Tivoli® NetView™ for z/0S"

Customization: Using REXX and the
NetView Command
List Language

Version 5 Release 1

<|lI!

SC31-8862-00

Tivoli® NetView™ for z/0S"

Customization: Using REXX and the
NetView Command
List Language

Version 5 Release 1

<|lI!

SC31-8862-00

Tivoli NetView for z/OS Customization: Using REXX and the NetView Command List Language
Copyright Notice

© Copyright IBM Corporation 1997, 2002. All rights reserved. May only be used pursuant to a Tivoli Systems
Software License Agreement, an IBM Software License Agreement, or Addendum for Tivoli Products to IBM
Customer or License Agreement. No part of this publication may be reproduced, transmitted, transcribed, stored in
a retrieval system, or translated into any computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual, or otherwise, without prior written permission of IBM Corporation. IBM
Corporation grants you limited permission to make hardcopy or other reproductions of any machine-readable
documentation for your own use, provided that each such reproduction shall carry the IBM Corporation copyright
notice. No other rights under copyright are granted without prior written permission of IBM Corporation. The
document is not intended for production and is furnished “as is” without warranty of any kind. All warranties on
this document are hereby disclaimed, including the warranties of merchantability and fitness for a particular
purpose.

U.S. Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corporation.

Trademarks

IBM, the IBM logo, Tivoli, the Tivoli logo, ACF/VTAM, BookManager, CICS, IBMLink, MVS/ESA, MVS/XA,
NetView, OS/390, RACF, SAA, Systems Application Architecture, Tivoli Enterprise, TME, VM/ESA, VSE/ESA,
VTAM, and z/OS are trademarks or registered trademarks of International Business Machines Corporation in the
United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
Notices

References in this publication to Tivoli Systems or IBM products, programs, or services do not imply that they will
be available in all countries in which Tivoli Systems or IBM operates. Any reference to these products, programs, or
services is not intended to imply that only Tivoli Systems or IBM products, programs, or services can be used.
Subject to valid intellectual property or other legally protectable right of Tivoli Systems or IBM, any functionally
equivalent product, program, or service can be used instead of the referenced product, program, or service. The
evaluation and verification of operation in conjunction with other products, except those expressly designated by
Tivoli Systems or IBM, are the responsibility of the user. Tivoli Systems or IBM may have patents or pending patent
applications covering subject matter in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM
Corporation, North Castle Drive, Armonk, New York 10504-1785, U.S.A.

Programming Interfaces

This publication documents intended Programming Interfaces that allow the customer to write programs to obtain
services of Tivoli NetView for z/OS.

Contents

Preface . . . e 1
Who Should Read Thls Document O v
What This Document Contains. .vi
Publications . . . e 01
Prerequisite and Related Documents it
Accessing Publications Online. .vii
Ordering Publications . . 4 b
Providing Feedback about Pubhcat1ons e '
Contacting Customer Support Lix
Accessibility Information L L L L L L L L Lix
Keyboard Access. . . T
Conventions Used in This Document T 04
Platform-specific Information. .X
Terminology . . . D
Reading Syntax Dlagrams D ¢ |
Required Syntax . . . e
Optional Keywords and Varlables T i
Default Values Lxi
Long Syntax Diagrams .xi
Syntax Fragments Lxi
Commas and Parentheses ... i
Highlighting, Brackets, and Braces .xiv
Abbreviations . . . D 4
Part 1. Basic Command List Topics1
Chapter 1. Getting Started . . 3
The Benefits of Using Command Lists . . .3
Examples of Common Startup Command L1sts .4
Examples of Activating a Network Control Program . .4
Creating Command Lists . .5
Controlling Access to Command Llsts .6
Loading Command Lists into Storage . .7
Running Command Lists . . 8
Running Command Lists When NetVlew Is Started .8
Running Command Lists When Logging On. . .8
Running Command Lists after Receiving a Message or MSU .9
Running Command Lists from a Terminal .o .9
Running Command Lists at a Specified Time or Time Interval .9
Running Command Lists from Another Command List. . 10
Passing Information from One Command List to Another . . .11
Running Command Lists from a User-Written Command Processor. .11
Using Network Commands in Command Lists 11
Using System Commands .12
Using Long-Running Commands . .12
Using NetView Pipelines . . 14
Using the VIEW Command . .14
Using Full-Screen Commands .14
Primary POI Task Restrictions . .15
AUTOTASK OST Restrictions . 16
Controlling Command List Output . 16

