see 6.4, “Input/output counter and wait service”

on page 104). Some other monitor services include a request for the
wait service; for example, FINWC requests a DASD record read, followed
by a wait.

148 ALCS 2.4.1 Concepts and Facilities

 Storage management services

 TPF compatibility

Do not use the SAVEC service in programs that must be compatible with TPF.

D.4.1 C language functions for entry management
Application programs written in the C language can use these entry-related
functions provided with ALCS. They are described in ALCS Application
Programming Reference – C Language.

corhc Define and hold a resource.
coruc Unhold a resource.
credc Create a new entry and put it into the defer list.
creec Create a new entry and pass storage block contents to the new entry.
cremc Create a new entry and put it into the ready list.
cretc Create a new entry after a time delay.
crexc Has identical function to credc.
defrc Suspend processing of this entry to allow other entries to proceed.

Entries request defrc monitor service to avoid monopolizing resources.
dlayc Has function identical to defrc.
lodic Calculates the number of additional entries you can create without

performance degradation
waitc Wait for I/O to complete. Some other functions include a request for the

wait service; for example, finwc requests a DASD record read, followed
by a wait (see 6.4, “Input/output counter and wait service” on page 104).

D.5 ALCS storage management services
Application programs use monitor services to request services related to storage
management.

ALCS Application Programming Reference – Assembler describes the storage
related monitor services. They are:

ALASC Get (obtain and attach) a storage block of specified size as the
automatic storage block.

ATTAC Re-attach a storage block after a DETAC.
DECBC Create, locate, validate or release a DECB, or swap the storage level in

a DECB with a storage level in the ECB.
DETAC Detach the storage block at a specified level and save the block

address.
FLIPC Flip (exchange) the contents of two ECB storage levels. FLIPC also

exchanges the contents of ECB data levels and detail error indicators.
GETCC Get (obtain and attach) a storage block of a specified size at a specified

level.
RELCC Release (detach and free) a storage block attached at a specified level.
CRUSA Conditionally release (detach and free) storage blocks attached at

specified levels.
SAVEC Save and restore the contents of requested information (for example

registers, ECB work areas) in a local save stack.
CALOC Reserve and initialize a storage area.
FREEC Release a storage area.
MALOC Reserve a storage area.
RALOC Change size of reserved storage area.

 Appendix D. ALCS services 149

and the following macro that generates inline code:

LEVTA Test if a storage block is attached at a specified level.

 TPF compatibility

Do not use the SAVEC service in programs that must be compatible with TPF

Note: In addition to the above, many ALCS monitor services either obtain and
attach or detach and free a storage block as part of the requested function. For
example, the FINDC (read a DASD record) monitor service automatically obtains and
attaches a storage block.

D.5.1 C language functions for storage management
Application programs written in the C language can use functions provided with
ALCS for storage management. ALCS Application Programming Reference – C
Language describes these functions. They are:

attac Re-attach a storage block after a detac.
detac Detach the storage block at specified level and save the

block address.
flipc Flip (exchange) the contents of two ECB storage levels.

flipc also exchanges the contents of ECB data levels and
detail error indicators.

getcc Get (obtain and attach) a storage block of specified size at
a specified level.

relcc Release (detach and free) a storage block attached at a
specified level.

crusa Conditionally release (detach and free) storage blocks
attached at specified levels.

tpf_decb_create Create a DECB.
tpf_decb_locate Locate a DECB.
tpf_decb_release Release a DECB.
tpf_decb_swapblk Swap the contents of an ECB storage level and a DECB

storage level.
tpf_decb_validate Validate a DECB.

There are also functions for generating inline code:

levtest Tests if a storage block is attached to a specified storage level
malloc Standard function to get heap storage
calloc Standard function to get heap storage
free Standard function to release heap storage.

Note: Any C variables may use stack space.

D.6 ALCS services for global area processing
ALCS supports macros that provide services related to the application global area.

ALCS Application Programming Reference – Assembler describes the following
global-related monitor-request macros.

FILKW Reverses the effect of GLMOD and keypoints a global record.

150 ALCS 2.4.1 Concepts and Facilities

GLOUC Writes keypointable records from the application global area to the
database.

KEYUC Writes keypointable records from the application global area to the
database.

SYNCC Synchronizes access to the application global area.

and the following macro that is not a monitor-request macro:

GLOBZ Get the address of a directory.

 TPF compatibility

When ALCS global area protection is specified, ALCS also supports:

KEYCC and GLMOD To change the PSW protect key to allow storing into global
areas 1 or 3

KEYRC and FILKW (option R) To restore the PSW protect key after storing into
global areas 1 or 3

If global area protection is not specified, KEYCC, GLMOD, KEYRC, FILKW (option R)
have no effect, but show up in a macro trace.

D.6.1 C language functions for global area processing
The following C language functions are provided with ALCS for global area
processing:

glob Addresses an application global field or record.
global Addresses, updates, synchronizes or keypoints a global field.

These functions are fully described in ALCS Application Programming Reference –
C Language.

D.7 ALCS services for program linkage
Application programs use monitor-request macros to transfer control to other
application programs. They are called program linkage or ENTER/BACK macros.

See ALCS Application Programming Reference – Assembler for descriptions of the
program linkage monitor-request macros listed below:

BACKC Returns control to the calling application program; that is, to the
instruction following a previous ENTRC macro.

ENTDC Transfers control to an application program or transfer vector, and clears
(drops) any return addresses that previous ENTRC macros (if any) saved.
Use this macro when control does not return to this program.

ENTNC Transfers control to an application program or transfer vector but does
not save a return address. Use this macro when control does not return
to this program. If this program was entered using ENTRC, then a return
address was saved; if a BACKC macro is subsequently issued, then
control returns to that address (the instruction following the ENTRC).

ENTRC Transfers control to an application program or transfer vector, and saves
the return address. ENTRC saves this return address information in the
ECB prefix; Use this macro when control will return to this program (see
BACKC).

FINPC Gets the address of an application program.

 Appendix D. ALCS services 151

FIPWC Finds an application program, moves it into a storage block, and
attaches the storage block to the ECB.

D.7.1 C language functions for program linkage
See ALCS Application Programming Reference – C Language for full descriptions
of the corresponding C language functions:

entdc Transfers control to an application program without return.
entrc Transfers control to an application program with an expected return.

152 ALCS 2.4.1 Concepts and Facilities

 Appendix E. Direct-access files

This section describes additional aspects of the ALCS files.

E.1 How ALCS uses the duplicated database
Database duplication is transparent to ECB-controlled application programs. When
an application program requests a write, ALCS automatically updates both copies
of the database record.

When an application program requests a read, ALCS reads the copy of the record
from the data set with the lowest number of outstanding ALCS DASD I/O
operations. ALCS reads the other copy of the record only if the read of the first
copy results in a permanent I/O error.

When ALCS is executing with a duplicated database, the operator can deallocate
one copy of a database data set, using the VARY OFFLINE function of the ZDASD
command. The operator can do this, for example, before powering off a DASD to
allow repairs.

 E.1.1 I/O errors
If there are two copies of a real-time database data set, then ALCS automatically
deallocates one copy if it has one I/O error on a write, or five consecutive I/O errors
on reads.

If there is only one copy, ALCS deallocates it after 10 consecutive I/O errors. (This
is a catastrophic error, since ALCS cannot continue without at least one copy of
every data set.)

For general files and general data sets, ALCS deallocates after 10 consecutive I/O
errors. This is not a catastrophic error, since ALCS itself does not need general
files and general data sets, but applications that are attempting to use the data will
probably fail.

Recoup is an exception in that Recoup will continue to run even if the Recoup
general file becomes unusable.

E.1.2 ALCS action when one copy is offline
When the operator or ALCS deallocates one copy of a data set, the copy becomes
offline to ALCS. ALCS stops accessing the offline copy and continues to run using
only the other (online) copy.

Because ALCS continues to update the online copy, the offline copy becomes out
of date. Before ALCS can use the offline copy again, it must update the offline
copy so that it becomes identical to the online copy. The VARY ONLINE function of
the ZDASD command reallocates the data set to ALCS, updates it, and makes it
online to ALCS.

When the operator or ALCS makes a copy of a data set offline, ALCS marks that
copy as unusable. Even when the ALCS job terminates, a subsequent ALCS job
does not use the offline copy until the operator requests the VARY ONLINE function of

© Copyright IBM Corp. 2003, 2010 153

 Update logging

the ZDASD command. ALCS uses the first record of the first size L3 data set to
record which data sets are online and which are offline. (Application programs
cannot access this record.)

Because there are two copies of this record, each copy contains the time of the last
update. At restart, ALCS uses the more recent copy of the record.

For a description of the ZDASD command, see the ALCS Operation and
Maintenance.

 E.2 Update logging
When an ALCS application program issues a FILE monitor-request macro, ALCS
can log the update; that is, write a copy of the contents of the new and old records
to a system sequential file, (the ALCS update log file). ALCS can also log updates
from the online monitor and updates that application programs request indirectly; for
example, when the online monitor writes out a keypointable global record.

This update logging, together with suitable backups, makes it possible to restore
the real-time database to its status at any specific time. It also allows backup jobs
to run while ALCS is updating the database. This is because updates that occur
while a backup is running, and after the backup completes, are on the ALCS
update log file. Each record on the ALCS update log file contains the update time
(TOD clock).

The real-time database should be restored from a suitable backup. To do this with
maximum efficiency, it is important to establish schedules and procedures for
regular backups.

After the restore, load the updates from the ALCS update log file. To recover from
damage that a program error causes, load updates up to just before the time of the
damage.

To disable the logging function, define the ALCS update log file as a dummy data
set.

 E.2.1 Logging criteria
ALCS logging runs all the time that the online monitor is executing. There is no
command to stop or start logging. However ALCS does not log all updates.

Some ALCS commands perform updates that need not be logged. For example,
the ZDATA command can load records from a sequential file to the real-time
database. If these records are lost or damaged, the ZDATA command can load
them again. The ZRSTR command also restores records from the ALCS update log.
If these records are lost or damaged, the ZRSTR command can load them again.

These ALCS commands use the FLNPC monitor-request macro. ALCS does not log
updates by FLNPC. ALCS application programs do not normally need to use FLNPC.
If they do, and if the update requires logging, the application program must issue
another FILE monitor-request macro (for example, FILEC) following the FLNPC.

For other FILE monitor-request macros and C language functions, ALCS by default
logs all updates, except general file and general data set records, and records with

154 ALCS 2.4.1 Concepts and Facilities

 Record hold facility

the delayed file VFA option. For example, a short-term pool file has the delayed
file option.

Provided that a forward log is defined the new record contents are logged as
described above. When a backward log is defined, the old record contents are
logged if the VFA process options for the record specify update mode.

Overriding default logging criteria
If the default logging is not regarded as satisfactory for your installation, you can
write an installation-wide exit routine to override the default. This installation-wide
exit can check, for example:

� Record class (general file, fixed, or pool-file record)
 � Record type
 � Record ordinal
 � Record ID
 � Record contents

The installation-wide exit can then request one of the following:

� Log the update.
� Do not log the update.
� Log or do not log according to the default

ALCS Installation and Customization describes the USRLOG installation-wide exit.

After some types of hardware failure, or program errors that cause extensive data
damage, the ALCS update log file is the only way to recover the ALCS database.
Therefore, it is important to use correct criteria to decide which updates to log. The
criteria that ALCS uses by default are designed to be safe for many applications.
Before changing them, consider the following:

� The data that some records contain can be valuable.

� Application programs can fail, if the data they use is invalid. This can happen
even with data that is not intrinsically valuable. It can be difficult to recover
from loss or damage of this type of data unless ALCS logs the updates.

� Avoid unnecessary logging. Increasing the number of updates that ALCS logs,
increases the overhead on ALCS and increases the time it takes to restore the
updates.

Note: ALCS logs a keypointable global record if you specify LOGGING=YES in the
corresponding GO1GO macro in the global load control program. You cannot
override this in the USRLOG installation-wide exit.

E.3 Record hold facility
If two entries try to update the same DASD record at the same time, the result can
be unpredictable. Application programs can avoid these errors by using the record
hold facility. It is the responsibility of the application programmer to use record
hold correctly. If the application does not use it, or uses it incorrectly, ALCS does
not necessarily detect or prevent the resulting data loss.

To use record hold, the application program reads the record with a FINHC or FIWHC
monitor-request macro. When either of these macros completes, the entry is
holding the record. The entry continues to hold the record until it unholds it with a

 Appendix E. Direct-access files 155

 Record hold facility

FILUC or UNFRC monitor-request macro. When an entry that is holding one or more
records exits, ALCS takes a system error dump and unholds the record or records.

Application programs can also use the equivalent C language functions. These are
described in:

ALCS Application Programming Reference – Assembler
ALCS Application Programming Reference – C Language

If a second entry tries to hold a record (FINHC or FIWHC) while the first entry is
holding the record, the second entry loses control until the first entry unholds the
record. In this way, application programs can prevent simultaneous updates to the
same record, provided that all programs that update the record use the record hold
facility.

Record hold does not prevent another entry from reading the record, unless the
other entry also uses record hold.

E.3.1 When record hold is unnecessary
It is not necessary for an application program to hold every record that it updates.
For example, a fixed file record can contain the file address of a chain of pool-file
records. That is, the fixed record contains the file address of a pool file record (the
first in chain). The pool record contains the file address of a second pool record
(the second in chain), and so on.

Application programs can safely update any (or all) of the pool records provided
that they always hold the fixed record, while they update the pool records. In this
way, application programs can reduce the number of records that the entry holds at
one time. This improves the performance of the application.

 E.3.2 Performance considerations
Incautious use of record hold can cause severe performance degradation,
deadlocks, and other problems. Application programs should be designed so that
they:

Avoid holding any frequently-used record
If this is impossible, design the application so that entries hold the record for as
short a time as possible.

Avoid holding any record for a long time
In general, avoid holding a record for longer than a small proportion of the
required transaction response time. If a transaction loses control while another
entry is holding a record, its response time increases by the length of time that
the other entry holds the record. If a third transaction must wait, its response
time increases by twice as much. In this way, record hold can severely
degrade transaction response times.

Avoid holding more than one record at one time
Avoid designs that require entries to hold other resources at the same time as
records. If you cannot avoid this, take care to ensure that deadlocks cannot
occur.

156 ALCS 2.4.1 Concepts and Facilities

 Record hold facility

 E.3.3 Data sets
The ALCS real-time database and general files are either:

� Single extent VSAM entry-sequenced data sets (ESDSs)
� Relative-record data sets (RRDSs)

Use access method services (AMS) to create these as VSAM clusters in the normal
way. You can create ALCS realtime and general files on any DASD device that the
MVS Data Facility Product (DFP) supports.

Note: The ALCS database generation listing gives the appropriate AMS
commands.

The VSAM cluster is accessed through an integrated catalog facility (ICF) catalog.
The VSAM cluster consists of:

� A cluster component (which is simply a catalog entry)
� A data component (the data set that ALCS uses, together with the

corresponding catalog entry)

As the ALCS VSAM clusters are not indexed (though you can create indexes if you
wish), there is normally no index component. In this book, data set refers to the
data component of the VSAM cluster.

 Appendix E. Direct-access files 157

 Record hold facility

Each data set contains records of one size only, one record to every VSAM control
interval. The VSAM control interval size is the same as the ALCS storage block
size. The VSAM user record length is 8 bytes less than the control interval size.

Note: The VSAM user record length is not the same as the ALCS generation
macro user record length. In the ALCS macro you define:

� The CISIZE, the physical record size for a record (its VSAM control interval)
� The RECSIZE, the corresponding logical record size

There must be a difference of at least 56 bytes between the two. Figure 100
summarizes the relationship between CISIZE and RECSIZE.

�─────────────── VSAM control interval (CISIZE) ──────────────�
�───────────────── VSAM user record length ───────────────�
┌─────────────────────────────────────┬ ─ ┬─────────────────┬───┐

| │ │ │ 48 │ 8 │
└─────────────────────────────────────┴ ─ ┴─────────────────┴───┘
�─ ALCS logical record (RECSIZE) ───� ... � At least 56 bytes �

Figure 100. ALCS record sizes and VSAM control intervals

For example an L1 record size defined with a RECSIZE of 381 bytes has a CISIZE
of 512 (the nearest VSAM control interval to that size). The ALCS Installation and
Customization describes the RECSIZE and CISIZE values used in the ALCS macro.

Real-time database data set names
ALCS real-time data base dataset names (for the data component) have the
following format:

prefix.Ln.Cn.isssssss

Where:

prefix
Prefix specified by the DSNAME= parameter of the DBGEN macro.

Ln Record size (L1, L2, and so on).

Cn Copy (C1 for copy 1 or C2 for copy 2).

isssssss
ALCS system ID and data set sequence number, where:

i ALCS system ID specified by the ID= parameter of the ALCS macro

sssssss Data set sequence number, 0000001 for the first data set, 0000002
for the second data set, and so on.

E.3.4 Allocating data sets
ALCS allocates the cluster component of the VSAM cluster in the same way as
other MVS utilities.

Application programs that do not run under the control of the ALCS monitor can
use standard VSAM facilities with relative byte addressing to access the real-time
database and general file and general data sets. The relative byte address (RBA)
is the CISIZE multiplied by the relative record number. Figure 101 demonstrates
the relationship between CISIZE and the RBA.

158 ALCS 2.4.1 Concepts and Facilities

In ALCS DASD generation, for each record type, specify either the record ID or a
symbol for the record ID (IDSYM). The ID= and IDSYM= parameters of the USRDTA
macro are described in the ALCS Installation and Customization.

Figure 101. Relationship between CISIZE and RBA

Record Relative record number RBA

1 0 0

2 1 CISIZE

3 2 2 X CISIZE

E.4 Offline access to file address information
Offline utility application programs (that is, programs that run directly under the
control of MVS and not under ALCS) may need information about ALCS file
addresses. ALCS provides three utility routines in CSECT DXCFARO, which act as
entry points enabling application programs to obtain this information. These
routines are as follows:

DXCCDDLD Load DASD configuration table load module.