Part 2. Writing Command Lists in REXX Language.17

iii

Chapter 2. REXX Language Overview . 19
Introduction to the REXX Language . . . 19
Compiling and Executing REXX Command Llsts . 20
Using Data REXX e . 20
/*%DATA . .21
/*%LOGIC . .22
Coding Conventions for REXX Command Llsts and Data REXX Frles . .23
Record Size . e .23
Using Quotation Marks . .23
Suppressing Display of Non- REXX Commands . 25
NetView Restrictions on REXX Instructions. . 26
Pausing for Operator Input . . 26
Using the SAY Instruction .26
Using the CALL Instruction . .27
NetView Restrictions on REXX Functlons .27
Writing REXX Function Packages . . 28
Changing the Environment Addressed by REXX Command L1sts . 28
Data REXX Host Command Environment e . 29
Using the EXECIO Command . .29
Using MVS and VTAM Commands . 30
Using the NetView ALLOCATE and FREE Commands . 30
Using REXX Command Lists . .31
Nesting REXX Command Lists from Assembler C or PL / I .32
Parsing in REXX Command Lists . e .32
Tracing REXX Command Lists . . .32
Return Codes in REXX Command Lists . . .33
Recovering from Errors in REXX Command Lists. . 34
Chapter 3. REXX Instructions Provided by NetView . 37
Using TRAP in Nested REXX Command Lists . . 38
Using WAIT in Nested Command Lists . . 38
Using MSGREAD in Nested Command Lists . . 39
Functions Set by MSGREAD. . . 39
Part 3. Writing Command Lists in the NetView Command List Language . 4
Chapter 4. Writing Simple Command Lists in the NetView Command List Language . 43
What the NetView Command List Language Includes . . .43
Coding Conventions for NetView Command List Language Statements . 43
Conventions for General Coding . 44
Conventions for Continuing a Statement. . . 44
Conventions for Double-Byte Character Set Text . . 45
Conventions for Suppression Characters. . 46
Labels . . 46
Variables . . 47
Variable Subst1tut10n Order . . 47
Parameter Variables . . 48
Passing Parameter Variable Informatlon to a Command Llst . . 49
Using Parameter Variables in a Command List . 50
Passing Parameter Variables to a Nested Command List . . 50
Using Quoted Strings or Special Characters in Parameter Variables . . 51
Null Parameter Values. . 51
Control Variables .52
User Variables . 52
Hexadecimal Notation. . 53
Comments. . 54
Null Statements . . 54
Assignment Statements . 54
Control Statements . . . 56
&CONTROL Statement . 56

iV Customization: Using REXX and the NetView Command List Language

Writing to the Operator . . 57
Using NetView Commands w1th &PAUSE . . 62
An Example Using &PAUSE. . 63
NetView Built-in Functions . . 63
&BITAND . . 64
&BITOR . 64
&BITXOR . . 65
&CONCAT . 66
&HIER . . 66
&LENGTH . 69
&MSUSEG .70
&NCCFID . .71
&NCCFSTAT . .72
&SUBSTR . .73
Chapter 5. NetView Command List Language Branchlng .77
&IF Control Statement. .77
&GOTO Control Statement . .79
&EXIT Control Statement. .79
&WAIT Control Statement . . 81
Coding an &WAIT Control Statement . 82
Using NetView Commands with &WAIT . 86
Control and Parameter Variables Used with &WAIT . 87
Using &WAIT in Nested Command Lists . 88
Customizing the &WAIT Statement . 89
Suggestions for Coding &WAIT .91
Sample Using &WAIT . .92
Chapter 6. NetView Command List Language Global Variables. . 95
Using &TGLOBAL and &CGLOBAL . . 96
&TGLOBAL . S . 96
&CGLOBAL . . .97
Updating Task Global Varlables Usmg &TGLOBAL .o . 98
Extent of Variables When Using &TGLOBAL and &CGLOBAL . .99
GLOBVAR1 Example . e . 100
GLOBALV Command . 102
Part 4. Advanced Command List Topics . . 103
Chapter 7. Automation Resource Management . . 105
Defining NetView Automation Table Command Lists . . . 105
Routing Messages from Automation-Table-Driven Command Llsts . 105
Implementing NetView Automation . . 105
Suppressing Messages . 106
Determining What Task Controls a Command Llst . 106
Testing Automation Command Lists. . 106
Recovering from Looping Command Lists. . 107
Considering Operator Interaction. . 107
Common Automation Problems . . 107
Chapter 8. Common Operations Services Commands . . 109
Common Operations Service . . 109
Common Operations Services Return Codes . . 110
LINKDATA and LINKTEST Results . . 110
LINKDATA and LINKTEST Variables . 110
LINKTEST Additional Variables 111
LINKPD Results 111
RUNCMD Results . . 112
Using RUNCMD in a Plpehne 112

Contents

\'%

Part 5. Commands, Functions, and Variables . . 115
Chapter 9. REXX Functions Provided by NetView . . 117
Translation Functions. . 118
Command List Information. . 120
Cross-Domain Information Functlons . 125
Data Set Information Functions . 126
Global Variable Information Functions . . 128
Message Processing Information Functions . 128

MVS-Specific Message Processing Information . 135

ROUTCDE Examples. . . 142
REXX Management Services Uruts (MSU) Informat1on Functlons . . 143

Hardware Monitor (HMxxxxxx) Examples. . 152

MSUSEG Syntax and Examples . 156
Operator Information Functions . . 158
Session Information Functions. . 158
REXX Environment Information Functlons . 163
Terminal Information Functions . . 163
Time and Date . . 164
Nulls and Blanks Strlppmg . le4
Part 6. Appendixes . . 167
Appendix A. Comparison of REXX and NetView Command List Language . . 169
Comparison of REXX Instructions and NetView Command List Language Control Statements . 169
Comparison of REXX Functions and NetView Command List Language Control Variables and Functlons . 170
Commands Used in Command Lists . 173
Appendix B. Command List Examples Index . . 175
REXX Command List Examples . . . 175
NetView Command List Language Examples. . 175
Appendix C. Examples of REXX Command Lists for NetView . . 177
ACTAPPLS Example . . 177
ACTLU Example . . . 179
CHKOPNUM Example . . 179
CHKRSTAT Example . . 181
DSPRSTAT Example . . 183
GETCG Example . . 184
GREETING Example . . 185
LISTVAR Example. . 186
PRINT Example . . 186
TYPE Example . . . 188
TYPEIT Example . . 188
Index . . 191

Vi Customization: Using REXX and the NetView Command List Language

Preface

This document describes how to write command lists for the Tivoli® NetView® for
z/0S" product using either the Restructured Extended Executor language (REXX)
or the NetView command list language.

Who Should Read This Document

System programmers and network operators, who use command lists or write
command lists, can find helpful information in this document. You should be
familiar with how the NetView program is used in your network and what the
operator’s tasks are. This document does not provide descriptions of NetView
operator commands. If a command is not familiar, refer to the NetView online
help.

What This Document Contains

This document is organized into the following sections:

7 . . . 173

contains an overview of basic
command list topics that are common to command lists written in either REXX or
the NetView command list language.

[Part 2 Writing Command Tists in REXX Tanguage” an page 17 describes how to

write command lists using REXX.

7 IvE) 77

w describes how to write command lists using the NetView command list
language.

[‘Part 4 Advanced Command TList Topics” on page 103 describes advanced topics
that pertain to command lists written in either REXX or the NetView command list
language.

[‘Part 5. Commands, Functions. and Variables” on page 114 provides descriptions of
all control keywords, control variables, and functions for the NetView command
list language and for REXX functions provided by the NetView program.

a

A omparison of R X—and Ne 1o ommand 1 nouage

ge 169 provides a comparative list of commands, variables, and functions
common to REXX and NetView command list language, and shows the page
numbers where each is described.