DXCMRT Return the highest used general file number, pool interval number,
or fixed-record type number.

DXCFARIC Return information about a given file address.

To use these routines, use one of the following procedures:

� Invoke them dynamically, using MVS LINK. If you use LINK, ensure that the
PDS containing the load module DXCFAROL is included in the JOBLIB or
STEPLIB concatenation at execution time. See the ALCS Program Directory
for information on the location of this module.

� Use CALL, and link-edit the load module DXCFAROL with your application
program.

Note: You are strongly recommended to use LINK rather than CALL. Using LINK
ensures access to the latest versions of these routines. If you use CALL, you will
have to relink your application programs manually to incorporate IBM-supplied
maintenance.

The ALCS DASD configuration table load module is the source of all file address
information, so you must either load this module (using routine DXCCDDLD), or
include the DASD configuration load module in the link-edit of the application
program.

See ALCS Application Programming Reference – Assembler for further information.

 Appendix E. Direct-access files 159

160 ALCS 2.4.1 Concepts and Facilities

 Application global area

Appendix F. Application global area

There is an area of storage in the ALCS MVS address space that all entries can
access. It is called the application global area or the global area. The
application global area contains:

� Global area records
� Global area directories.

F.1 Global area records
These are selected records from the real-time database. The records can be
keypointable or non-keypointable, as follows:

� Keypointable Records that application programs update. After an update,
ALCS writes the record to the database. The process of writing a record to the
database is called keypointing.

� Non-keypointable Records that application programs do not update, or that
are reinitialized when ALCS restarts. ALCS does not write the record to the
database.

F.2 Global area directories
The application global area contains up to 16 global area directories. Each
directory can contain up to 255 directory slots. Application programs use these
directories to find global area records.

Each global area directory can be followed by directly addressable records
(within a 4KB block). These records can be addressed using an offset. Figure 102
shows a logical view of a global area directory and the two types of global record.

┌─ 4KB block ───────────────────────────────┐
│ Accessible by offset │

 │ ┌─────────┐ │
│ Slot 1 │ │ │

 │ ├─────────┤ │
 │ : : │
 │ ├─────────┤ │
│ Slot n │ Pointer ├───────────────────────────�┌────────────────────────────────────┐
│ ├─────────┤ │ │ Global record accessible only by │
│ : : │ │ using the pointer in the directory │

 │ : : │ │ │
│ ├ ─ ─ ─ ─ ┤ │ └────────────────────────────────────┘
│ Slot 255 │
│ └ ─ ─ ─ ─ ┘ │
│ ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┐ │
│ └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┘ │
│ : Directly addressable global : │

 │ : records : │
│ ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┐ │
│ └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┘ │

 └───┘

Figure 102. ALCS global areas and global area directory – logical view

Application programs use the global area directory to find global records. To do
this, application programs use the ALCS GLOBZ macro which generates DSECTs for
the 16 global area directories and for the directly addressable global areas. GLOBZ
also generates instructions that load a base register. This base register allows the
application program to address one directory and the directly addressable areas.

© Copyright IBM Corp. 2003, 2010 161

 Application global area

For a description of how to use the GLOBZ macro, see ALCS Application
Programming Reference – Assembler.

The GLOBZ macrodefinition does not contain the DSECTs for the directories and the
directly addressable areas. Instead, GLOBZ calls DSECT macros that include the
DSECTs. Figure 103 shows how all the global area directories and associated
records are physically organized in storage.

 Area 1
 GL�BA ┌───────────────────────────┐ ──┐
 ┌───────────┤ Up to 256 pointer slots │ Directory � │
 │ ┌───────┤ │ │
 │ │ GL�BB ├───────────────────────────┴────┐ │
 │ │ GL�BC ├────────────────────────────────┤ Directly addressable │ 4KB maximum
 │ │ ├────────────────────────────────┤ global area � │
 │ │ ├────────────────────────────────┤ │
 │ │ GL�Bx ├────────────────────────────────┤ │
 │ │ └────────────────────────────────┘ ──┘
 │ │ ┌──┐ Global area 1 records
 │ └──────�│ │ addressed by directory �
 │ │ │ (size as needed)
 │ └──┘
 │ GL1BA ┌───────────────────────────┐ ──┐
 │ ┌─────────┤ Up to 256 pointer slots │ Directory 1 │
 │ │ ┌───────┤ │ │
 │ │ │ GL1BB ├───────────────────────────┴────┐ │
 │ │ │ GL1BC ├────────────────────────────────┤ Directly addressable │ 4KB maximum
 │ │ │ ├────────────────────────────────┤ global area 1 │
 │ │ │ ├────────────────────────────────┤ │
 │ │ │ GL1Bx ├────────────────────────────────┤ │
 │ │ │ └────────────────────────────────┘ ──┘
 │ │ │ ┌──┐ Global area 1 records
 │ │ └──────�│ │ addressed by directory 1
 │ │ │ │ (size as needed)
 │ │ └──┘
 │ │ : and so on :
 │ │ GLFBA ┌───────────────────────────┐
 │ │ │ Reserved │ Directory 15
 │ │ └───────────────────────────┘
 │ │ There are no GLFBB, GLFBC ... records
 │ │
 │ │ Area 2
 │ │ ┌──┐ Global area 2 records
 └──────────�│ │ addressed by directory �

│ │ │ (size as needed)
 │ └──┘

│ ┌──┐ Global area 2 records
└────────�│ │ addressed by directory 1

│ │ (size as needed)
 └──┘

and so on, for up to 16 directories

 Area 3
┌──┐ Global area 3 records

──────�│ │ addressed by directory �
│ │ (size as needed)

 └──┘
┌──┐ Global area 3 records

──────�│ │ addressed by directory 1
│ │ (size as needed)

 └──┘
and so on, for up to 16 directories

Figure 103. ALCS global area – physical view

162 ALCS 2.4.1 Concepts and Facilities

 Application global area

Notes:

1. There are three global areas, the global area directories must reside in area 1
and can point to Area 1, Area 2, and Area 3.

2. You can move Areas 1 and 2 above the 16MB boundary by means of the
AMODE31= parameter of the SCTGEN macro.

3. There is usually a directory slot for each record in the global area. The slot
contains the storage address of the record and (optionally) the file address of
the record.

4. Directory F and the first slot in directory 0 is reserved; all other slots are
available for application use and can point to keypointable records.

 TPF compatibility

In TPF and ALCS, when global area protection is specified, global area 1 and 3
– the "protected global areas" – have a different key from entry storage.

DSECTs for the 16 directories are in macros GL�BA through GLFBA. The global load
control programs are GOA0 through GOAE, and CGAF.

F.3 Header stripping and logical globals
ALCS DASD records include a standard header. This header contains information
such as the record ID, record code check (RCC), and so on. Multiple physical
records can be loaded into the global area as one logical record. To do this, the
ALCS global load program loads multiple records from the real-time database into
contiguous areas of storage, and strips the header from all but the first record.
This can simplify an application program's handling of the information within the
records, but it complicates keypointing. ALCS can keypoint header-stripped
records; this is called logical global support.

You should create the records that comprise a logical global in the usual way. For
example, use STC to create the records on a data file, and the ZDATA command to
load the records from the data file on to the database.

F.4 Including records in the application global area
The ALCS application global area can contain records from the real-time database.
Because the records are permanently in storage, application programs can access
the data that they contain with the minimum overhead. In particular, application
programs can read data in the application global area without the need for any I/O.

However, it is better to use VFA attributes to reduce the number of I/Os. In
particular, the permanently resident attribute and the time-initiated file attribute can
allow application programs to use FIND and FILE monitor-request macros with
relatively few I/Os.

Using the application global area for records for the real-time database has the
following disadvantages:

� Applications programs that share access to records in the global area must
serialize access to the records. This process can be complex.

 Appendix F. Application global area 163

 Application global area

� It is difficult to add existing records to the global area. Existing application
programs that use FIND and FILE macros to access a record must be changed
to access the record in the global area. Similarly, it is difficult to remove
records from the global area. Existing application programs that access a
record in the global area must be changed to use FIND and FILE macros.

By contrast, it is easy to change the VFA options for a record. There is no
need to change programs that access the record.

� It may become necessary at some stage to run the application programs on a
loosely-coupled system (such as TPF). Application programs that use the
global area can require major changes to work in a loosely coupled
environment.

� The use of globals greatly reduces the portability of a program.

When there is no alternative to using the global area, add a record to the global
area, as follows:

1. Choose which global area you will use for the record. There are three global
areas, 1, 2 and 3. If your installation is using global area protection (refer to
the GLBLPROT parameter on the ALCS generation SCTGEN macro) global
areas 1 and 3 will be in protected storage, therefore the global area that you
choose for your record must be determined by your requirement to place the
record in either protected or unprotected storage.

2. Update the corresponding global area directory DSECT macro to include a
directory slot for the record.

3. If your installation is using C language programs that access the global areas,
you must recreate <c$globz.h>.

4. Step 2 can change the value of symbols (that is, the displacement to labels in
the DSECT) that existing application programs use. If it does,
reassemble/recompile and link-edit the affected programs.

5. If the new record is directly addressable, update the corresponding directory
macro (GLnBA) to include the new record in the GLnBA DSECT.

6. To load the new record into the global area, update the global load control
program for the directory.

7. Update the GLBLSZE= parameter in the ALCS generation SCTGEN macro.

Refer to the SCTGEN macro in ALCS Installation and Customization for a
description of the GLBLSZE= parameter and how to determine the size of the
global area.

8. Reassemble and relink program AGT1.

164 ALCS 2.4.1 Concepts and Facilities

 Application program management

Appendix G. Application program management

This chapter documents General-Use Programming Interface information provided
by ALCS. General-Use Programming Interfaces allow the user to write programs
that obtain the services of ALCS.

ALCS supports application programs written in IBM System/390 assembler
language3 using macrodefinitions supplied with ALCS. You can also write
application programs in the C language. Application programs can use SQL to
access relational databases. They can also use CPI-C, MQI, TCP/IP, and
APPC/MVS calls to communicate with other application programs (which need not
be running under ALCS).

Assembler application programs must adhere to the restrictions and requirements
described in ALCS Application Programming Reference – Assembler. For example:

� Each program and transfer vector (entry point) must have a unique 4-character
name.

� The maximum size for a program is 32KB.

� All programs must be reentrant.

� The first instruction of each program must be the BEGIN macro. BEGIN
generates a 32-byte program header. This header includes information such
as the program name, the program version number, the program length in
bytes, and the count of transfer vectors within the program.

� TRANV macros to define multiple entry points in a program immediately follow
the BEGIN macro. A TRANV macro generates 8 bytes of transfer vector definition.

The rules that C application programs must adhere to are described in ALCS
Application Programming Reference – C Language.

At restart, ALCS loads each load module in the application program load list (see
G.1, “The program configuration table” on page 166). ALCS searches each load
module for ALCS application programs; the load modules must contain only ALCS
application programs. ALCS recognizes ALCS application programs by checking
the 32-byte program header. If the header is valid, ALCS uses it to build program
table entries for the program and for the transfer vectors (if any).

When either an application program or the ALCS online monitor transfers control to
an application program, the calling program refers to the called program using the
4-character program name. ALCS program management uses the program table to
determine the storage address of the called program.

You must ensure that application programs which run in 24-bit addressing mode
are loaded below 16MB. Do this by link-editing 24-bit mode programs into one or
more load modules with RMODE (residence mode) 24. Load modules containing
only programs which can run in 31-bit addressing mode should be link-edited with
AMODE (addressing mode) 31 and RMODE ANY.

3 This includes programs written in subsets of IBM System/390 assembler language – for example, System/360, System/370, and
so on.

© Copyright IBM Corp. 2003, 2010 165

 Application program management

If the called program is a transfer vector, ALCS passes control at the relevant entry
point.

G.1 The program configuration table
The program configuration table contains all the information that ALCS needs to
load and manage application programs. ALCS Installation and Customization
describes how to update the program configuration table. This contains general
information, such as the maximum number of load modules and programs
expected. It also contains the application program load list.

G.2 Application program load list
This is a list of load modules for ALCS to load at restart. During restart, ALCS
loads modules in the sequence that they appear in this list. If a program appears
in more than one module, ALCS creates multiple entries in the program table. The
copy that ALCS loads last becomes effective. ALCS automatically loads first the
modules that contain ECB-controlled monitor programs.

G.3 Naming application programs
Give each new program and transfer vector a unique 4 character name. Each
name must start with an alphabetic character, but names beginning with A, B, and
C are reserved for IBM programs as follows:

A Installation-wide ECB-controlled exit programs
B Data programs
C ALCS ECB-controlled monitor programs

 TPFDF compatibility

To avoid conflict with TPFDF, avoid using program names beginning with UF.

The following names are also reserved:

 FACE
 FACS
 GOAn
 RLCH
 TIA1
 UGU1
 XHP1

Optionally, a program can also have a version number of 2-alphanumeric
characters. A version number can be useful for identifying the program version in a
dump. ALCS program management does not use the version number.

166 ALCS 2.4.1 Concepts and Facilities

Appendix H. Acronyms and abbreviations

The following acronyms and abbreviations are used in books of the ALCS Version
2 library. Not all are necessarily present in this book.

AAA agent assembly area
ACB VTAM access method control block
ACF Advanced Communications Function
ACF/NCP Advanced Communications Function for the Network Control

Program, usually referred to simply as “NCP”
ACF/VTAM* Advanced Communications Function for the Virtual

Telecommunication Access Method, usually referred to simply as
“VTAM”

ACK positive acknowledgment (SLC LCB)
ACP Airline Control Program
AID IBM 3270 attention identifier
AIX add item index
ALC airlines line control
ALCI Airlines Line Control Interconnection
ALCS/MVS/XA Airline Control System/MVS/XA
ALCS/VSE Airline Control System/Virtual Storage Extended
ALCS V2 Airline Control System Version 2
AML acknowledge message label (SLC LCB)
AMS access method services
AMSG AMSG application message format
APAR authorized program analysis report
APF authorized program facility
API application program interface
APPC advanced program-to-program communications
ARINC** Aeronautical Radio Incorporated
ASCU agent set control unit (SITA), a synonym for “terminal control

unit”
AT&T** American Telephone and Telegraph Co.
ATA Air Transport Association of America
ATSN acknowledge transmission sequence number (SLC)
BATAP Type B application-to-application program
BSC binary synchronous communication
C C programming language
CAF DB2 Call Attach Facility
CCW channel command word
CDPI clearly differentiated programming interface
CEC central electronic complex
CEUS communication end-user system
CI VSAM control interval
CICS* Customer Information Control System
CLIST command list
CMC communication management configuration
CML clear message label (synonym for AML)
COBOL COmmon Business Oriented Language
CPI-C Common Programming Interface – Communications
CPU central processing unit
CRAS computer room agent set
CRI communication resource identifier

© Copyright IBM Corp. 2003, 2010 167

CRN communication resource name
CSA common service area
CSECT control section
CSID cross system identifier
CSW channel status word
CTKB Keypoint record B
CTL control system error
CUA* Common User Access
DASD direct access storage device
DBCS double-byte character set
DBRM DB2 database request module
DB2* IBM DB2 for z/OS
DCB data set control block
DECB ALCS data event control block
DF delayed file record
DFDSS Data Facility Data Set Services
DFHSM Data Facility Hierarchical Storage Manager
DFP Data Facility Product
DFSMS* Data Facility Storage Management Subsystem
DFT distributed function terminal
DIX delete item index
DRIL data record information library
DSI direct subsystem interface
DSECT dummy control section
DTP ALCS diagnostic file processor
EBCDIC extended binary-coded decimal interchange code
ECB ALCS entry control block
EIB error index byte
EID event identifier

| EJB Enterprise Java Bean
ENQ enquiry (SLC LCB)
EOF end of file
EOM end of message
EOI end of message incomplete
EOP end of message pushbutton
EOU end of message unsolicited
EP Emulation Program
EP/VS Emulation Program/VS
ETX end of text
EVCB MVS event control block
EXCP Execute Channel Program
FACE file address compute
FIFO first-in-first-out
FI file immediate record
FM function management
FMH function management header
GB gigabyte (1 073 741 824 bytes)
GDS general data set
GFS get file storage (called pool file storage in ALCS)
GMT Greenwich Mean Time
GTF generalized trace facility (MVS)
GUPI general-use programming interface
HEN high-level network entry address
HEX high-level network exit address

168 ALCS 2.4.1 Concepts and Facilities

HFS Hierarchical File System
HLASM High Level Assembler
HLL high-level language
HLN high-level network
HLS high-level system (for example, SITA)
IA interchange address
IASC International Air Transport Solution Centre
IATA International Air Transport Association
IATA5 ATA/IATA transmission code 5
IATA7 ATA/IATA transmission code 7
ICF integrated catalog facility
ID identifier
ILB idle (SLC LCB)
IMA BATAP acknowledgement
IMS* Information Management System
IMSG IMSG input message format
I/O input/output
IOCB I/O control block
IP Internet Protocol
IPARS International Programmed Airlines Reservation System
IPCS Interactive Problem Control System
IPL initial program load
ISA initial storage allocation
ISC intersystem communication
ISO/ANSI International Standards Organization/American National

Standards Institute
ISPF Interactive System Productivity Facility
ISPF/PDF Interactive System Productivity Facility/Program Development

Facility
ITA2 International Telegraph Alphabet number 2
JCL job control language
JES job entry subsystem

| JNDI Java Naming and Directory Interface
KB kilobyte (1024 bytes)
KCN link channel number (SLC)
KSDS VSAM key-sequenced data set
LAN local area network
LCB link control block (SLC)
LDB link data block (SLC)
LDI local DXCREI index
LEID logical end-point identifier
LE Language Environment*

LICRA Link Control – Airline
LMT long message transmitter
LN line number (ALCS/VSE and TPF terminology)
LN/ARID line number and adjusted resource identifier (ALCS/VSE

terminology)
| LSET Load set

LSI link status identifier (SLC)
LU logical unit
LU 6.2 Logical Unit 6.2
MATIP Mapping of airline traffic over IP
MB megabyte (1 048 576 bytes)
MBI message block indicator (SLC)

 Appendix H. Acronyms and abbreviations 169

MCHR module/cylinder/head/record
MESW message switching
MNOTE message note
MQI Message Queueing Interface
MQM Message Queue Manager
MSNF Multisystem Networking Facility
MVS* Multiple Virtual Storage (refers to both MVS/XA and MVS/ESA,

and also to OS/390* and z/OS*)
MVS/DFP* Multiple Virtual Storage/Data Facility Product
MVS/ESA* Multiple Virtual Storage/Enterprise System Architecture
MVS/XA* Multiple Virtual Storage/Extended Architecture
NAB next available byte
NAK negative acknowledgment (SLC LCB)
NCB network control block (SLC)
NCP Network Control Program (refers to ACF/NCP)
NCP/VS Network Control Program/Virtual Storage.
NEF Network Extension Facility
NEF2 Network Extension Facility 2
NPDA Network Problem Determination Application
NPSI Network Control Program packet switching interface
NTO Network Terminal Option
OCR one component report
OCTM online communication table maintenance

| OLA optimized local adapters
OMSG OMSG output message format
OPR operational system error
OSID other-system identification
OS/2* IBM Operating System/2
PARS Programmed Airlines Reservation System
PDF parallel data field (refers to NCP)
PDM possible duplicate message
PDS partitioned data set
PDSE partitioned data set extended
PDU pool directory update
PER program event recording
PFDR pool file directory record
PL/I programming language one
PLM purge long message (name of ALCS/VSE and TPF general tape)
PLU primary logical unit
PNL passenger name list
PNR passenger name record
PP IBM program product
PPI program-to-program interface
PPMSG program-to-program message format
PPT program properties table
PR permanently resident record
PRC prime computer room agent set
PRDT physical record (block) descriptor table
PRPQ programming request for price quotation
PR/SM* Processor Resource/Systems Manager*

PS VTAM presentation services
PSPI product sensitive programming interface
PSW program status word
PTF program temporary fix

170 ALCS 2.4.1 Concepts and Facilities

PTT Post Telephone and Telegraph Administration
PU physical unit
PVC permanent virtual circuit
QSAM queued sequential access method
RACF* resource access control facility
RB request block
RBA relative byte address
RCC record code check
RCPL routing control parameter list
RCR resource control record
RCS regional control center
RDB Relational Database
RDBM Relational Database Manager
REI resource entry index
RLT record locator table
RMF* Resource Measurement Facility*

RO CRAS receive-only computer room agent set
RON record ordinal number
RPL VTAM request parameter list
RPQ request for price quotation
RSM resume (SLC LCB)
RTM recovery and termination management
RU request unit
SAA* Systems Application Architecture*

SAF System Authorization Facility
SAL system allocator list (TPF terminology)
SAM sequential access method
SDLC Synchronous Data Link Control
SDMF standard data and message file
SDSF System Display and Search Facility
SDWA system diagnostic work area
SI DBCS shift in
SITA** Société Internationale de Télécommunications Aéronautiques
SLC ATA/IATA synchronous link control
SLIP serviceability level indication processing
SLN symbolic line number
SLR Service Level Reporter
SLU secondary logical unit
SMP/E System Modification Program Extended
SNA Systems Network Architecture
SO DBCS shift out
SON system ordinal number
SQA system queue area
SQL Structured Query Language
SQLCA SQL Communication Area
SQLDA SQL Descriptor Area
SRB service request block
SRG statistical report generator
SRM System Resource Manager
STC system test compiler
STP stop (SLC LCB)
STV system test vehicle
SWB service work block
SYN character synchronization character

 Appendix H. Acronyms and abbreviations 171

TA terminal address
TAS time available supervisor
TCB task control block
TCID terminal circuit identity
TCP/IP Transmission Control Protocol / Internet Protocol
TI time-initiated record
TOD time of day
TPF Transaction Processing Facility
TPF/APPC Transaction Processing Facility/Advanced Program to Program

Communications
TPF/DBR Transaction Processing Facility/Data Base Reorganization
TPFDF TPF Database Facility
TPF/MVS Transaction Processing Facility/MVS (alternative name for

ALCS V2)
TP_ID transaction program identifier
TSI transmission status indicator
TSN transmission sequence number
TSO time-sharing option
TSO/E Time Sharing Option Extensions
TUT test unit tape (sequential file)
UCB unit control block
UCTF Universal Communications Test Facility
VFA virtual file access
VIPA virtual IP address
VM virtual machine
VM/CMS virtual machine/conversational monitor system
VS virtual storage
VSAM virtual storage access method
VSE Virtual Storage Extended
VSE/AF Virtual Storage Extended/Advanced Function
VSE/VSAM Virtual Storage Extended/Virtual Storage Access Method
VTAM* Virtual Telecommunications Access Method (refers to VTAM)
VTOC volume table of contents

| WAS WebSphere Application Server
WSF Write Structured Field
WTTY World Trade Teletypewriter
XMSG XMSG message switching message format
XREF ALCS cross referencing facility

172 ALCS 2.4.1 Concepts and Facilities

 Glossary

Notes:

1. Acronyms and abbreviations are listed separately
from this Glossary. See Appendix H, “Acronyms
and abbreviations” on page 167.

2. For an explanation of any term not defined here,
see the IBM Dictionary of Computing.

A
AAA hold. See terminal hold.

abnormal end of task (abend). Termination of a task
before its completion because of an error condition that
cannot be resolved by recovery facilities while the task
is executing.

access method services (AMS). A utility program that
defines VSAM data sets (or files) and allocates space
for them, converts indexed sequential data sets to
key-sequenced data sets with indexes, modifies data
set attributes in the catalog, facilitates data set
portability between operating systems, creates backup
copies of data sets and indexes, helps make
inaccessible data sets accessible, and lists data set
records and catalog entries.

activity control variable. A parameter that ALCS
uses to control its workload. The system programmer
defines activity control variables in the ALCS system
configuration table generation.

Advanced Communications Function for the
Network Control Program (ACF/NCP). An IBM
licensed program that provides communication
controller support for single-domain, multiple-domain,
and interconnected network capability.

Advanced Program-to-Program Communications
(APPC). A set of inter-program communication
services that support cooperative transaction processing
in an SNA network. APPC is the implementation, on a
given system, of SNA’s logical unit type 6.2 (LU 6.2).
See APPC component and APPC transaction
scheduler.

Aeronautical Radio Incorporated (ARINC). An
organization which provides communication facilities for
use within the airline industry.

agent assembly area (AAA). A fixed-file record used
by IPARS applications. One AAA record is associated
with each terminal and holds data that needs to be kept
beyond the life of an entry. For example, to collect
information from more than one message.

agent set. Synonym for communication terminal.

agent set control unit (ASCU). Synonym for terminal
interchange.

Airline Control Program (ACP). An earlier version of
the IBM licensed program Transaction Processing
Facility (TPF).

Airline Control System (ALCS). A transaction
processing platform providing high performance,
capacity, and availability, that runs specialized (typically
airline) transaction processing applications.

Airline Control System/Multiple Virtual
Storage/Extended Architecture (ALCS/MVS/XA). An
ALCS release designed to run under an MVS/XA
operating system.

Airline Control System Version 2 (ALCS V2). An
ALCS release designed to run under a z/OS operating
system.

Airline Control System/Virtual Storage Extended
(ALCS/VSE). An ALCS release designed to run under
a VSE/AF operating system.

airlines line control (ALC). A communication protocol
particularly used by airlines.

Airlines Line Control Interconnection (ALCI). A
feature of Network Control Program (NCP) that allows it
to manage ALC networks in conjunction with a request
for price quotation (RPQ) scanner for the IBM 3745
communication controller.

Airline X.25 (AX.25). A discipline conforming to the
ATA/IATA AX.25 specification in the ATA/IATA
publication ATA/IATA Interline Communications Manual,
ATA/IATA document DOC.GEN 1840. AX.25 is based
on X.25 and is intended for connecting airline computer
systems to SITA or ARINC networks.

ALCS command. A command addressed to the ALCS
system. All ALCS commands start with the letter Z
(they are also called “Z messages”) and are 5
characters long.

These commands allow the operator to monitor and
control ALCS. Many of them can only be entered from
CRAS terminals. ALCS commands are called
“functional messages” in TPF.

ALCS data collection file. A series of sequential data
sets to which ALCS writes performance-related data for
subsequent processing by the statistical report

© Copyright IBM Corp. 2003, 2010 173

generator or other utility program. See also data
collection and statistical report generator.

ALCS diagnostic file. A series of sequential data sets
to which the ALCS monitor writes all types of diagnostic
data for subsequent processing by the diagnostic file
processor.

ALCS diagnostic file processor. An offline utility,
often called the “post processor”, that reads the ALCS
diagnostic file and formats and prints the dump, trace,
and system test vehicle (STV) data that it contains.

ALCS entry dispatcher. The ALCS online monitor's
main work scheduler. Often called the “CPU loop”.

ALCS offline program. An ALCS program that runs
as a separate MVS job (not under the control of the
ALCS online monitor).

ALCS online monitor. The part of ALCS that
performs the services for the ECB-controlled programs
and controls their actions.

ALCS trace facility. An online facility that monitors the
execution of application programs. When it meets a
selected monitor-request macro, it interrupts processing
and sends selected data to an ALCS display terminal,
to the ALCS diagnostic file, or to the system macro
trace block. See also instruction step.

The ALCS trace facility also controls tracing to the MVS
generalized trace facility (GTF), for selected VTAM
communication activity.

ALCS update log file. A series of sequential data sets
in which the ALCS monitor records changes to the
real-time database.

ALCS user file. A series of sequential data sets to
which you may write all types of diagnostic data for
subsequent processing by an offline processor. You
write the data from an installation-wide monitor exit
using the callable service UWSEQ.

allocatable pool. The ALCS record class that includes
all records on the real-time database. Within this class,
there is one record type for each DASD record size.

The allocatable pool class is special in that ALCS itself
can dispense allocatable pool records and use them for
other real-time database record classes. For example,
all fixed-file records are also allocatable pool records
(they have a special status of “in use for fixed file”).

When ALCS is using type 2 long-term pool dispense,
ALCS satisfies requests for long-term pool by
dispensing available allocatable pool records.

See DASD record, real-time database, record class,
and record type.

alternate CRAS. A computer room agent set (CRAS)
that is not Prime CRAS or receive only CRAS. See
computer room agent set, Prime CRAS, and receive
only CRAS.

alternate CRAS printer. A CRAS printer that is not
receive only CRAS. See CRAS printer and receive only
CRAS.

answerback. A positive acknowledgement (ACK) from
an ALC printer.

APPC component. The component of MVS that is
responsible for extending LU 6.2 and SAA CPI
Communications services to applications running in any
MVS address space. Includes APPC conversations and
scheduling services.

APPC transaction scheduler. A program such as
ALCS that is responsible for scheduling incoming work
requests from cooperative transaction programs.

application plan. See DB2 application plan.

application. A group of associated application
programs that carry out a specific function.

application global area. An area of storage in the
ALCS address space containing application data that
any entry can access.

The application global area is subdivided into
keypointable and nonkeypointable records.
Keypointable records are written to the database after
an update; nonkeypointable records either never
change, or are reinitialized when ALCS restarts.

C programs refer to global records and global fields
within the application global area.

application program. A program that runs under the
control of ALCS. See also ECB-controlled program.

application program load module. In ALCS, a load
module that contains one or more application programs.

application queue. In message queuing with ALCS,
any queue on which application programs put and get
messages using MQI calls.

assign. Allocate a general sequential file to an entry.
The TOPNC monitor-request macro (or equivalent C
function) opens and allocates a general sequential file.
The TASNC monitor-request macro (or equivalent C
function) allocates a general sequential file that is
already open but not assigned to an entry (it is
reserved).

associated resource. Some ALCS commands
generate output to a printer (for example, ZDCOM prints
information about a communication resource). For this
type of command the printed output goes to the

174 ALCS 2.4.1 Concepts and Facilities

associated resource; that is, to a printer associated with
the originating display. There is also a response to the
originating display that includes information identifying
the associated resource.

asynchronous trace. One mode of operation of the
ALCS trace facility. Asynchronous trace is a
conversational trace facility to interactively trace entries
that do not originate from a specific terminal.

automatic storage block. A storage block that is
attached to an entry, but is not attached at a storage
level. An assembler program can use the ALASC
monitor-request macro to obtain an automatic storage
block and BACKC monitor-request macro to release it. C
programs cannot obtain automatic storage blocks.

B
backward chain. The fourth fullword of a record
stored on the ALCS database, part of the record
header. See chaining of records.

When standard backward chaining is used, this field
contains the file address of the previous record in the
chain, except that the first record contains the file
address of the last record in the chain. (If there is only
one record, the backward chain field contains zeros.)

balanced path. A path where no single component
(channel, DASD director or control unit, head of string,
and internal path to the DASD device) is utilized beyond
the limits appropriate to the required performance.

bar. In the MVS 64-bit address space, a virtual line
called the bar marks the 2-gigabyte address. The bar
separates storage below the 2-gigabyte address, called
below the bar, from storage above the 2-gigabyte
address, called above the bar.

BATAP. Type B application-to-application program

Binary Synchronous Communication (BSC). A form
of telecommunication line control that uses a standard
set of transmission control characters and control
character sequences, for binary synchronous
transmission of binary-coded data between stations.

bind. See DB2 bind

BIND. In SNA, a request to activate a session between
two logical units (LUs). The BIND request is sent from
a primary LU to a secondary LU. The secondary LU
uses the BIND parameters to help determine whether it
will respond positively or negatively to the BIND
request.

binder. The program that replaces the linkage editor
and batch loader programs that were provided with
earlier versions of MVS.

BIND image. In SNA, the set of fields in a BIND
request that contain the session parameters.

block. See storage block.

C
catastrophic. A type of system error that results in the
termination of ALCS.

chain-chase. See Recoup.

chaining of records. One record can contain the file
address of another (usually a pool-file record). The
addressed record is said to be chained from the
previous record. Chains of records can contain many
pool-file records. See forward chain and backward
chain.

class. See record class.

clearly differentiated programming interfaces
(CDPI). A set of guidelines for developing and
documenting product interfaces so that there is clear
differentiation between interfaces intended for general
programming use (GUPIs) and those intended for other
specialized tasks.

close. Close a sequential file data set (MVS CLOSE
macro) and deallocate it from ALCS. For general
sequential files this is a function of the TCLSC
monitor-request macro (or equivalent C function).
ALCS automatically closes other sequential files at
end-of-job.

command. See ALCS command.

command list (CLIST). A sequential list of commands,
control statements, or both, that is assigned a name.
When the name is invoked the commands in the list are
executed.

commit. An operation that terminates a unit of
recovery. Data that was changed is now consistent.

common entry point (CEP). A function in the
Transaction Processing Facility Database Facility
(TPFDF) product that provides common processing for
all TPFDF macro calls issued by ALCS application
programs. It also provides trace facilities for TPFDF
macro calls.

Common Programming Interface – Communications
(CPI-C). The communication element of IBM Systems
Application Architecture (SAA). CPI-C provides a
programming interface that allows program-to-program
communication using the IBM SNA logical unit 6.2.

Common User Access. Guidelines for the dialog
between a user and a workstation or terminal.

 Glossary 175

communication management configuration (CMC).
A technique for configuring a network that allows for the
consolidation of many network management functions
for the entire network in a single host processor.

communication resource. A communication network
component that has been defined to ALCS. These
include each terminal on the network and other network
components that ALCS controls directly (for example,
SLC links). Resources can include, for example:

SNA LUs (including LU 6.1 links)
 ALC terminals

SLC and WTTY links
 Applications.

communication resource identifier (CRI). A 3-byte
field that uniquely identifies an ALCS communication
resource. It is equivalent to the LN/IA/TA in TPF and
the LN/ARID in ALCS/VSE. ALCS generates a CRI for
each resource.

communication resource name (CRN). A 1- to
8-character name that uniquely identifies an ALCS
communication resource. For SNA LUs, it is the LU
name. The system programmer defines the CRN for
each resource in the ALCS communication generation.

communication resource ordinal. A unique number
that ALCS associates with each communication
resource. An installation can use the communication
resource ordinal as a record ordinal for a particular
fixed-file record type. This uniquely associates each
communication resource with a single record.

For example, IPARS defines a fixed-file record type
(#WAARI) for AAA records. Each communication
resource has its own AAA record – the #WAARI record
ordinal is the communication resource ordinal. See also
record ordinal and agent assembly area.

compiler. A program that translates instructions
written in a high level programming language into
machine language.

computer room agent set (CRAS). An ALCS terminal
that is authorized for the entry of restricted ALCS
commands.

Prime CRAS is the primary terminal that controls the
ALCS system. Receive Only CRAS (RO CRAS) is a
designated printer or NetView operator identifier to
which certain messages about system function and
progress are sent.

configuration data set. (1) A data set that contains
configuration data for ALCS. See also
configuration-dependent table. (2) The ALCS record
class that includes all records on the configuration data
set. There is only one record type for this class. See
record class and record type.

configuration-dependent table. A table, constructed
by the ALCS generation process, which contains
configuration-dependent data. Configuration-dependent
tables are constructed as conventional MVS load
modules. In ALCS V2, there are separate
configuration-dependent tables for:

 System data
 DASD data

Sequential file data
 Communication data

Application program data.

See also configuration data set.

control byte. The fourth byte of a record stored on the
ALCS database, part of the record header. ALCS
ignores this byte; some applications, however, make
use of it.

control interval (CI). A fixed-length area of direct
access storage in which VSAM stores records. The
control interval is the unit of information that VSAM
transmits to or from direct access storage.

control transfer. The process that the ALCS online
monitor uses to create a new entry and to transfer
control to an ECB-controlled program.

conversation_ID:. An 8-byte identifier, used in
Get_Conversation calls, that uniquely identifies a
conversation. APPC/MVS returns a conversation_ID on
the CMINIT, ATBALLOC, and ATBGETC calls; a
conversation_ID is required as input on subsequent
APPC/MVS calls.