’ . : ”

contains reference
tables for the REXX and NetView command list examples contained in this
document.

‘ Appendi R Nl o

contains examples of REXX command lists written for the NetView program.

ommand Q QN _page /

vii

Preface

Publications

This section lists prerequisite and related documents. It also describes how to
access Tivoli publications online, how to order Tivoli publications, and how to
make comments on Tivoli publications.

Prerequisite and Related Documents

To read about the new functions offered in this release, refer to the Tivoli NetView
for z/OS Installation: Migration Guide.

You can find additional product information on these Internet sites:

Table 1. Resource Web sites

IBM® httpo/ Lanararibm.com

Tivoli Systems http: / /sararar tivoli com A
Tivoli NetView for z/OS hitp:/ /e tivoli com /nv39d

The Tivoli NetView for z/OS Web site offers demonstrations of the NetView
product, related products, and several free NetView applications you can
download. These applications can help you with tasks such as:

* Getting statistics for your automation table and merging the statistics with a
listing of the automation table

* Displaying the status of a JES job or cancelling a specified JES job

* Sending alerts to the NetView program using the program-to-program interface
(PPI)

* Sending and receiving MVS™ commands using the PPI

* Sending TSO commands and receiving responses

Accessing Publications Online

You can access many Tivoli publications online using the Tivoli Information Center,
which is available on the Tivoli Customer Support Web site:

T —— 1 |

These publications are available in PDF format. Translated documents are also
available for some products.

Ordering Publications

You can order many Tivoli publications online at the following Web site:

TR B Y =

You can also order by telephone by calling one of these numbers:

* In the United States: 800-879-2755

* In Canada: 800-426-4968

* In other countries, for a list of telephone numbers, see the following Web site:

N — T order b

viii Customization: Using REXX and the NetView Command List Language

http://www.ibm.com/
http://www.tivoli.com/
http://www.tivoli.com/nv390
http://www.tivoli.com/support/documents/
http://www.ibm.com/shop/publications/order
http://www.tivoli.com/inside/store/lit_order.html

Preface

Providing Feedback about Publications

We are very interested in hearing about your experience with Tivoli products and
documentation, and we welcome your suggestions for improvements. If you have
comments or suggestions about our products and documentation, contact us in one
of the following ways:

¢ Send an e-mail to pubs@tivoli.com.
* Complete our customer feedback survey at the following Web site:

N o |

Contacting Customer Support

If you have a problem with any Tivoli product, you can contact Tivoli Customer
Support. See the Tivoli Customer Support Handbook at the following Web site:

T —— —

The handbook provides information about how to contact Tivoli Customer
Support, depending on the severity of your problem, and the following
information:

* Registration and eligibility
¢ Telephone numbers and e-mail addresses, depending on the country you are in
* What information you should gather before contacting support

Note: Additional support for Tivoli NetView for z/OS is available at the NetView
for z/OS Web site:

e — =

Under Related Documents, select Other Online Sources.

The page displayed contains a list of newsgroups, forums, and bulletin
boards.

Accessibility Information

Refer to Tivoli NetView for z/OS User’s Guide for information about accessibility.

Keyboard Access

Standard shortcut and accelerator keys are used by the product and are
documented by the operating system. Refer to the documentation provided by
your operating system for more information.

Refer to Tivoli NetView for z/OS User’s Guide for more information about keyboard
access.

Conventions Used in This Document

The document uses several typeface conventions for special terms and actions.
These conventions have the following meaning;:

Bold Commands, keywords, flags, and other information that you must
use literally appear like this, in bold.

Preface 1X

http://www.tivoli.com/support/survey/
http://www.tivoli.com/support/handbook/
http://www.tivoli.com/nv390

Preface

Italics Variables and new terms appear like this, in italics. Words and
phrases that are emphasized also appear like this, in italics.

Monospace Code examples, output, and system messages appear like this, in
a monospace font.

ALL CAPS Tivoli NetView for z/OS commands are in ALL CAPITAL letters.