CPU loop. See ALCS entry dispatcher.

CRAS printer. A computer room agent set (CRAS)
that is a printer terminal. See computer room agent set.

CRAS display. A computer room agent set (CRAS)
that is a display terminal. See computer room agent
set.

CRAS fallback. The automatic process that occurs
when the Prime CRAS or receive only CRAS becomes
unusable by which an alternate CRAS becomes Prime
CRAS or receive only CRAS. See also Prime CRAS,
receive only CRAS, and alternate CRAS.

create service. An ALCS service that enables an
ALCS application program to create new entries for
asynchronous processing. The new ECBs compete for
system resources and, once created, are not dependent
or connected in any way with the creating ECB.

cycling the system. The ALCS system can be run in
one of four different system states. Altering the system
state is called cycling the system. See SLC link for
another use of the term “cycling”.

176 ALCS 2.4.1 Concepts and Facilities

D
DASD record. A record stored on a direct access
storage device (DASD). ALCS allows the same range
of sizes for DASD records as it allows for storage
blocks, except no size L0 DASD records exist.

data collection. An online function that collects data
about selected activity in the system and sends it to the
ALCS data collection file, if there is one, or to the ALCS
diagnostic file. See also statistical report generator.

database request module (DBRM). A data set
member created by the DB2 precompiler that contains
information about SQL statements. DBRMs are used in
the DB2 bind process. See DB2 bind.

data-collection area. An ECB area used by the ALCS
online monitor for accumulating statistics about an
entry.

data event control block (DECB). An ALCS control
block, that may be acquired dynamically by an entry to
provide a storage level and data level in addition to the
16 ECB levels. It is part of entry storage.

The ALCS DECB is independent of the MVS control
block with the same name.

Data Facility Storage Management Subsystem
(DFSMS*). An MVS operating environment that helps
automate and centralize the management of storage. It
provides the storage administrator with control over data
class, management class, storage group, and automatic
class selection routine definitions.

Data Facility Sort (DFSORT*). An MVS utility that
manages sorting and merging of data.

data file. A sequential data set, created by the system
test compiler (STC) or by the ZDATA DUMP command,
that contains data to be loaded on to the real-time
database. (An ALCS command ZDATA LOAD can be
used to load data from a data file to the real-time
database.) A data file created by STC is also called a
“pilot” or “pilot tape”.

data level. An area in the ECB or a DECB used to
hold the file address, and other information about a
record. See ECB level and DECB level.

data record information library (DRIL). A data set
used by the system test compiler (STC) to record the
formats of data records on the real-time system. DRIL
is used when creating data files.

DB2 application plan. The control structure produced
during the bind process and used by DB2 to process
SQL statements encountered during program execution.
See DB2 bind.

DB2 bind. The process by which the output from the
DB2 precompiler is converted to a usable control
structure called a package or an application plan.
During the process, access paths to the data are
selected and some authorization checking is performed.

DB2 Call Attach Facility (CAF). An interface between
DB2 and batch address spaces. CAF allows ALCS to
access DB2.

DB2 for z/OS. An IBM licensed program that provides
relational database services.

DB2 host variable. In an application program, an
application variable referenced by embedded SQL
statements.

DB2 package. Also called application package. An
object containing a set of SQL statements that have
been bound statically and that are available for
processing. See DB2 bind.

DB2 package list. An ordered list of package names
that may be used to extend an application plan.

DECB level. When an application program, running
under ALCS, reads a record from a file, it must “own” a
storage block in which to put the record. The address
of the storage block may be held in an area of a DECB
called a storage level.

Similarly, there is an area in a DECB used for holding
the 8-byte file address, record ID, and record code
check (RCC) of a record being used by an entry. This
is a data level.

The storage level and data level in a DECB, used
together, are called a DECB level.

See also ECB level.

diagnostic file. See ALCS diagnostic file.

dispatching priority. A number assigned to tasks,
used to determine the order in which they use the
processing unit in a multitasking situation.

dispense (a pool-file record). To allocate a long-term
or short-term pool-file record to a particular entry.
ALCS performs this action when requested by an
application program. See release a pool-file record.

double-byte character set. A set of characters in
which each character is represented by 2 bytes.
Languages such as Japanese, Chinese, and Korean,
which contain more symbols than can be represented
by 256 code points, require double-byte character sets.

Because each character requires 2 bytes, entering,
displaying, and printing DBCS characters requires
hardware and supporting software that are
DBCS-capable.

 Glossary 177

duplex. A communication link on which data can be
sent and received at the same time. Synonymous with
full duplex. Communication in only one direction at a
time is called “half-duplex”. Contrast with simplex
transmission.

duplex database. Synonym for duplicated database.

duplicated database. A database where each data
set is a mirrored pair. In ALCS, you can achieve this
using either ALCS facilities or DASD controller facilities
(such as the IBM 3990 dual copy facility). See mirrored
pair.

dynamic program linkage. Program linkage where
the connection between the calling and called program
is established during the execution of the calling
program. In ALCS dynamic program linkage, the
connection is established by the ALCS ENTER/BACK
services. Contrast with static program linkage.

dynamic SQL. SQL statements that are prepared and
executed within an application program while the
program is executing. In dynamic SQL, the SQL source
is contained in host language variables rather than
being coded into the application program. The SQL
statement can change several times during the
application program's execution. Contrast with
embedded SQL.

E
ECB-controlled program. A program that runs under
the control of an entry control block (ECB). These
programs can be application programs or programs that
are part of ALCS, for example the ALCS programs that
process operator commands (Z messages).
ECB-controlled programs are known as E-type
programs in TPF.

ECB level. When an application program, running
under ALCS, reads a record from file, it must “own” a
storage block in which to put the record. The address
of the storage block may be held in an area of the ECB
called a storage level.

There are 16 storage levels in the ECB. A storage
block with its address in slot zero in the ECB is said to
be attached on level zero.

Similarly, there are 16 areas in the ECB that may be
used for holding the 4-byte file addresses, record ID,
and record code check (RCC) of records being used by
an entry. These are the 16 data levels.

Storage levels and data levels, used together, are
called ECB levels.

See also DECB level.

embedded SQL. Also called static SQL. SQL
statements that are embedded within an application

program and are prepared during the program
preparation process before the program is executed.
After it is prepared, the statement itself does not change
(although values of host variables specified within the
statement can change). Contrast with dynamic SQL.

Emulation Program/Virtual Storage (EP/VS). A
component of NCP/VS that ALCS V2 uses to access
SLC networks.

ENTER/BACK. The general term for the application
program linkage mechanism provided by ALCS.

entry. The basic work scheduling unit of ALCS. An
entry is represented by its associated entry control
block (ECB). It exists either until a program that is
processing that entry issues an EXITC monitor-request
macro (or equivalent C function), or until it is purged
from the system. An entry is created for each input
message, as well as for certain purposes unrelated to
transactions. One transaction can therefore generate
several entries.

entry control block (ECB). A control block that
represents a single entry during its life in the system.

entry dispatcher. See ALCS entry dispatcher.

entry macro trace block. There is a macro trace
block for each entry. Each time an entry executes a
monitor-request macro (or a corresponding C function),
ALCS records information in the macro trace block for
the entry.

This information includes the macro request code, the
name of the program that issued the macro, and the
displacement in the program. The ALCS diagnostic file
processor formats and prints these macro trace blocks
in ALCS system error dumps.

See also system macro trace block.

entry storage. The storage associated with an entry.
It includes the ECB for the entry, storage blocks that
are attached to the ECB or DECBs, storage blocks that
are detached from the ECB or DECBs, automatic
storage blocks, and DECBs. It also includes heap
storage (for high-level language or assembler language
programs) and stack storage (for high-level language
programs).

equate. Informal term for an assignment instruction in
assembler languages.

error index byte (EIB). See SLC error index byte.

extended buffer. A storage area above 2 GB used for
large messages.

extended message format. For input and output
messages, a message format which includes a 4-byte
field for the message length.

178 ALCS 2.4.1 Concepts and Facilities

Execute Channel Program (EXCP). An MVS macro
used by ALCS V2 to interface to I/O subsystems for
SLC support.

F
fetch access. Access which only involves reading (not
writing). Compare with store access.

file address. 4-byte (8 hexadecimal digits) value or
8-byte value in 4x4 format (low order 4-bytes contain a
4-byte file address, high order 4 bytes contain
hexadecimal zeros) that uniquely identifies an ALCS
record on DASD. FIND/FILE services use the file
address when reading or writing DASD records. See
fixed file and pool file.

file address compute routine (FACE). An ALCS
routine, called by a monitor-request macro (or
equivalent C function) that calculates the file address of
a fixed-file record. The application program provides
the FACE routine with the fixed-file record type and the
record ordinal number. FACE returns the 4-byte file
address.

There is also an FAC8C monitor-request macro (or
equivalent C function), that will return an 8-byte file
address in 4x4 format.

FIND/FILE. The general term for the DASD I/O
services that ALCS provides.

fixed file. An ALCS record class – one of the classes
that reside on the real-time database. All fixed-file
records are also allocatable pool records (they have a
special status of “in use for fixed file”).

Within this class there are two record types reserved for
use by ALCS itself (#KPTRI and #CPRCR). There can
also be installation-defined fixed-file record types.

Each fixed-file record type is analogous to a relative file.
Applications access fixed-file records by specifying the
fixed-file record type and the record ordinal number.
Note however that fixed-file records are not physically
organized as relative files (logically adjacent records are
not necessarily physically adjacent).

See real-time database, record class, and record type.
See also system fixed file. Contrast with pool file.

fixed-file record. One of the two major types of record
in the real-time database (the other is a pool-file
record). When the number of records of a particular
kind will not vary, the system programmer can define a
fixed file record type for these records. ALCS
application programs accessing fixed-file records use
the ENTRC monitor-request macro to invoke the 4-byte

file address compute routine (FACE or FACS) or use
the FAC8C monitor-request macro to compute an 8-byte
file address. The equivalent C functions are face or
facs or tpf_fac8c.

fixed-file record type. (Known in TPF as FACE ID.)
The symbol, by convention starting with a hash sign (#)4

which identifies a particular group of fixed-file records.
It is called the fixed-file record type symbol. The
equated value of this symbol (called the fixed-file record
type value) also identifies the fixed-file record type.

forward chain. The third fullword of a record stored on
the ALCS database (part of the record header). When
standard forward chaining is used, this field contains
the file address of the next record in the chain, except
that the last (or only) record contains binary zeros.

full-duplex. Deprecated term for duplex.

functional message. See ALCS command.

G
general data set (GDS). The same as a general file,
but accessed by different macros or C functions in
ALCS programs.

general file. (1) A DASD data set (VSAM cluster) that
is used to communicate data between offline utility
programs and the online system. General files are not
part of the real-time database. (2) The ALCS record
class that includes all records on the general files and
general data sets. Each general file and general data
set is a separate record type within this class. See
record class and record type.

general file record. A record on a general file.

generalized trace facility (GTF). An MVS trace
facility. See also ALCS trace facility.

general sequential file. A class of sequential data set
that is for input or output. ALCS application programs
must have exclusive access to a general sequential file
before they can read or write to it. See also real-time
sequential file.

general tape. TPF term for a general sequential file.

general-use programming interface (GUPI). An
interface intended for general use in customer-written
applications.

get file storage (GFS). The general term for the pool
file dispense mechanisms that ALCS provides.

4 This character might appear differently on your equipment. It is the character represented by hexadecimal 7B.

 Glossary 179

global area. See application global area.

global resource serialization. The process of
controlling access of entries to a global resource so as
to protect the integrity of the resource.

H
half-duplex. A communication link that allows
transmission in one direction at a time. Contrast with
duplex.

halt. (1) The ALCS state when it is terminated.
(2) The action of terminating ALCS.

heap. An area of storage that a compiler uses to
satisfy requests for storage from a high-level language
(for example, calloc or malloc C functions). ALCS
provides separate heaps for each entry (if needed).
The heap is part of entry storage. Assembler language
programs may also obtain or release heap storage
using the CALOC, MALOC, RALOC, and FREEC
monitor-request macros.

High Level Assembler (HLASM). A functional
replacement for Assembler H Version 2. HLASM
contains new facilities for improving programmer
productivity and simplifying assembler language
program development and maintenance.

high-level language (HLL). A programming language
such as C or COBOL.

high-level language (HLL) storage unit. Alternative
name for a type 2 storage unit. See storage unit.

high-level network (HLN). A network that provides
transmission services between transaction processing
systems (for example, ALCS) and terminals. Strictly,
the term “high-level network” applies to a network that
connects to transaction processing systems using SLC.
But in ALCS publications, this term is also used for a
network that connects by using AX.25 or MATIP.

high-level network designator (HLD). The entry or
exit point of a block in a high-level network. For SLC
networks, it is the SLC address of a switching center
that is part of a high-level network. It comprises two
bytes in the 7-bit transmission code used by SLC.

HLN entry address (HEN). The high-level designator
of the switching center where a block enters a
high-level network.

HLN exit address (HEX). The high-level designator of
the switching center where a block leaves a high-level
network.

hold. A facility that allows multiple entries to share
data, and to serialize access to the data. The data can

be a database record, or any named data resource.
This facility can be used to serialize conflicting
processes. See also record hold and resource hold.

host variable. See DB2 host variable

I
information block. See SLC link data block.

initial storage allocation (ISA). An area of storage
acquired at initial entry to a high-level language
program. ALCS provides a separate ISA for each entry
(if required). The ISA is part of entry storage.

initiation queue. In message queuing, a local queue
on which the queue manager puts trigger messages.
You can define an initiation queue to ALCS, in order to
start an ALCS application automatically when a trigger
message is put on the queue. See trigger message.

input/output control block (IOCB). A control block
that represents an ALCS internal “task”. For example,
ALCS uses an IOCB to process a DASD I/O request.

input queue. In message queuing with ALCS, you can
define a local queue to ALCS in order to start an ALCS
application automatically when a message is put on that
queue. ALCS expects messages on the input queue to
be in PPMSG message format. See PPMSG.

installation-wide exit. The means specifically
described in an IBM software product’s documentation
by which an IBM software product may be modified by
a customer’s system programmers to change or extend
the functions of the IBM software product. Such
modifications consist of exit routines written to replace
an existing module of an IBM software product, or to
add one or more modules or subroutines to an IBM
software product for the purpose of modifying (including
extending) the functions of the IBM software product.
Contrast with user exit.

instruction step. One mode of operation of the ALCS
trace facility. Instruction step is a conversational trace
facility that stops the traced application program before
the execution of each processor instruction.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. ISPF provides a means of
generating standard screen panels and interactive
dialog between the application programmer and terminal
user.

interchange address (IA). In ALC, the 1-byte address
of a terminal interchange. Different terminal
interchanges connected to the same ALC link have
different interchange addresses. Different terminal
interchanges connected to different ALC links can have

180 ALCS 2.4.1 Concepts and Facilities

the same interchange address. See also terminal
interchange

International Programmed Airlines Reservation
System (IPARS). A set of applications for airline use.
The principal functions are reservations and message
switching.

IPARS for ALCS. The ALCS shipment includes IPARS
as a sample application, and installation verification aid
for ALCS.

K
KCN. Abbreviation for an SLC channel number. See
SLC channel.

keypointable. See application global area.

keypoint B (CTKB). A record that contains dynamic
system information that ALCS writes to DASD when it is
updated so that ALCS can restart from its latest status.

L
Language Environment*. A common run-time
environment and common run-time services for z/OS
high level language compilers.

level. See ECB level.

line number (LN). (1) In ALC, the 1-byte address of
an ALC link. Different links connected to the same
communication controller have different line numbers.
Different links connected to different communication
controllers can have the same line number.
(2) Synonym for symbolic line number.

Link Control — Airline (LICRA). The name of a
programming request for price quotation (PRPQ) to the
IBM 3705 Emulation Program (EP/VS). This modifies
EP/VS to support SLC networks.

link control block (LCB). See SLC link control block.

link data block (LDB). See SLC link data block.

link trace. See SLC link trace.

local DXCREI index (LDI). The first byte of a
communication resource indicator (CRI).

local queue. In message queuing, a queue that
belongs to the local queue manager. A local queue can
contain a list of messages waiting to be processed.
Contrast with remote queue.

lock. A serialization mechanism whereby a resource is
restricted for use by the holder of the lock. See also
hold.

log. See ALCS update log.

logging. The process of writing copies of altered
database records to a sequential file. This is the
method used to provide an up-to-date copy of the
database should the system fail and the database have
to be restored. The database records are logged to the
ALCS update log file.

logical end-point identifier (LEID). In NEF2 and ALCI
environments, a 3-byte identifier assigned to an ALC
terminal.

logical unit type 6.2 (LU 6.2). The SNA logical unit
type that supports general communication between
programs in a distributed processing environment; the
SNA logical unit type on which Common Programming
Interface – Communications (CPI-C) is built.

log in. TPF term for establishing routing between a
terminal and an application.

log on. Establish a session between an SNA terminal
and an application such as ALCS. See also routing.

logon mode. In VTAM, a set of predefined session
parameters that can be sent in a BIND request. When
a set is defined, a logon mode name is associated with
the set.

logon mode table. In VTAM, a table containing
several predefined session parameter sets, each with its
own logon mode name.

long message transmitter (LMT). A part of the
IPARS application that is responsible for blocking and
queuing printer messages for output. Also called
XLMT.

long-term pool. An ALCS record class – one of the
classes that reside on the real-time database. Within
this class, there is one record type for each DASD
record size. All long-term pool-file records are also
allocatable pool records. ALCS application programs
can use long-term pool records for long-lived or
high-integrity data. See pool file, real-time database,
record class, and record type.

L0, L1, L2, L3, ..., L8. Assembler symbols (and
defined values in C) for the storage block sizes and
record sizes that ALCS supports. See DASD record
and storage block size.

 Glossary 181

M
macro trace block. See entry macro trace block and
system macro trace block.

Mapping of Airline Traffic over IP (MATIP). A
protocol for transporting traditional airline messages
over an IP (Internet Protocol) network. Internet RFC
(Request for Comments) number 2351 describes the
MATIP protocol.

MBI exhaustion. The condition of an SLC link when a
sender cannot transmit another message because all 7
SLC message labels are already “in use”; that is, the
sender must wait for acknowledgement of a message
so that it can reuse the corresponding message label.
See also SLC link, SLC message label, and SLC
message block indicator.

message. For terminals with an Enter key, an input
message is the data that is sent to the host when the
Enter key is hit. A response message is the data that is
returned to the terminal. WTTY messages have special
“start/end of message” character sequences. One or
more input and output message pairs make up a
transaction.

message block indicator. See SLC message block
indicator.

message label. See SLC message label.

Message Queue Interface (MQI). The programming
interface provided by the IBM WebSphere MQ message
queue managers. This programming interface allows
application programs to access message queuing
services.

message queue manager. See queue manager.

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.
This enables asynchronous communication between
processes that may not be simultaneously active, or for
which no data link is active. The message queuing
service can assure subsequent delivery to the target
application.

message switching. An application that routes
messages by receiving, storing, and forwarding
complete messages. IPARS for ALCS includes a
message switching application for messages that
conform to ATA/IATA industry standards for interline
communication ATA/IATA Interline Communications
Manual, DOC.GEN/1840.

mirrored pair. Two units that contain the same data
and are referred to by the system as one entity.

monitor-request macro. Assembler language macro
provided with ALCS, corresponding to TPF “SVC-type”
or “control program” macros. Application programs use
these macros to request services from the online
monitor.

MQ Bridge. The ALCS MQ Bridge allows application
programs to send and receive messages using
WebSphere MQ for z/OS queues, without the need to
code MQ calls in those programs. The MQ Bridge
installation-wide monitor exits USRMQB0, USRMQB1,
USRMQB2, and USRMQB3 allow you to customize the
behaviour of the MQ Bridge to suit your applications.

MQSeries*. A previous name for WebSphere MQ.

multibyte character. A mixture of single-byte
characters from a single-byte character set and
double-byte characters from a double-byte character
set.

multiblock message. In SLC, a message that is
transmitted in more than one link data block. See link
data block.

Multiple Virtual Storage/Data Facility Product
(MVS/DFP*). An MVS licensed program that isolates
applications from storage devices, storage
management, and storage device hierarchy
management.

Multisystem Networking Facility (MSNF). An
optional feature of VTAM that permits these access
methods, together with NCP, to control a
multiple-domain network.

N
namelist. In message queuing, a namelist is an object
that contains a list of other objects.

native file address. For migration purposes ALCS
allows two or more file addresses to refer to the same
database or general file record. The file address that
ALCS uses internally is called the native file address.

NCP Packet Switching Interface (NPSI). An IBM
licensed program that allows communication with X.25
lines.

NetView*. A family of IBM licensed programs for the
control of communication networks.

NetView operator identifier (NetView operator ID). A
1- to 8-character name that identifies a NetView
operator.

NetView program. An IBM licensed program used to
monitor a network, manage it, and diagnose network
problems.

182 ALCS 2.4.1 Concepts and Facilities

NetView resource. A NetView operator ID which
identifies one of the following:

� A NetView operator logged on to a terminal.
� A NetView operator ID automation task. One of

these tasks is used by ALCS to route RO CRAS
messages to the NetView Status Monitor Log
(STATMON).

network control block (NCB). A special type of
message, used for communication between a
transaction processing system and a high-level network
(HLN). For example, an HLN can use an NCB to
transmit information about the network to a transaction
processing system.

For a network that connects using SLC, an NCB is an
SLC link data block (LDB). Indicators in the LDB
differentiate NCBs from other messages.

For a network that connects using AX.25, NCBs are
transmitted across a dedicated permanent virtual circuit
(PVC).

Network Control Program (NCP). An IBM licensed
program resident in an IBM 37xx Communication
Controller that controls attached lines and terminals,
performs error recovery, and routes data through the
network.

Network Control Program Packet Switching
Interface (NPSI). An IBM licensed program that
provides a bridge between X.25 and SNA.

Network Control Program/Virtual Storage (NCP/VS).
An IBM licensed program. ALCS V2 uses the EP/VS
component of NCP/VS to access SLC networks.

Network Extension Facility (NEF). The name of a
programming request for price quotation (PRPQ
P09021) that allows management of ALC networks by
NCP; now largely superseded by ALCI.

Network Terminal Option (NTO). An IBM licensed
program that converts start-stop terminal device
communication protocols and commands into SNA and
VTAM communication protocols and commands. ALCS
uses NTO to support World Trade Teletypewriter
(WTTY).

O
object. In message queuing, objects define the
attributes of queue managers, queues, process
definitions, and namelists.

offline. A function or process that runs independently
of the ALCS online monitor. For example, the ALCS
diagnostic file processor is an offline function. See also
ALCS offline program.

online. A function or process that is part of the ALCS
online monitor, or runs under its control. For example,
all ALCS commands are online functions. See also
ALCS online monitor.

open. Allocate a sequential file data set to ALCS and
open it (MVS OPEN macro). For general sequential files
this is a function of the TOPNC monitor-request macro (or
equivalent C function). ALCS automatically opens other
sequential files during restart.

| optimized local adapters (OLA) for WebSphere
| Application Server for z/OS (WAS). Built-in,
| high-speed, bi-directional adapters for calls between
| WebSphere Application Server for z/OS and ALCS in
| another address space on the same z/OS image. OLA
| allows ALCS customers to support an efficient
| integration of newer Java-based applications with
| ALCS-based applications. A set of callable services
| can be used by ALCS assembler or C/C++ programs
| for exchanging data with applications running in
| WebSphere Application Server for z/OS. For more
| information on the callable services (with names of the
| form BBOA1xxx) see the IBM Information Center for
| WebSphere Application Server - Network Deployment
| (z/OS) and search for BBOA1. You can use the
| USRWAS1 installation-wide monitor to verify the caller's
| authority and to identify input and output messages.

operator command. See ALCS command. Can also
refer to non-ALCS commands, for example, MVS or
VTAM commands.

ordinal. See communication resource ordinal and
record ordinal.

P
package. See DB2 package

package list. See DB2 package list

padded ALC. A transmission code that adds one or
more bits to the 6-bit airline line control (ALC)
transmission code so that each ALC character occupies
one character position in a protocol that uses 7- or 8-bit
transmission codes. See also airlines line control.

padded SABRE. Synonym for padded ALC.

passenger name record (PNR). A type of record
commonly used in reservation systems. It contains all
the recorded information about an individual passenger.

path. The set of components providing a connection
between a processor complex and an I/O device. For
example, the path for an IBM 3390 DASD volume might
include the channel, ESCON Director, 3990 Storage
Path, 3390 Device Adapter, and 3390 internal
connection. The specific components used in a

 Glossary 183

particular path are dynamic and may change from one
I/O request to the next. See balanced path.

pathlength. The number of machine instructions
needed to process a message from the time it is
received until the reponse is sent to the communication
facilities.

performance monitor. An online function that collects
performance data and stores it in records on the ALCS
real-time database. It can produce online performance
reports based on current data and historical data.

pilot. See data file.

pool directory update (PDU). A facility of TPF that
recovers long-term pool file addresses without running
Recoup. PDU identifies and makes available all
long-term pool-file records that have been released.

pool file. Short-term pool, long-term pool, and
allocatable pool. Within each pool file class, there is
one record type for each record size; for example,
short-term pool includes the record type L1STPOOL
(size L1 short-term pool records).

Each pool-file record type contains some records that
are in-use and some that are available. There is a
dispense function that selects an available record,
changes its status to in-use, and returns the file
address. Also, there is a release function that takes the
file address of an in-use pool-file record and changes
the record status to available.

To use a pool-file record, a program must:

1. Request the dispense function. This returns the file
address of a record. Note that the record contents
are, at this stage, unpredictable.

2. Write the initial record contents, using the file
address returned by step 1.

3. Save the file address returned by step 1.

4. Read and write the record to access and update the
information as required. These reads and writes
use the file address saved in step 3.

When the information in the record is no longer
required, a program must:

5. Delete (clear to zeros) the saved copy of the file
address (see step 3).

6. Request the release function.

See also record class. Contrast with fixed file.

pool file directory record (PFDR). The ALCS pool file
management routine keeps a directory for each size
(L1, L2, ...L8) of short-term pool file records and
long-term pool-file records. It keeps these directories in
pool file directory records.

pool-file record. ALCS application programs access
pool-file records with file addresses similar to those for
fixed-file records. To obtain a pool-file record, an
application program uses a monitor-request macro (or
equivalent C function) that specifies a 2-byte record ID
or a pool-file record type.

When the data in a pool-file record is no longer
required, the application uses a monitor-request macro
(or equivalent C function) to release the record for
reuse. See pool file.

pool-file record identifier (record ID). The record ID
of a pool-file record. On get file requests (using the
GETFC monitor-request macro or equivalent C function)
the program specifies the pool-file record ID. This
identifies whether the pool-file record is a short-term or
long-term pool-file record and also determines the
record size (L1, L2, ...L8). (Coding the 2-byte record
IDs, and the corresponding pool-file record sizes and
types, is part of the ALCS generation procedure.) See
also record ID qualifier.

pool-file record type. Each collection of short-term
and long-term pool-file records of a particular record
size (identified by the symbols L1, L2, ..., L8) is a
different record type. Each pool-file record type has a
different name. For short-term pool-file records, this is
LnSTPOOL, where Ln is the record size symbol. For
long-term pool-file records the name is LnLTPOOL.

post processor. See ALCS diagnostic file processor.

PPMSG. ALCS program-to-program message format,
used by the ALCS message router to send and receive
messages on a message routing path to another
system. In PPMSG message format, the routing control
parameter list (RCPL) precedes the message text.

primary action code. The first character of any input
message. The primary action code Z is reserved for
ALCS commands. See secondary action code.

Prime CRAS. The primary display terminal, or
NetView ID, that controls the ALCS system. See also
computer room agent set (CRAS).

process definition object. In message queuing, an
object that contains the definition of a message queuing
application. For example, a queue manager uses the
definition when it works with trigger messages.

product sensitive programming interface (PSPI). An
interface intended for use in customer-written programs
for specialized purpose only, such as diagnosing,
modifying, monitoring, repairing, tailoring or tuning of
ALCS. Programs using this interface may need to be
changed in order to run with new product releases or
versions, or as a result of service.

184 ALCS 2.4.1 Concepts and Facilities

program linkage. Mechanism for passing control
between separate portions of the application program.
See dynamic program linkage and static program
linkage.

program nesting level. One of 32 ECB areas used by
the ENTER/BACK mechanism for saving return control
data.

program-to-program interface. In NetView, a facility
that allows user programs to send data to, or receive
data from, other user programs. It also allows system
and application programs to send alerts to the NetView
hardware monitor.

P.1024. A SITA implementation of SLC. See SLC.

P.1124. A SITA implementation of SLC. See SLC.

P.1024A. The SITA implementation of airline line
control (ALC).

Q
queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface so that programs can
access messages on the queues that the queue
manager owns. WebSphere MQ for z/OS is an
example of a queue manager.

R
real-time database. The database to which ALCS
must have permanent read and write access. As an
ALCS generation option, the real-time database can be
duplicated in order to minimize the effects of a DASD
failure.

real-time sequential file. A sequential data set used
only for output. ALCS application programs can write to
any real-time sequential file without requiring exclusive
access to the data set. See also general sequential file.

real-time tape. TPF term for a real-time sequential file.

receive only (RO). The function of a communication
terminal that can receive but not send data. An
example is a printer that does not have a keyboard.

receive only CRAS. A printer terminal (or NetView
operator ID) that ALCS uses to direct status messages.
Commonly known as RO CRAS.

record. A set of data treated as a unit.

record class. The first (highest) level categorization of
ALCS DASD records. ALCS defines the following
record classes:

 Allocatable pool
Application fixed file
Configuration data set

 General file
 Long-term pool
 Short-term pool

System fixed file.

See also record type and record ordinal.

record code check (RCC). The third byte of any
record stored in the ALCS database. It is part of the
record header.

The RCC field is intended to help detect the incorrect
chaining of records which have the same record ID.
This is particularly useful for passenger name records
(PNRs), of which there are often hundreds of
thousands. A mismatch in RCC values shows that the
chain is broken, probably as a result of an application
program releasing a record too soon. (A false match
cannot be excluded, but the RCC should give early
warning of a chaining problem.)

record header. A standard format for the first 16 bytes
of a record stored on the ALCS database. It contains
the following fields:

 Record ID
Record code check

 Control byte
Application program name

 Forward chain
 Backward chain.

Not all records contain forward chains and backward
chains. Some applications extend the record header by
including extra fields. TPFDF uses an extended record
header.

record hold. A type of hold that applies to DASD
records. Applications that update records can use
record hold to prevent simultaneous updates. See also
resource hold.

record identifier (record ID). The first two bytes of a
record stored on the ALCS database, part of the record
header.

The record ID should always be used to indicate the
nature of the data in the record. For example, airlines
reservations applications conventionally store passenger
name records (PNRs) as long-term pool-file records
with a record ID of 'PR'.

When application programs read such records, they can
(optionally) request ALCS to check that the record ID
matches that which the application program expects.

When application programs request ALCS to dispense
pool file records, ALCS uses the record ID to select an
appropriate long-term or short-term pool-file record of
the requested record size (L1, L2,...,L8). See also
record ID qualifier.

 Glossary 185

record ID qualifier. A number 0 through 9 that
differentiates between record types that have the same
record ID.

For compatibility with previous implementations of the
record ID qualifier, ALCS also accepts the character
qualifiers P and O. P (primary) is equivalent to 0, and
O (overflow) is equivalent to 1.

record ordinal. The relative record number within a
record type. See record class and record type.

record size. See DASD record.

record type. The second level categorization of ALCS
DASD records. Within any one record class, the
records are categorized into one or more record types.
See also record type number, record type symbol,
record class and record ordinal.

record type number. A number that identifies a
record type.

record type symbol. The character string that
identifies a fixed-file record type (#xxxxx), a long-term
pool-file record type (LsLTPOOL), a short-term pool-file
record type (LsSTPOOL), or a general file (GF-nnn).
The value of the record type symbol is the record type
number.

Recoup. A real-time database validation routine which
runs online in the ALCS system. (Note that, while the
Recoup routines of TPF consist of a number of phases,
some online and some offline, the ALCS Recoup is a
single online phase that runs, without operator
intervention, in any system state.)

Recoup reads selected fixed-file records in the
database, and then follows up all chains of pool-file
records in the database, noting that these records are in
use and giving a warning of any that have been
corrupted or released. It then updates the pool file
directory records (PFDRs) to show the status of all
records.

The ALCS pool file dispense procedure identifies
records not in a chain (and so apparently available for
reuse) that have not been released.

recoup descriptors. These describe the structure of
the entire real-time database.

reentrant. The attribute of a program or routine that
allows the same copy of the program or routine to be
used concurrently by two or more tasks. All ALCS
application programs must be reentrant.

relational database. A database that is in accordance
with the relational model of data. The database is
perceived as a set of tables, relationships are
represented by values in tables, and data is retrieved by

specifying a result table that can be derived from one or
more base tables.

release (a pool-file record). To make available a
long-term or short-term pool-file record so that it can be
subsequently dispensed. An application program
requests the release action. See dispense a pool-file
record.

release file storage (RFS). The general term for the
pool-file release mechanisms that ALCS provides.

remote queue. In message queuing, a queue that
belongs to a remote queue manager. Programs can
put messages on remote queues, but they cannot get
messages from remote queues. Contrast with local
queue.

remote terminal trace. One mode of operation of the
ALCS trace facility. Remote terminal trace is a
conversational trace facility to interactively trace entries
from a terminal other than your own.

reservations. An online application which is used to
keep track of seat inventories, flight schedules, and
other related information. The reservation system is
designed to maintain up-to-date data and to respond
within seconds or less to inquiries from ticket agents at
locations remote from the computing system.

IPARS for ALCS includes a sample reservations
application for airlines.

reserve. Unassign a general sequential file from an
entry but leave the file open, so that another (or the
same) entry can assign it. Application programs can
use the TRSVC monitor-request macro (or equivalent C
function) to perform this action.

resource. Any facility of a computing system or
operating system required by a job or task, and
including main storage, input/output devices, processing
unit, data sets, and control or processing programs.
See also communication resource.

resource entry index (REI). The second and third
bytes of a communication resource identifier (CRI).

resource hold. A type of hold that can apply to any
type of resource. Applications can define resources
according to their requirements, and identify them to
ALCS using a unique name. See also record hold.

RO CRAS. See receive only CRAS.

rollback. An operation that reverses all the changes
made during the current unit of recovery. After the
operation is complete, a new unit of recovery begins.

routing. The connection between a communication
resource connected to ALCS (typically a terminal on an

186 ALCS 2.4.1 Concepts and Facilities

SNA or non-SNA network) and an application (running
under ALCS or another system). Also sometimes called
“logging in”, but this must be distinguished from logging
on, which establishes the SNA connection (session)
between the terminal and ALCS.

routing control parameter list (RCPL). A set of
information about the origin, destination, and
characteristics of a message. With each input
message, ALCS provides an RCPL in the ECB. An
output message that is sent using the ROUTC (routc)
service also has an RCPL associated with it.

S
scroll. To move a display image vertically or
horizontally to view data that otherwise cannot be
observed within the boundaries of the display screen.

secondary action code. The second character of an
ALCS command. (ALCS commands are made up of 5
characters: Z followed by a secondary action code.)
See primary action code.

sequential file. A file in which records are processed
in the order in which they are entered and stored in the
file. See general sequential file and real-time sequential
file.

serialization. A service that prevents parallel or
interleaved execution of two or more processes by
forcing the processes to execute serially.