Platform-specific Information

For more information about the hardware and software requirements for NetView
components, refer to the Tivoli NetView for z/OS Licensed Program Specification.

Terminology

For a list of Tivoli NetView for z/OS terms and definitions, refer to

For brevity and readability, the following terms are used in this document:

NetView
» Tivoli NetView for z/OS Version 5 Release 1
+ Tivoli NetView for OS/390® Version 1 Release 4
* Tivoli NetView for OS/390 Version 1 Release 3
+ TME 10™ NetView for OS/390 Version 1 Release 2
e TME 10 NetView for OS/390 Version 1 Release 1
* IBM NetView for MVS Version 3
* IBM NetView for MVS Version 2 Release 4
* IBM NetView Version 2 Release 3

MVS 0S/390, or z/OS operating systems.

RACF®
RACF is a component of the SecureWay® Security Server for z/OS and
0S5/390, providing the functions of authentication and access control for
0S/390 and z/OS resources and data, including the ability to control
access to DB2® objects using RACF profiles. Refer to:

h’r’rp‘ / /www-1.ibm .com /servers/eserver/zseries/zos/security /racfss htmll

Tivoli Enterprise” software
Tivoli software that manages large business networks.

Tivoli environment
The Tivoli applications, based upon the Tivoli Management Framework,
that are installed at a specific customer location and that address network
computing management issues across many platforms. In a Tivoli
environment, a system administrator can distribute software, manage user
configurations, change access privileges, automate operations, monitor
resources, and schedule jobs. You may have used TME 10 environment in
the past.

TME 10
In most product names, TME 10 has been changed to Tivoli.

Vand R
Specifies the version and release.

X Customization: Using REXX and the NetView Command List Language

http://www.networking.ibm.com/nsg/nsgmain.htm
http://www-1.ibm.com/servers/eserver/zseries/zos/security/racfss.html

Preface

VTAM® and TCP/IP
VTAM and TCP/IP are included in the IBM Communications Server
element of the OS/390 and z/OS operating systems. Refer to

Unless otherwise indicated, references to programs indicate the latest version and
release of the programs. If only a version is indicated, the reference is to all
releases within that version.

When a reference is made about using a personal computer or workstation, any
programmable workstation can be used.

Reading Syntax Diagrams
Syntax diagrams start with double arrowheads on the left (») and move along the

main line until they end with two arrowheads facing each other (»<).

As shown in the following table, syntax diagrams use position to indicate the
required, optional, and default values for keywords, variables, and operands.

Table 2. How the Position of Syntax Diagram Elements Is Used

Element Position Meaning
On the command line Required
Above the command line Default

Below the command line Optional

Required Syntax

The command name, required keywords, variables, and operands are always on
the main syntax line. é@l specifies that the resname variable must be used for
the CCPLOADF command.

CCPLOADF

A\
A

»»>—CCPLOADF resname

Figure 1. Required Syntax Elements

Keywords and operands are written in uppercase letters. Lowercase letters indicate
variables such as values or names that you supply. In w, MEMBER is an
operand and membername is a variable that defines the name of the data set
member for that operand.

TRANSMSG

»»>—TRANSMSG MEMBER=membername »><

Figure 2. Syntax for Variables

Preface X1

http://www.software.ibm.com/enetwork/commserver/about/csos390.html

Preface

Optional Keywords and Variables

Optional keywords, variables, and operands are below the main syntax line.
Eﬁ specifies that the ID operand can be used for the DISPREG command, but
is not required.

DISPREG

»>—DISPREG ><
I— ID=resname—|

Figure 3. Optional Syntax Elements

Default Values

Default values are above the main syntax line. If the default is a keyword, it
appears only above the main line. You can specify this keyword or allow it to
default.

If an operand has a default value, the operand appears both above and below the
main line. A value below the main line indicates that if you choose to specify the
operand, you must also specify either the default value or another value shown. If
you do not specify an operand, the default value above the main line is used.

Eigure 4 shows the default keyword STEP above the main line and the rest of the
optional keywords below the main line. It also shows the default values for
operands MODNAME=+ and OPTION=* above and below the main line.