For example, two programs can read the same data
item, apply different updates, and then write the data
item. Serialization ensures that the first program to
start the process (read the item) completes the process
(writes the updated item) before the second program
can start the process – the second program applies its
update to the data item which already contains the first
update. Without serialization, both programs can start
the process (read the item) before either completes the
process (writes the updated item) – the second write
destroys the first update. See also assign, lock, and
hold.

Serviceability Level Indicator Processing (SLIP). An
MVS operator command which acts as a problem
determination aid.

short-term pool. An ALCS record class – one of the
classes that resides on the real-time database. Within
this class, there is one record type for each DASD
record size. All short-term pool-file records are also
allocatable pool records (they have a special status of

“in use for short-term pool”). ALCS application
programs can use short-term pool records for
short-lived low-integrity data. See pool file, real-time
database, record class, and record type.

simplex transmission. Data transmission in one
direction only. See also duplex and half-duplex.

sine in/out. Those applications that provide different
functions to different end users of the same application
can require the user to sine in5 to the specific functions
they require. The sine-in message can, for example,
include an authorization code.

single-block message. In SLC, a message that is
transmitted in one link data block. See link data block.

single-phase commit. A method in which a program
can commit updates to a message queue or relational
database without coordinating those updates with
updates the program has made to resources controlled
by another resource manager. Contrast with two-phase
commit.

SLC. See synchronous link control.

SLC channel. A duplex telecommunication line using
ATA/IATA SLC protocol. There can be from 1 to 7
channels on an SLC link.

SLC error index byte (EIB). A 1-byte field generated
by Line Control – Airline (LICRA) and transferred to
ALCS with each incoming link control block and link
data block. Certain errors cause LICRA to set on
certain bits of the EIB. See also Link Control — Airline
(LICRA).

SLC information block. Synonym for SLC link data
block.

SLC link. A processor-to-processor or
processor-to-HLN connection. ALCS supports up to
255 SLC links in an SLC network.

An SLC link that is in the process of an open, close,
start, or stop function is said to be “cycling”.

SLC link control block (LCB). A 4-byte data item
transmitted across an SLC link to control
communications over the link. LCBs are used, for
example, to confirm that a link data block (LDB) has
arrived, to request retransmission of an LDB, and so on.

SLC link data block (LDB). A data item, transmitted
across an SLC link, that contains a message or part of
a message. One LDB can contain a maximum of 240
message characters, messages longer than this must

5 This spelling is established in the airline industry.

 Glossary 187

be split and transmitted in multiple LDBs. Synonymous
with SLC information block.

SLC link trace. A function that provides a record of
SLC communication activity. It can either display the
information in real time or write it to a diagnostic file for
offline processing, or both. Its purpose is like that of an
NCP line trace, but for the SLC protocol.

SLC message block indicator (MBI). A 1-byte field in
the SLC link data block that contains the SLC message
label and the block number. A multiblock message is
transmitted in a sequence of up to 16 link data blocks
with block numbers 1, 2, 3, ... 16. See also multiblock
message, SLC link data block, and SLC message label.

SLC message label. A number in the range 0 through
7, excluding 1. In P.1024, consecutive multiblock
messages are assigned SLC message labels in the
sequence: 0, 2, 3, ... 6, 7, 0, 2, and so on. In P.1124,
single-block messages are (optionally) also included in
the sequence. See also P.1024, P.1124 and SLC
message block indicator.

SLC transmission status indicator (TSI). A 1-byte
field in the SLC link data block that contains the SLC
transmission sequence number. See also SLC
transmission sequence number.

SLC transmission sequence number (TSN). A
number in the range 1 through 31. Consecutive SLC
link data blocks transmitted in one direction on one SLC
channel are assigned TSNs in the sequence: 1, 2, 3, ...
30, 31, 1, 2, and so on. See also SLC link data block,
SLC channel, and SLC transmission status indicator.

SLC Type A traffic. See Type A traffic.

SLC Type B traffic. See Type B traffic.

Société Internationale de Télécommunications
Aéronautiques (SITA). An international organization
which provides communication facilities for use within
the airline industry.

SQL Communication Area (SQLCA). A structure
used to provide an application program with information
about the execution of its SQL statements.

SQL Descriptor Area (SQLDA). A structure that
describes input variables, output variables, or the
columns of a result table used in the execution of
manipulative SQL statements.

stack. An area of storage that a compiler uses to
allocate variables defined in a high-level language.
ALCS provides separate stacks for each entry (if
needed). The stack is part of entry storage.

standard message format. For input and output
messages, a message format which includes a 2-byte
field for the message length.

standby. The state of ALCS after it has been
initialized but before it has been started. Standby is not
considered one of the system states.

static program linkage. Program linkage where the
connection between the calling and called program is
established before the execution of the program. The
connection is established by the assembler, compiler,
prelinker, or linkage editor. Static program linkage does
not invoke ALCS monitor services. See also dynamic
program linkage.

static SQL. See embedded SQL.

statistical report generator (SRG). An offline ALCS
utility that is a performance monitoring tool. It takes the
data written to the ALCS data collection or diagnostic
file processor by the data collection function and
produces a variety of reports and bar charts. The SRG
is the equivalent of TPF “data reduction”.

STATMON. See NetView resource.

storage block. An area of storage that ALCS allocates
to an entry. It is part of entry storage. See storage
block sizes.

storage block size. ALCS allows storage blocks of up
to 9 different sizes. These are identified in programs by
the assembler symbols (or defined C values) L0, L1, L2,
..., L8. Installations need not define all these block
sizes but usually define at least the following:

Size L0 contains 127 bytes of user data
Size L1 contains 381 bytes of user data
Size L2 contains 1055 bytes of user data
Size L3 contains 4000 bytes of user data
Size L4 contains 4095 bytes of user data.

The system programmer can alter the size in bytes of
L1 through L4, and can specify the remaining block
sizes.

storage level. An area in the ECB or a DECB used to
hold the address and size of a storage block. See ECB
level and DECB level.

storage unit. The ALCS storage manager allocates
storage in units called storage units. Entry storage is
suballocated within storage units; for example, one
storage unit can contain an ECB and several storage
blocks attached to that ECB.

ALCS uses three types of storage unit:

� Prime and overflow storage units for entry storage
(also called type 1 storage units).

� High-level language storage units for stack storage
(also called type 2 storage units).

188 ALCS 2.4.1 Concepts and Facilities

� Storage units for heap storage for programs (also
called type 3 storage units).

The size of a storage unit, and the number of each type
of storage unit, is defined in the ALCS generation. See
entry storage.

store access. Access which only involves writing (not
reading). Compare with fetch access.

striping. A file organization in which logically adjacent
records are stored on different physical devices. This
organization helps to spread accesses across a set of
physical devices.

Structured Query Language (SQL). a standardized
language for defining and manipulating data in a
relational database.

symbolic line number (SLN). In TPF, a 1-byte
address of an ALC link, derived from the line number
but adjusted so that all ALC links connected to the TPF
system have a different symbolic line number. See also
line number.

Synchronous Data Link Control (SDLC). A discipline
conforming to subsets of the Advanced Data
Communication Control Procedures (ADCCP) of the
American National Standards Institute (ANSI) and
High-level Data Link Control (HDLC) of the International
Organization for Standardization, for managing
synchronous, code-transparent, serial-by-bit information
transfer over a link connection.

Transmission exchanges can be duplex or half-duplex
over switched or nonswitched links. The configuration
of the link connection can be point-to-point, multipoint,
or loop.

Synchronous Link Control (SLC). A discipline
conforming to the ATA/IATA Synchronous Link Control,
as described in the ATA/IATA publication ATA/IATA
Interline Communications Manual, ATA/IATA document
DOC.GEN 1840.

syncpoint. An intermediate or end point during
processing of a transaction at which the transaction's
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

system error. Error that the ALCS monitor detects.
Typically, ALCS takes a dump, called a system error
dump, to the ALCS diagnostic file. See also ALCS
diagnostic file and ALCS diagnostic file processor. See
also system error dump, system error message.

system error dump. (1) A storage dump that ALCS
writes to the ALCS diagnostic file when a system error
occurs. See also ALCS diagnostic file and system
error. (2) The formatted listing of a storage dump

produced by the ALCS diagnostic file processor. See
also ALCS diagnostic file processor.

system error message. A message that ALCS sends
to receive only CRAS when a system error occurs. See
also receive only CRAS and system error.

system error option. A parameter that controls what
action ALCS takes when it detects a system error. See
also system error.

system fixed file. An ALCS record class – one of the
classes that reside on the real-time database. All
system fixed-file records are also allocatable pool
records (they have a special status of “in use for system
fixed file”).

System fixed-file records are reserved for use by ALCS
iteslf. See real-time database, record class, and record
type.

system macro trace block. There is one system
macro trace block. Each time an entry issues a
monitor-request macro (or equivalent C function), ALCS
records information in the system macro trace block.

This information includes the ECB address, the macro
request code, the name of the program that issued the
macro, and the displacement in the program. The
ALCS diagnostic file processor formats and prints the
system macro trace block in ALCS system error dumps.
See also entry macro trace block.

System Modification Program/Extended (SMP/E).
An IBM licensed program used to install software and
software changes on MVS systems. In addition to
providing the services of SMP, SMP/E consolidates
installation data, allows flexibility in selecting changes to
be installed, provides a dialog interface, and supports
dynamic allocation of data sets.

Systems Application Architecture* (SAA*). A set of
software interfaces, conventions, and protocols that
provide a framework for designing and developing
applications with cross-system consistency.

Systems Network Architecture (SNA*). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of networks.

system sequential file. A class of sequential data
sets used by ALCS itself. Includes the ALCS diagnostic
file, the ALCS data collection file, and the ALCS update
log file or files.

system state. The ALCS system can run in any of the
following system states: IDLE, CRAS, message
switching (MESW), and normal (NORM).

 Glossary 189

Each state represents a different level of availability of
application functions. Altering the system state is called
“cycling the system”. See also standby.

system test compiler (STC). An offline ALCS utility
that compiles data onto data files for loading on to the
real-time database. STC also builds test unit tapes
(TUTs) for use by the system test vehicle (STV).

system test vehicle (STV). An online ALCS function
that reads input messages from a general sequential file
test unit tape (TUT) and simulates terminal input. STV
intercepts responses to simulated terminals and writes
them to the ALCS diagnostic file.

T
terminal. A device capable of sending or receiving
information, or both. In ALCS this can be a display
terminal, a printer terminal, or a NetView operator
identifier.

terminal address (TA). In ALC, the 1-byte address of
an ALC terminal. Different terminals connected to the
same terminal interchange have different terminal
addresses. Different terminals connected to different
terminal interchanges can have the same terminal
address. See also terminal interchange.

terminal circuit identity (TCID). Synonym for line
number.

terminal hold. When an ALCS application receives an
input message, it can set terminal hold on for the input
terminal. Terminal hold remains on until the application
sets it off. The application can reject input from a
terminal that has terminal hold set on. Also referred to
as AAA hold.

terminal interchange (TI). In ALC, synonym for
terminal control unit.

terminate. (1) To stop the operation of a system or
device. (2) To stop execution of a program.

test unit tape (TUT). A general sequential file that
contains messages for input to the system test vehicle
(STV). TUTs are created by the system test compiler
(STC).

time available supervisor (TAS). An ALCS or TPF
function that creates and dispatches low priority entries.

time-initiated function. A function initiated after a
specific time interval, or at a specific time. In ALCS this
is accomplished by using the CRETC monitor-request
macro or equivalent C function. See create service.

TP profile. The information required to establish the
environment for, and attach, an APPC/MVS transaction

program on MVS, in response to an inbound allocate
request for the transaction program.

trace facility. See ALCS trace facility, generalized
trace facility, and SLC link trace.

transaction. The entirety of a basic activity in an
application. A simple transaction can require a single
input and output message pair. A more complex
transaction (such as making a passenger reservation)
requires a series of input and output messages.

Transaction Processing Facility (TPF). An IBM
licensed program with many similarities to ALCS. It
runs native on IBM System/370 machines, without any
intervening software (such as MVS). TPF supports only
applications that conform to the TPF interface. In this
book, TPF means Airline Control Program (ACP), as
well as all versions of TPF.

Transaction Processing Facility Database Facility
(TPFDF). An IBM licensed program that provides
database management facilities for programs that run in
an ALCS or TPF environment.

Transaction Processing Facility/Advanced Program
to Program Communications (TPF/APPC). This
enables LU 6.2 for TPF.

Transaction Processing Facility/Data Base
Reorganization (TPF/DBR). A program which
reorganizes the TPF real-time database.

Transaction Processing Facility/MVS (TPF/MVS).
Alternative name for ALCS V2.

Transaction program identifier (TP_ID). A unique
8-character token that APPC/MVS assigns to each
instance of a transaction program. When multiple
instances of a transaction program are running
sumultaneously, they have the same transaction
program name, but each has a unique TP_ID.

transaction scheduler name. The name of an
APPC/MVS scheduler program. The ALCS transaction
scheduler name is ALCSx000, where x is the ALCS
system identifier as defined during ALCS generation.

transfer vector. An ALCS application program written
in assembler, SabreTalk, or C, can have multiple entry
points for dynamic program linkage. These entry points
are called transfer vectors. Each transfer vector has a
separate program name.

transmission status indicator. See SLC transmission
status indicator.

transmission sequence number. See SLC
transmission sequence number.

190 ALCS 2.4.1 Concepts and Facilities

trigger event. In message queuing, an event (such as
a message arriving on a queue) that causes a queue
manager to create a trigger message on an initiation
queue.

trigger message. In message queuing, a message
that contains information about the program that a
trigger monitor is to start.

trigger monitor. In message queuing, a
continuously-running application that serves one or
more initiation queues. When a trigger message arrives
on an initiation queue, the trigger monitor retrieves the
message. When ALCS acts as a trigger monitor, it
uses the information in the trigger message to start an
ALCS application that serves the queue on which a
trigger event occurred.

triggering. In message queuing, a facility that allows a
queue manager to start an application automatically
when predetermined conditions are met.

TSI exhaustion. The condition of an SLC channel
when a sender cannot transmit another SLC link data
block (LDB) because the maximum number of
unacknowledged LDBs has been reached. The sender
must wait for acknowledgement of at least one LDB so
that it can transmit further LDBs. See also SLC
channel, SLC link data block, SLC transmission
sequence number, and SLC transmission status
indicator.

two-phase commit. A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

type. See record type.

Type A traffic. ATA/IATA conversational traffic – that
is, high-priority low-integrity traffic transmitted across an
SLC or AX.25 link.

Type B application-to-application program
(BATAP). In any system (such as ALCS) that
communicates with SITA using AX.25 or MATIP, this is
the program which receives and transmits type B
messages.

Type B traffic. ATA/IATA conventional traffic – that is,
high-integrity, low-priority traffic transmitted across an
SLC or AX.25 link or a MATIP TCP/IP connection.

type 1 pool file dispense mechanism. The
mechanism used in ALCS prior to V2 Release 1.3 (and
still available in subsequent releases) to dispense both
short-term and long-term pool-file records.

type 1 storage unit. Prime or overflow storage unit for
entry storage. See storage unit.

type 2 pool file dispense mechanisms. The
mechanisms available since ALCS V2 Release 1.3 to
dispense pool-file records (the mechanisms are different
for short-term and long-term pool-file records).

IBM recommends users to migrate to type 2 dispense
mechanisms as part of their migration process.

type 2 storage unit. High-level language storage unit
for stack storage. See storage unit.

type 3 storage unit. Storage unit for heap storage for
programs. See storage unit.

U
unit of recovery. A recoverable sequence of
operations within a single resource manager (such as
WebSphere MQ for z/OS or DB2 for z/OS). Compare
with unit of work.

unit of work. A recoverable sequence of operations
performed by an application between two points of
consistency. Compare with unit of recovery.

Universal Communications Test Facility (UCTF). An
application used by SITA for SLC protocol acceptance
testing.

update log. See ALCS update log.

user data-collection area. An optional extension to
the data-collection area in the ECB. Application
programs can use the DCLAC macro to update or read
the user data-collection area.

user exit. A point in an IBM-supplied program at which
a user exit routine can be given control.

user exit routine. A user-written routine that receives
control at predefined user exit points. User exit routines
can be written in assembler or a high-level language.

V
version number. In ALCS and TPF, two characters
(not necessarily numeric), optionally used to distinguish
between different versions of a program. Sometimes
also used with other application components such as
macro definitions.

virtual file access (VFA). An ALCS caching facility for
reducing DASD I/O. Records are read into a buffer,
and subsequent reads of the same record are satisfied
from the buffer. Output records are written to the
buffer, either to be written to DASD – immediately or at
a later time – or to be discarded when they are no
longer useful.

 Glossary 191

virtual SLC link. Used to address an X.25 PVC or
TCP/IP resource for transmitting and receiving Type B
traffic. Some applications (such as IPARS MESW)
address communication resources using a symbolic line
number (SLN) instead of a CRI. These applications can
address X.25 PVC and TCP/IP resources by converting
the unique SLN of a virtual SLC link to the CRI of its
associated X.25 PVC or TCP/IP resource.

W
| WAS Bridge. The ALCS WAS Bridge allows ALCS
| application programs to send and receive messages
| using optimized local adapters (OLA) for WebSphere
| Application Server for z/OS without the need to code
| those callable services in ALCS programs. The ALCS
| WAS Bridge installation-wide monitor exits USRWAS3,
| USRWAS4, USRWAS5, and USRWAS6 allow you to
| customize the behaviour of the WAS Bridge to suit your
| applications.

WebSphere* MQ for z/OS. An IBM product that
provides message queuing services to systems such as

CICS, IMS, ALCS or TSO. Applications request
queuing services through MQI.

wide character. A character whose range of values
can represent distinct codes for all members of the
largest extended character set specified among the
supporting locales. For the z/OS XL C/C++ compiler,
the character set is DBCS, and the value is 2 bytes.

workstation trace. One mode of operation of the
ALCS trace facility. Workstation trace controls the
remote debugger facility. The remote debugger is a
source level debugger for C/C++ application programs.