RID
s STEP—— ,MODNAME=+*
»»>—RID TASK=opid |_ [>
,CONTINUE— ,MODNAME= *—_|—
,END —[name
,RUN
|—,0PTION=*
I—,OPTION= *
—EHAPIENTR
HAPIEXIT

Figure 4. Sample of Defaults Syntax

Long Syntax Diagrams

When more than one line is needed for a syntax diagram, the continued lines end
with a single arrowhead (>). The following lines begin with a single arrowhead (»),
as shown in

Syntax Fragments

Commands that contain lengthy groups or a section that is used more than once in
a command are shown as separate fragments following the main diagram. The

fragment name is shown in mixed case. See Figure 5 on page xiii for a syntax with
the fragments ReMote and FromTo.

Xii Customization: Using REXX and the NetView Command List Language

Preface

A\
A

BROWSE
»»>—BROWSE NETLOGA FromTo i
L‘ ReMote ’J NETLOGI
NETLOGP
NETLOGS
MemBer |
Dataset Name |7
ReMote:
OPERID=x* NETID=*
f— LU=luname [[}
OPERID= *—_l— NETID= *—_l—
—[op_id —[net_id
FromTo:
today first_record— today

I— FROM—| I— date]—l I— time] ——

|—Zas t_record—

».

l— TO—| I— dateZ—l

I— time2

MemBer:

— —L—J—membername
ddname.

Dataset Name:

F— —fully qualified dataset name’

— XINCL— — NOKK— — SUBSYM—
|
I
— INCL—— ~ KK—— '~ NOSUBS—
— NOINCL—

Figure 5. Sample Syntax Diagram with Fragments

Commas and Parentheses

Required commas and parentheses are included in the syntax diagram. When an
operand has more than one value, the values are typically enclosed in parentheses

and separated by commas. In Eigure 6 on page xiy, the OP operand, for example,
contains commas to indicate that you can specify multiple values for the testop

variable.

Preface XIii

Preface
CSCF

»»—CSCF { Pu i
PurgeAll
PurgeBefore |—

v
A

Pu

f— PU=resname L I

,0P=(—Ytes i.‘op]—)J

PurgeAll

f— PURGE ALL |

PurgeBefore

f— PURGE BEFORE date |
I— t‘ime—|

Figure 6. Sample Syntax Diagram with Commas

If a command requires positional commas to separate keywords and variables, the

commas are shown before the keyword or variable, as in [Figure 4 on page xii.

For example, to specify the BOSESS command with the sessid variable, enter:
NCCF BOSESS applid,,sessid

You do not need to specify the trailing positional commas. Positional and
non-positional trailing commas either are ignored or cause the command to be
rejected. Restrictions for each command state whether trailing commas cause the
command to be rejected.

Highlighting, Brackets, and Braces

Syntax diagrams do not rely on highlighting, underscoring, brackets, or braces;
variables are shown italicized in hardcopy or in a differentiating color for NetView
help and BookManager® online books.

In parameter descriptions, the appearance of syntax elements in a diagram
immediately tells you the type of element. See [rabled for the appearance of syntax
elements.

Table 3. Syntax Elements Examples

This element... Looks like this...
Keyword CCPLOADF

Variable resname

Operand MEMBER=membername
Default today or INCL

Xiv Customization: Using REXX and the NetView Command List Language

Preface

Abbreviations

Command and keyword abbreviations are described in synonym tables after each
command description.

Preface XV

XVi Customization: Using REXX and the NetView Command List Language

Part 1. Basic Command List Topics

Chapter 1. Getting Started .3
The Benefits of Using Command Llsts .3
Examples of Common Startup Command Llsts .4
Examples of Activating a Network Control
Program . . .4
Creating Command Llsts .5
Controlling Access to Command Llsts .6
Loading Command Lists into Storage . .7
Running Command Lists . . . 8
Running Command Lists When NetVlew Is
Started . . .8
Running Command Llsts When Logglng On . .8
Running Command Lists after Receiving a
Message or MSU . .9
Running Command Lists from a Termlnal .29
Running Command Lists at a Specified Time or
Time Interval oo .9
Running Command Lists from Another
Command List 10
Passing Information from One Command Llst to
Another . . e |
Error Handhng S .11
Running Command Lists from a User—ertten
Command Processor1
Using Network Commands in Command Llsts |
Using System Commands12
Using Long-Running Commands12
Using Major Long-Running Commands . . . 12
Using Minor Long-Running Commands. . . 13
Queuing Long-Running Commands13
Using NetView Pipelines.14
Using the VIEW Command14
Using Full-Screen Commands14
Primary POI Task Restrictions15
AUTOTASK OST Restrictions16

Controlling Command List Output16

2 Customization: Using REXX and the NetView Command List Language

Chapter 1. Getting Started

Tivoli NetView for z/OS (NetView) enables you to manage complex, multivendor
networks and systems from a single point. A command list is a set of commands
and special instructions that are grouped under one name, like a computer
program. For the NetView program, a command list can be written in either
Restructured Extended Executor language (REXX) or the NetView command list
language

When you type a command list name at a terminal, the commands and
instructions in that command list are interpreted and executed. You can also run
command lists in other ways. For example, you can issue a timer command to run
a command list at a specified time or at time intervals. You can also run more than
one command list at the same time under different tasks. See l'Running Command

” for more information.

This chapter describes how to:
* Create command lists
* Run command lists

¢ Use command lists.

The Benefits of Using Command Lists

Command lists help you to automate and manage your network and improve an
operator’s efficiency. Command lists obtain information from operators, other tasks,
system resources, or the contents of messages. The command list uses this
information to perform processing or to decide the next action. This flexibility
enables you to automate repetitive or complex operations, perform resource
recovery, and handle operations consistently among different operators. For
example, system programmers or operators can write command lists to:

* Automatically issue command lists at a specified time or time interval using
NetView timer commands AT, EVERY, CHRON, and AFTER

¢ Under certain conditions, reword, delete, or reply to a message before the
operator sees it

* Provide for command lists to be issued automatically when specific messages or
management services units (MSUs) are received during the operation of systems,
networks, and applications

* Wait for the NetView program to receive a message or group of messages and
take action based on the message content

* Speed backup and recovery procedures, for example, automatic recovery of a
failing resource

* Monitor and restart subsystems and programs (for example, VTAM, CICS®, and
TSO)

* Display information about an operator’s screen

* Ask the operator questions and take action based on the answers
* Simplify entry of operator commands

¢ Tailor operator commands and procedures for your network

* Ensure completeness and correct order when a sequence of commands must be
issued

Basic Topics

* Implement specialized operator dialogs that extend the operator’s role or
increase the efficiency and productivity of operators

Before you write a command list, analyze your system, network operating
procedures, and the tasks that operators regularly perform. Decide which of these
jobs you want to perform using command lists. Start by writing simple command
lists and add the more complex functions as you gain experience.

Note: This document does not describe how to use NetView operator commands.
If you need information about a specific command, refer to the NetView
online help.

Examples of Common Startup Command Lists

If you want to set up terminal access facility (TAF) sessions with the Information
Management System (IMS™) and the Host Command Facility (HCEF), you can use a
command list instead of entering individual commands.

w, written in REXX, establishes terminal access facility (TAF) sessions with
IMS and HCFE.

/* STARTUP1 =*/

'"BGNSESS OPCTL,APPLID=IMS1,SRCLU=TAF11,LOGMODE=0PCTLLOG,SESSID=IMS'
'"BGNSESS OPCTL,APPLID=HCF1,SRCLU=TAF11,LOGMODE=0PCTLLOG,SESSID=HCFA'
'BGNSESS OPCTL,APPLID=HCF1,SRCLU=TAF12,LOGMODE=0PCTLLOG,SESSID=HCFB'
EXIT

Figure 7. STARTUP1 Command List

Figure d, written in the NetView command list language, establishes the same TAF
sessions.