World Trade Teletypewriter (WTTY). Start-stop
telegraph terminals that ALCS supports through
Network Terminal Option (NTO).

Z
Z message. See ALCS command.

192 ALCS 2.4.1 Concepts and Facilities

 Bibliography

Note that unless otherwise specified, the publications
listed are those for the z/OS platform.

Airline Control System Version 2
Release 4.1
� Application Programming Guide, SH19-6948

� Application Programming Reference – Assembler
Language, SH19-6949

� Application Programming Reference – C Language,
SH19-6950

� Concepts and Facilities, SH19-6953

� General Information Manual, GH19-6738

� Installation and Customization, SH19-6954

� Licensed Program Specifications, GC34-6327

� Messages and Codes, SH19-6742

� Operation and Maintenance, SH19-6955

� Program Directory, GI10-2577

� ALCS World Wide Web Server User Guide

� OCTM User Guide

 MVS
� Data Areas, Volumes 1 through 5, GA22-7581

through GA22-7585

� Diagnosis Reference, GA22-7588

� Diagnosis Tools and Service Aids, GA22-7589

� Initialization and Tuning Guide, SA22-7591

� Initialization and Tuning Reference, SA22-7592

� Installation Exits, SA22-7593

� IPCS Commands, SA22-7594

� IPCS User’s Guide, SA22-7596

� JCL Reference, SA22-7597

� JCL User’s Guide, SA22-7598

� JES2 Initialization and Tuning Guide, SA22-7532

� JES2 Initialization and Tuning Reference,
SA22-7533

� Program Management: User's Guide and
Reference, SA22-7643

� System Codes, SA22-7626

� System Commands, SA22-7627

� System Messages, Volumes 1 through 10,
SA22-7631 through SA22-7640

 APPC/MVS
� MVS Planning: APPC/MVS Management,

SA22-7599

� MVS Programming: Writing Transaction Programs
for APPC/MVS, SA22-7621

 DFSMS
� Access Method Services for Catalogs, SC26-7394

� DFSMSdfp Storage Administration Reference,
SC26-7402

� DFSMSdss Storage Administration Guide,
SC35-0423

� DFSMSdss Storage Administration Reference,
SC35-0424

� DFSMShsm Storage Administration Guide,
SC35-0421

� DFSMShsm Storage Administration Reference,
SC35-0422

 � Introduction, SC26-7397

 RMF
� RMF Report Analysis, SC33-7991

� RMF User’s Guide, SC33-7990

Data Facility Sort (DFSORT)
� Application Programming Guide, SC33-4035

� Messages, Codes and Diagnostic Guide,
SC26-7050

 Language Environment
� Language Environment Concepts Guide,

SA22-7567

� Language Environment Customization, SA22-7564

� Language Environment Debugging Guide,
GA22-7560

� Language Environment Programming Guide,
SA22-7561

� Language Environment Programming Reference,
SA22-7562

� Language Environment Run-Time Messages,
SA22-7566

© Copyright IBM Corp. 2003, 2010 193

z/OS XL C/C++
� Standard C++ Library Reference, SC09-4949

� z/OS XL C/C++ Compiler and Run-Time Migration
Guide, GC09-4913

� z/OS XL C/C++ Language Reference, SC09-4815

� z/OS XL C/C++ Messages, GC09-4819

� z/OS XL C/C++ Programming Guide, SC09-4765

� z/OS XL C/C++ Run-Time Library Reference,
SA22-7821

� z/OS XL C/C++ User's Guide, SC09-4767

 COBOL
� Enterprise COBOL for z/OS and OS/390 Language

Reference, SC27-1408

� Enterprise COBOL for z/OS and OS/390
Programming Guide, SC27-1412

� VisualAge COBOL for OS/390 and VM Language
Reference, SC26-9046

� VisualAge COBOL for OS/390 and VM
Programming Guide, SC26-9049

 PL/I
� Enterprise PL/I for z/OS and OS/390 Language

Reference, SC27-1460

� Enterprise PL/I for z/OS and OS/390 Messages and
Codes, SC27-1461

� Enterprise PL/I for z/OS and OS/390 Programming
Guide, SC27-1457

� VisualAge PL/I for OS/390 Compile-Time Messages
and Codes, SC26-9478

� VisualAge PL/I for OS/390 Language Reference,
SC26-9476

� VisualAge PL/I for OS/390 Programming Guide,
SC26-9473

High Level Assembler
� Language Reference, SC26-4940

� Programmer’s Guide, SC26-4941

 CPI-C
� SAA CPI-C Reference, SC09-1308

DB2 for z/OS
� Administration Guide, SC18-9840

� Application Programming and SQL Guide,
SC18-9841

 � Codes, GC18-9843

� Command Reference, SC18-9844

� Installation Guide, GC18-9846

 � Messages, GC18-9849

� SQL Reference, SC18-9854

� Utility Guide and Reference, SC18-9855

� DB2 for z/OS What's New?, GC18-9856

 ISPF
� ISPF Dialog Developer’s Guide, SC34-4821

� ISPF Dialog Tag Language, SC34-4824

� ISPF Planning and Customizing, GC34-4814

WebSphere MQ for z/OS
� An Introduction to Messaging and Queuing,

GC33-0805

� Application Programming Guide, SC34-6595

� Application Programming Reference, SC34-6596

� Command Reference, SC34-6597

� Concepts and Planning Guide, GC34-6582

 � Intercommunication, SC34-6587

� Messages and Codes, GC34-6602

� MQI Technical Reference, SC33-0850

� Problem Determination Guide, GC34-6600

� System Administration Guide, SC34-6585

| WebSphere Application Server
| for z/OS
| � IBM Information Center for WebSphere Application
| Server

| � IBM Information Center for WebSphere Application
| Server - Network Deployment z/OS

| � WebSphere on z/OS - Optimized Local Adapters
| (Redpaper), REDP-4550

194 ALCS 2.4.1 Concepts and Facilities

 Tivoli NetView
� Administration Reference, SC31-8854

� Automation Guide, SC31-8853

� Installation, Getting Started, SC31-8872

� User's Guide, GC31-8849

� Security Reference, SC31-8870

 SMP/E
 � Reference, SA22-7772

� User’s Guide, SA22-7773

Communications Server IP
(TCP/IP)
� API Guide, SC31-8788

� Configuration Guide, SC31-8775

� Configuration Reference, SC31-8776

� Diagnosis Guide, SC31-8782

� Implementation Volume 3: High Availability,
Scalability, and Performance, SG24-7534

� IP and SNA Codes, SC31-8791

� Messages Volume 1, SC31-8783

� Messages Volume 2, SC31-8784

� Messages Volume 3, SC31-8785

� Messages Volume 4, SC31-8786

� Migration Guide, SC31-8773

 TPF
� Application Programming, SH31-0132

� Concepts and Structures, GH31-0139

� C/C++ Language Support Users Guide, SH31-0121

� General Macros, SH31-0152

� Library Guide, GH31-0146

� System Macros, SH31-0151

TPF Database Facility (TPFDF)
� Database Administration, SH31-0175

� General Information Manual, GH31-0177

� Installation and Customization, GH31-0178

� Programming Concepts and Reference, SH31-0179

� Structured Programming Macros, SH31-0183

 � Utilities, SH31-0185

 TSO/E
 � Administration, SA22-7780

 � Customization, SA22-7783

� System Programming Command Reference,
SA22-7793

� User’s Guide, SA22-7794

Communications Server SNA
(VTAM)
� IP and SNA Codes, SC31-8791

 � Messages, SC31-8790

� Network Implementation , SC31-8777

 � Operations, SC31-8779

 � Programming, SC31-8829

� Programmers’ LU6.2 Guide, SC31-8811

� Programmers’ LU6.2 Reference, SC31-8810

� Resource Definition Reference, SC31-8778

Security Server (RACF)
� RACF General User’s Guide, SA22-7685

� RACF Messages and Codes, SA22-7686

� RACF Security Administrator’s Guide, SA22-7683

Other IBM publications
� IBM Dictionary of Computing, ZC20-1699

� IBM 3270 Information Display System: Data Stream
Programmer’s Reference, GA23-0059

� Input/Output Configuration Program User’s Guide
and Reference, SB0F-3741

� NTO Planning, Migration and Resource Definition,
SC30-3347

� Planning for NetView, NCP, and VTAM, SC31-7122

� SNA Formats, GA27-3136

� X.25 NPSI Planning and Installation, SC30-3470

� z/Architecture Principles of Operation, SA22-7832

CD-ROM Softcopy collection kits
� IBM Online Library: Transaction Processing and

Data Collection, SK2T-0730

� IBM Online Library: z/OS Collection, SK3T-4269

� IBM Online Library: z/OS Software Products
Collection, SK3T-4270

� The Best of APPC, APPN and CPI-C Collection,
SK2T-2013

 Bibliography 195

 SITA publications
� ACS protocol acceptance tool, SITA document

032-1/LP-SD-001

� Communications control procedure for connecting
IPARS agent set control unit equipment to a SITA
SP, SITA document P.1024B (PZ.7130.1)

� P.1X24 automatic testing (with UCTF on DIS), SITA
document 032-1/LP-SDV-001

� P.1024 Test Guide, SITA Document PZ.1885.3

� Status Control Service Step 2: Automatic Protected
Report to ACS, SITA document 085-2/LP-SD-001

� Synchronous Link Control Procedure, SITA
Document P.1124

SITA produces a series of books which describe the
SITA high level network and its protocols. These may
be obtained from:

Documentation Section
SITA
112 Avenue Charles de Gaulle
92522 Neuilly sur Seine
France

Other non-IBM publications
Systems and Communications Reference Manual (Vols
1-7). This publication is available from the International
Air Transport Association (IATA). You can obtain
ordering information from the IATA web site
<http://www.iata.org/> or contact them directly by
telephone at +1(514) 390-6726 or by e-mail at
Sales@iata.org.

196 ALCS 2.4.1 Concepts and Facilities

 Index

A
AAA, agents assembly area

communication resource ordinal 49
data-gathering transactions 28
hold, terminal hold facility 28
records in VFA 83

abbreviations, list of 167
acronyms, list of 167
add item index

See AIX
Airlines Control Interconnection (ALCI) xv
AIX 135
ALCS data-collection file 95
ALCS diagnostic file 94
ALCS diagnostic file processor

general description 13
ALCS entry dispatcher

general description 101
ALCS entry dispatcher work lists

defer 101
deferred IOCB 101
delay 101
general description 101
input 101
IOCB 101
schematic format of 102

ALCS resources
See resources

ALCS update-log file 95
ALCS user file 95
algorithm-based addressing

file addresses 78
allocatable pool

general description 75
alternate CRAS 45
alternate printer CRAS 45
AMS commands 157
APPC

entry management 109
application databases

describing to Recoup 129
application global area 107

See also global area
application loop timeout 103
application processes, SQL threads 109
application program load list 166
application programs

24-bit addressing mode 165
31-bit addressing mode 165
CPI-C and APPC 110
managing 165

application programs (continued)
MQI 110
naming 166
reentrant 35
TCP/IP 110
transferring data between 69
utility 159
WAS adapter 110

application sequential files 96
authorization 27
automated operations 119

B
backward chains 130

C
C language functions

for entry management 149
for global area processing 151
for program linkage 152
for sequential file processing 148
waitc 104

CALOC 113
canned messages 29
CE1USA

general description 37
chain-chasing 133
chaining

pool file records 130
chains

backward 66, 130
fields in header 82
forward 66, 130
standard 66, 130

CISIZE 33
CISIZE, VSAM control interval 158
COMIC 49
communication

between entries 106
macros for 145
SLC network 137

communication configurations
defining 52
updating 52

communication equipment
checking 143

communication protocols 41
communication resource identifier

See CRI

© Copyright IBM Corp. 2003, 2010 197

communication resource name
See CRN

communication resource ordinal
general description 48
using COMIC to get the ordinal 49

computer room agent set
See CRAS

control
loss of by entries 103

control byte 82
control interval, (VSAM) 33
CPI-C calls

entry management 109
CPU loop

See ALCS entry dispatcher
CRAS

alternate 45
alternate printer 45
AP1, routing NCBs to NPDA 47
AT4, routing error messages 47
general description 45
prime 45, 48
receive only 45, 48
reserved CRNs and CRIs 48

CRAS terminals
addressing 47
authority 47
in relation to SAF 47

CRI
CRAS, reserved CRIs 48
in input messages 99
SLC 45
specifying one or more 44
WTTY 45

CRN
general description 44
NetView 44
reserved 44
SLC 44
WTTY 44

cross-system ID
See CSID

CSID, cross-system ID 50
cursor

SQL 109

D
DASD processing

macros for 146
DASD records

standard header format for 81
data

sharing
between entries 107
with other systems 55

data collection
file 95
general description 39

data event control block
See DECB

data gathering transactions 27
data levels

See ECB levels
data set switch 98
data sets

allocating 158
cataloged 98
CDS 89
CDS0 89
CDS1 89
CDS2 89
creating 90
DASD 89
DASD configuration 89
ESDS (entry-sequenced) 157
general description 61
online and offline copies of 153
referencing 158
RRDS (relative-record) 157
spill

See spill data sets
updating 90, 158

data structures
specifying to Recoup 129

databases
application

See application databases
duplicating 62
extending 84
organizing 62
real-time

See real-time database (ALCS)
relational, sharing data 56
reorganizing 84
test

See test databases
testing

See test database facility
DB2

sharing data 56
DECB

general description 38
defaults

logging 155
defer list 101
defer/delay loops 105
deferred IOCB list 101
delay and defer processing 104
delay list 101
delete item index

See DIX

198 ALCS 2.4.1 Concepts and Facilities

diagnostic file
See ALCS diagnostic file

diagnostic file processor
See ALCS diagnostic file processor

directory slots
See global area directory slots

dispatching
See entry dispatching

DIX 135
dual copy facility

using 62
duplicate databases 62
DXCCDDLD utility routine 159
DXCFARIC utility routine 159
DXCFARO CSECT 159
DXCMRT utility routine 159

E
E-mail 19
EB0EB 36
ECB

format 36
function 11
general description 36

ECB fields
installation-wide 37
user-defined 37

ECB levels
data 38
storage 37

entries
cancelling 103
communication between 106
creating 99

using an existing entry 106
definition of 11
dispatching

See entry dispatching
exiting 103
generated

See entry generation
monitor-created 100
multiple

See multiple entries
processing 35
running under MVS tasks 35
serializing 39
suspending 104

entry control block
See ECB

entry dispatcher
See ALCS entry dispatcher

entry dispatcher work lists
See ALCS entry dispatcher work lists

entry dispatching
See also ALCS entry dispatcher
general description 101
non-preemptive 103
on a multiprocessor 102
preemptive 103

entry generation
by ALCS 11
by application programs 11

entry management
C language functions for 149
macros for 148

entry priorities
See ALCS entry dispatcher work lists

entry processing limits
application loop timeout 103
function of 103

entry storage
general description 113
limits for 117

EP/VS
checking 143

errors
I/O 153

testing for 104
event control block (MVS) 11

F
FACE

ID 63
ordinal 63

file address formats
band

allocating 72
general description 71

general description 70
multiple 73

file address information
offline access to 159

file addresses
constructing 70

files
sequential

See sequential files
fixed-file records

general description 63
miscellaneous 64

forward chains 130
FREEC 113
function keys

See PF keys
functional messages

See operator commands
Z messages

See operator commands

 Index 199

G
general data sets

accessing 158
allocating 70
deallocating 70
sharing data 58

general files
accessing 158
allocating 70
deallocating 70
sharing data 58

general sequential files
accessing 96
sharing data 60

global area
adding records to 164
general description 161
removing records from 164
schematic view of 162
sharing data 107

Global area directories 161
global area directory slots

general description 162
global area processing

C language functions for 151
macros for 150

global area records
keypointable 161
non-keypointable 161

globals
logical 163

groups 132

H
headers

for DASD records 81
stripping 163

heap storage for assembler 113
heap storage for HLL 114
high-level language storage

general description 114
hiperspace

cache-type 84
expanded storage only (ESO) 84

HLL storage 114

I
I/O configuration

checking 143
I/O counter 104
I/O errors

deallocating after 153
testing for 104

IDECB 39
index references 131, 133
initiation queue, on WebSphere MQ for z/OS 20
input list 16, 101
input queue, on WebSphere MQ for z/OS 23
input-message editor 25
installation-wide exits

user-written logging 155
intermediate results

storing 37
IOCB list 101
ISA, initial storage allocation 114
item keys 135
items 133

K
KCN 137
keypointing

records 161

L
large messages 19
LCB 137
LDB 137
limits

entry processing 103
entry storage 117

link channel number
See KCN

link control blocks
See LCB

link data blocks
See LDB

link trace facility
See SLC link trace facility

logging
update 154
user-written exits for 155

logging criteria
overriding default 155

logical globals
loading 163

logoff 50
logon 50
lost addresses 65
LU 6.2

entry management 110

M
macros

create-type 99, 106
ENTER/BACK 151
for communication 145

200 ALCS 2.4.1 Concepts and Facilities

macros (continued)
for DASD processing 146
for entry management 148
for global area processing 150
for program linkage 151
for sequential file processing 147
send-type 100
STDHD 81
system error 100

MALOC 113
message editors

input 25
output 29

message routing
for Z messages 26
functions provided 49

messages
canned 29
functional

See operator commands
queues, MQI 57
response 30
standard 29
storing information about 36
unsolicited 48
Z

See operator commands
mirroring data 62
miscellaneous file records 64
MQ Bridge 24
multiple entries

creating 107
multiprocessing 35
multiprogramming 35

N
N1 value for short-term pool 125
N2 value for short-term pool 125
NetView

general description 119
using CRAS AP1 to route NCBs 47

network extension facility (NEF) xv
NPDA

routing NCBs to 47

O
OCTM 52
OLA 24, 110
operator commands 12
optimized local adapter support 24
OS/2, platform for DB2 56
OS/400, platform for DB2 56
other-system resources

addressing 50

output-message editor 29
overflow record 66

P
parameters

passing between programs 37
performance

record hold 156
VFA buffers 83

PF keys
customizing 26

pool-file records
chaining 130
coexistence of type 1 and type 2 support 127
dispense 64
dispense rate 65
dispense rings 127
long-term

adding 123
confirming a change (committing) 123
control fields in 122
fallback during migration 123
identifying unused 129
integrity 65
lost addresses 65
migrating from type 1 to type 2 support 123
overview of LT support and Recoup 121
performance 123
type 1 support 122
type 2 support 123

minimum requirement 65
release 64
release rings 128
short-term

adding 126, 127
directory byte 124
migrating from type 1 to type 2 support 126
N1 value 125
N2 value 125
overview of support 123
tagging of, during Recoup 126
type 1 support 124
type 2 support 124
usage errors 126

post-interrupt routine 102
PPMSG 50
primary action code 12, 27
prime CRAS 45
prime record 66
printers

redirection 52
shadowing 51
sharing 52

priorities
See ALCS entry dispatcher work lists

 Index 201

processing
delay and defer 104
global area 150, 151
sequential file 147, 148

program configuration table
general description 166

program failure 101
program header 165
program linkage

macros for 151
program name in header 82
programs

application
See application programs

CPI-C and APPC 110
MQI 110
offline 13
TCP/IP 110
WAS adapter 110

R
RALOC 113
random access files 63
RBA, relative byte address 78, 79
RCC, record code check 82
RCR, resource control record 49
real-time database (ALCS)

accessing records on 62
general description 62

real-time sequential files 96
receive only CRAS 45
record classes 63
record code check

See RCC
record groups

nonprime 132
prime 132

record headers 81
record hold facility

different file address formats 75
general description 155

record ID 82
record items 133
record subitems 136
record types

adding 84
records

adding 84
to the global area 164

addressing 70
chaining 66
changing VFA options for 164
groups of

See record groups
how ALCS stores them 32

records (continued)
logical, VSAM and ALCS 32
reading 82
refer-from 131
refer-to 131
referencing 70
removing from the global area 164
serializing access to 163
writing 82

Recoup
general description 129

reentrant programs
necessity for 35

relational databases
sharing data 56

resources
entry use of 39
forcing exclusive access to 39

response messages 30
routing 25

S
scrolling 29
secondary action code 27
sequential file data sets 98
sequential file generation 96
sequential file processing

C language functions for 148
macros for 147

sequential file switch 98
sequential files

accessing 93
application 96
creating 93
general 96
real-time 96
symbolic names for 96
system 94

See also system sequential files
serialization 12
SERRC macro 100
session 50
sharing data

between entries 107
using batch export and import 60
using DB2 56
using GDSs or general files 58
using general sequential files 60
using MQI 57
with other systems 55

sine in 51
sine out 51
SITA

functional acceptance test 144

202 ALCS 2.4.1 Concepts and Facilities

SLC channels
controlling 140
general description 137

SLC communication
managing 137

SLC ID 138
SLC link trace facility

general description 144
SLC links

controlling 140
SLC loop test 143
SLC network

testing 143
SLC protocols 139
slots

See global area directory slots
spill data sets

example of use of 84
SQL

entry management 109
stack storage 114
standard headers 81
standard messages 29
STC

general description 13
STDHD macro 81
storage

entry 113
for C language programs

heap 116
for high-level languages 114
initial allocation, (ISA) 114
real 113
unprotected

See unprotected storage
storage blocks

automatic 38
detached 38
obtaining 37

storage levels
See ECB levels

storage management
C language functions for 150
macros for 149

striping
balancing the distribution 62

subitems 136
SYSRA macro 100
system error macros

SERRC 100
SYSRA 100

system sequential files 94
data collection 95
diagnostic 94
update log 95
user 95

system test compiler
See STC

T
table-based addressing

file addresses 79
tables

program configuration 166
tagging ST records during Recoup 126
TAS 100
TCP/IP

enabling support 19
using 19

terminal hold facility 28
test database facility 84
test databases

sharing 86
test unit tapes

See TUT
testing

loop 143
threads, SQL 109
time available supervisor

See TAS
timeout

application loop
See application loop timeout

TPFDF
application portability 34
extended record header 82
to simplify application design 55

transaction programs
CPI-C and APPC 110
MQI 110
TCP/IP 110
WAS adapter 110

transaction programs using WAS 110
trap pages 117
TUT 13

U
unit of recovery

SQL 109
unprotected storage

application global area 107
update log file

See ALCS update-log file
updates

logging 154
usage errors, in short-term pool 126
user record length

ALCS 158
VSAM 158

 Index 203

user-written logging exits 155
USRFAR exit, user file-address format 74
USRLOG exit 155

V
VFA 62

general description 82
VFA buffers

performance benefits 83
VFA options

changing for records 164
description of 83

VFAOPT, VFA options parameter 83
virtual file access

See VFA
volume serial number 98
VSAM clusters

accessing 157
VSAM control interval 33

W
wait service 104

See also no-wait wait service
WAS 110
WAS using OLA 24
Web Server 19
Websphere Application Server 24, 110
WebSphere MQ for z/OS

ALCS initiation queue 20
ALCS input queue 23
message queues, sharing data 57—58

Z
Z messages

overview 12
routing messages starting with Z 26

ZACOM, control
printer redirection 52
printer shadowing 51
routing 49

ZACOM, load the communication configuration data
set 90

test database 91
ZASEQ, sequential-file switch 98
ZASEQ, to specify the volume serial 98
ZDASD, allocating and deallocating data sets 70
ZDASD, load the database configuration data set 90
ZDCOM, display

printer redirection 52
printer shadowing 51

ZPCTL, load the program configuration data set 90

204 ALCS 2.4.1 Concepts and Facilities

Readers' Comments — We'd Like to Hear from You

Airline Control System Version 2
Concepts and Facilities
Release 4.1

Publication No. SH19-6953-16

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? � Yes � No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction � � � � �

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate � � � � �
Complete � � � � �
Easy to find � � � � �
Easy to understand � � � � �
Well organized � � � � �
Applicable to your tasks � � � � �

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SH19-6953-16 IBM

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

ALCS Development
2455 South Road
 P923
Poughkeepsie NY 12601-5400
USA

Fold and Tape Please do not staple Fold and Tape

SH19-6953-16

IBM®

Program Number: 5695-068

SH19-6953-16

	Contents
	Figures
	Notices
	Programming interface information
	Trademarks

	About this book
	Who should read this book
	How this book is organized

	Chapter 1. ALCS Version 2 concepts and facilities
	1.1 Overview of ALCS
	1.2 General description of ALCS Version 2
	1.3 Application programming languages
	1.3.1 Callable services for high-level language programs

	1.4 Overview of the ALCS Version 2 system
	1.4.1 Application environment
	1.4.2 ALCS commands
	1.4.3 Offline programs
	1.4.4 Generation macros

	1.5 Message flow in an ALCS system
	1.5.1 Entry of a message from a terminal
	IBM 3270 terminals on a VTAM network
	ALC terminals on a VTAM network (ALCI or AX.25)
	IBM 3270 terminals on a TCP/IP network
	ALC terminals on a TCP/IP network
	Terminals on an SLC high-level network

	1.5.2 Input message processing by the ALCS online monitor
	IBM 3270 Terminals on a VTAM or TCP/IP network
	ALC terminals on a VTAM network (ALCI or AX.25)
	ALC terminals on a TCP/IP network
	Terminals on an SLC high-level network

	1.5.3 Messages on TCP/IP
	E-mail
	Web Server
	TCP/IP large messages

	1.5.4 Messages on WebSphere MQ for z/OS
	The ALCS initiation queue
	The ALCS input queue
	MQ Bridge

	1.5.5 Communicating with Websphere Application Server for z/OS using optimized local adapter support
	1.5.6 Application program processing
	Input message routing
	Using program function (PF) keys to enter messages
	Input messages beginning with Z
	Input messages — general processing
	Data gathering transactions
	The IPARS agents assembly area
	The ALCS terminal hold facility
	Output message processing by application programs

	1.5.7 Output message processing by the ALCS online monitor
	IBM 3270 terminals on a VTAM or TCP/IP network
	ALC terminals on a VTAM network (ALCI or AX.25)
	ALC terminals on a TCP/IP network
	Terminals on an SLC high-level network

	1.6 Standard record and storage block sizes
	1.6.1 How ALCS stores DASD records
	1.6.2 ALCS minimum requirements for standard sizes
	1.6.3 Application portability and TPF compatibility
	1.6.4 Recommendations and requirements for record and block sizes
	1.6.5 Sequential file records

	1.7 Multiprogramming and multiprocessing
	1.7.1 Re-entrant application programs
	1.7.2 Entry control block
	User-defined ECB fields
	ECB levels and attached storage blocks
	Storage levels
	Data levels

	1.7.3 Data event control blocks (DECBs)
	1.7.4 Data collection area
	1.7.5 Serialization – forcing exclusive access to resources

	Chapter 2. Communication management
	2.1 ALCS communication resources and resource addressing
	2.1.1 Communication resource name (CRN)
	Special cases for CRNs
	Reserved CRNs

	2.1.2 Communication resource identifier (CRI)
	Special cases for CRIs

	2.1.3 Computer room agent set (CRAS)
	CRAS routing
	NetView

	2.1.4 CRAS authority and Security Authorization Facility (SAF)
	2.1.5 Special addressing for CRAS terminals
	2.1.6 Communication resource ordinal

	2.2 Message router
	2.2.1 Addressing other-system resources

	2.3 Logon and logoff, and sine in and sine out
	Logon and logoff
	Sine in and sine out

	2.4 Printer shadowing
	2.5 Printer sharing
	2.6 Printer redirection
	2.7 Specifying communication resources
	Defining the initial communication configuration
	Updating an existing communication configuration

	2.8 Online Communication Table Maintenance (OCTM)

	Chapter 3. ALCS data sharing and data management
	3.1 Standard ALCS structures
	3.2 TPFDF
	3.3 Sharing data with non-ALCS applications
	3.3.1 Relational databases
	3.3.2 Real-time data export and import
	3.3.3 Shared general file or GDS
	3.3.4 Batch data export and import

	Chapter 4. ALCS database file management
	4.1 The ALCS real-time database
	4.1.1 Organization of the database
	4.1.2 Duplicated database
	The ALCS duplicated database facility

	4.1.3 Record classes – fixed file, short-term pool, and long-term pool
	Fixed files
	Pool files

	4.1.4 Long-term pool integrity
	4.1.5 Pool dispense rate monitor
	4.1.6 Overflow and chaining
	Standard forward chaining
	Standard backward chaining

	4.1.7 Lists and indexes

	4.2 General files and general data sets
	4.3 Record addressing
	4.3.1 Constructing the file address
	4.3.2 File address format
	Allocating bands
	How bands and band ordinals appear in the file address

	4.3.3 Multiple file address format support
	File addresses returned to applications
	TPF duplicated and nonduplicated pools

	4.4 Allocatable space overview
	4.4.1 Algorithm-based addressing
	4.4.2 Table-based addressing
	Fixed-file directories
	Segment tables

	4.5 Record header
	4.5.1 Record ID and RCC checking

	4.6 Virtual file access
	4.7 Spill file on predecessor ALCS systems
	4.8 The ALCS test database facility
	4.8.1 How the test database facility works
	4.8.2 Benefits
	Recovering from database damage
	Sharing the test database

	4.8.3 Test pool files

	4.9 The ALCS configuration data sets
	Creating configuration data sets
	Updating the configuration data sets
	Using CDS's with the test database facility

	Chapter 5. Sequential file management
	5.1 System sequential files
	5.1.1 ALCS diagnostic file
	5.1.2 ALCS update-log file(s)
	5.1.3 ALCS data-collection file
	5.1.4 ALCS user file

	5.2 Application sequential files
	Real-time sequential files
	General sequential files

	5.3 Symbolic names for sequential files
	Multiple names for the same file
	Multiple sequential files on one MVS data set

	5.4 Cataloged sequential file data sets
	5.5 Sequential file data set switch

	Chapter 6. Entry management
	6.1 How ALCS creates entries
	6.2 How ALCS dispatches entries
	6.2.1 Entry processing limits

	6.3 How entries lose control
	6.3.1 Application loop timeout

	6.4 Input/output counter and wait service
	6.5 Delay and defer processing
	6.6 Communication between entries
	6.6.1 How entries pass data
	6.6.2 How entries share data

	6.7 Transactions that create multiple entries
	Avoiding too many create-type services
	Avoiding create-type services in loops
	Holding resources for too long

	6.8 Entries using SQL, CPI-C, APPC, MQI and TCP/IP
	6.8.1 Normal and abnormal termination
	6.8.2 SQL threads and application processes
	6.8.3 CPI-C and APPC transaction programs
	6.8.4 MQI transaction programs
	6.8.5 TCP/IP Sockets transaction programs
	6.8.6 WebSphere Application Server for z/OS transaction programs

	Chapter 7. Storage management
	7.1 Storage layout
	7.2 Real and virtual storage
	7.3 Entry storage
	7.4 Heap storage used by assembler programs
	7.5 High-level language storage
	7.5.1 Initial storage allocation
	7.5.2 Stack and heap storage

	7.6 Storage units

	Chapter 8. Automated operations
	Appendix A. ALCS pool file support
	A.1 Recoup and emergency pool recovery
	A.2 Long-term pool support – type 1 and type 2
	Long-term pool control information
	A.2.1 Type 1 long-term pool support
	A.2.2 Type 2 long-term pool support
	Adding LT-pool records

	A.2.3 Migration from type 1 LT to type 2 LT-pool support
	A.2.4 Performance

	A.3 Short-term pool support – type 1 and type 2
	A.3.1 Type 1 short-term pool support
	A.3.2 Type 2 short-term pool support
	Contents of directory byte
	Reserved values of the directory byte
	ST-pool usage errors

	A.3.3 Migration from type 1 ST to type 2 ST-pool support
	A.3.4 Tagging of ST-pool records
	A.3.5 Adding ST-pool records
	Ignored requests

	A.3.6 Deleting ST-pool records
	A.3.7 Coexistence

	A.4 Dispense rings
	A.5 Release rings

	Appendix B. Long-term pool space recovery – Recoup
	Released records
	Records in use
	B.1 Specifying data structures to Recoup
	B.1.1 Chaining pool-file records
	B.1.2 Standard chain
	B.1.3 Index references

	B.2 Group macro
	B.2.1 Prime group
	B.2.2 Non-prime group
	B.2.3 Chain-chasing

	B.3 Index macro
	B.3.1 Items
	B.3.2 Variable numbers of items
	Item count
	Next available byte
	Add item index (AIX) and delete item index (DIX)

	B.3.3 Item keys
	B.3.4 Subitems

	Appendix C. Communication management for the SLC network
	C.1 SLC concepts
	C.1.1 LDBs
	C.1.2 SLC terminal addressing
	C.1.3 SLC link characteristics
	C.1.4 Type 1 SLC protocol
	C.1.5 Type 2 SLC protocol
	C.1.6 Type 3 SLC protocol

	C.2 ALCS SLC procedures
	C.2.1 Starting a channel
	C.2.2 Out-of-service period
	C.2.3 When an SLC link changes state
	C.2.4 When ALCS changes state
	C.2.5 Positive acknowledgement
	C.2.6 Queuing messages on DASD
	C.2.7 Idle output line condition
	C.2.8 Negative acknowledgement (sequence errors)
	C.2.9 Negative acknowledgement (parity errors)
	C.2.10 Error recovery
	C.2.11 SLC channel enquiry procedure

	C.3 Testing the SLC network
	C.3.1 Performing an SLC loop test
	C.3.2 Performing a SITA functional acceptance test
	C.3.3 SLC link trace facility

	Appendix D. ALCS services
	D.1 ALCS services for communication
	D.2 ALCS services for DASD processing
	D.3 ALCS services for sequential file processing
	D.3.1 ALCS C language functions for sequential file processing

	D.4 ALCS entry management services
	D.4.1 C language functions for entry management

	D.5 ALCS storage management services
	D.5.1 C language functions for storage management

	D.6 ALCS services for global area processing
	D.6.1 C language functions for global area processing

	D.7 ALCS services for program linkage
	D.7.1 C language functions for program linkage

	Appendix E. Direct-access files
	E.1 How ALCS uses the duplicated database
	E.1.1 I/O errors
	E.1.2 ALCS action when one copy is offline

	E.2 Update logging
	E.2.1 Logging criteria
	Overriding default logging criteria

	E.3 Record hold facility
	E.3.1 When record hold is unnecessary
	E.3.2 Performance considerations
	E.3.3 Data sets
	Real-time database data set names

	E.3.4 Allocating data sets

	E.4 Offline access to file address information

	Appendix F. Application global area
	F.1 Global area records
	F.2 Global area directories
	F.3 Header stripping and logical globals
	F.4 Including records in the application global area

	Appendix G. Application program management
	G.1 The program configuration table
	G.2 Application program load list
	G.3 Naming application programs

	Appendix H. Acronyms and abbreviations
	Glossary
	Bibliography
	Airline Control System Version 2 Release 4.1
	MVS
	APPC/MVS
	DFSMS
	RMF
	Data Facility Sort (DFSORT)
	Language Environment
	z/OS XL C/C++
	COBOL
	PL/I
	High Level Assembler
	CPI-C
	DB2 for z/OS
	ISPF
	WebSphere MQ for z/OS
	WebSphere Application Server for z/OS
	Tivoli NetView
	SMP/E
	Communications Server IP (TCP/IP)
	TPF
	TPF Database Facility (TPFDF)
	TSO/E
	Communications Server SNA (VTAM)
	Security Server (RACF)
	Other IBM publications
	CD-ROM Softcopy collection kits
	SITA publications
	Other non-IBM publications

	Index