STARTUPZ2 CLIST

BGNSESS OPCTL,APPLID=IMS1,SRCLU=TAF11,LOGMODE=0PCTLLOG,SESSID=IMS

BGNSESS OPCTL,APPLID=HCF1,SRCLU=TAF11,LOGMODE=0PCTLLOG,SESSID=HCFA
BGNSESS OPCTL,APPLID=HCF1,SRCLU=TAF12,LOGMODE=0PCTLLOG,SESSID=HCFB
&EXIT

Figure 8. STARTUP2 Command List

Instead of having to remember and enter three commands, operators can enter the
command list name STARTUP1 or STARTUP2. The command list starts the three
sessions and operators receive the same messages they would receive if they had
entered all three commands.

Examples of Activating a Network Control Program

You can write a command list to simplify the activation of a Network Control
Program (NCP). w is an example of a REXX command list that activates an
NCP.

/* NCP1 */
'V NET,ACT,ID=NCP1,LOAD=YES,LOADSTA=LINKI1'
EXIT

Figure 9. Example of Activating an NCP Using REXX

4 Customization: Using REXX and the NetView Command List Language

Basic Topics
Eigure 10 on page 3 shows a NetView command list language example that

activates the same NCP:

NCP1 CLIST
V NET,ACT,ID=NCP1,LOAD=YES,LOADSTA=LINK1
&EXIT

Figure 10. Example of Activating an NCP Using NetView Command List Language

Creating Command Lists

You can create command lists before the NetView program is started or while it is
running. Code each command list as a member of a command list partitioned data
set (PDS). After you create the command list, use facilities such as ISPF or
IEBUPDTE to update the command list.

The PDS member name is the command list name unless you define another name
for the command list on a CMDSYN statement. For more information about
CMDSYN, refer to the [Cinali NetView for z/OS Administration Rf’fpwnfpl

The command list name must begin with a nonnumeric character and can be from
one to eight characters. Valid characters are: 0-9 A-Z @ $ #.

After a command list is created and saved as a PDS member, it is ready for the
operator to use.

Note: To avoid naming conflicts, give your user-written command lists names
other than the command synonym (CMDSYN) names used for
NetView-provided command lists.

The NetView program supports command lists in data sets that are concatenated
across volumes.

1. Create the data set that will be used to store the command lists.

2. Code each command list as a separate member of a command list data set. To
define the name of the command list data set to the NetView startup
procedure, code the JCL DD statement for the DSICLD as follows:

//DSICLD DD DSN=datasetname,DISP=SHR
3. Concatenate data sets by coding the DSICLD statement as shown in w

//DSICLD DD DSN=datasetnamel ,DISP=SHR

// DD DSN=datasetname2,DISP=SHR
// DD DSN=datasetname3,DISP=SHR
// DD DSN=datasetnamen,DISP=SHR

Figure 11. Example of Concatenating Data Sets with the DSICLD Statement

4. Ensure that the first command list data set defined under DSICLD has the
largest block size of any concatenated command list data sets, or that the first
DD statement has a DCB=(BLKSIZE=xxxx) statement, where xxxx is equal to
the largest block size of the concatenated data sets.

Chapter 1. Getting Started 5

Basic Topics

Notes:

1. When the NetView program is operating on an MVS system and you plan to
update or create command lists while the NetView program is running, define
your command list data sets without secondary extents. Otherwise, a command
list might be filed in a new extent.

If this occurs, a secondary extent failure may occur causing error recovery and
loss of a single instance of running the command list. If the error recovery
succeeds and a second attempt to invoke the command list is made, the
command list will then be available.

Recycle NetView if the data set becomes full and you need to compress the
data set to add more command lists.

2. The block size must be an even multiple of the record length and the record
length must be 80. The records must be formatted as fixed or fixed block at 80.

Ensure that the block size is 3920 or less to reduce paging caused by the block size
exceeding the size of a page of memory.

To create NetView command lists enter the following statement as the first
statement in the command list:

label CLIST

The NetView program ignores the label. If present, the label needs to start in
column 1. Be sure that the CLIST statement begins in column 2 or later, and is
preceded by at least one blank.

Controlling Access to Command Lists

You can use command authorization to specify the operators who can issue a
particular command list.

The following command-authorization methods are available:
* NetView command authorization table
* NETCMDS class of a System Authorization Facility product such as RACF

Use the LIST SECOPTS command to determine which method is in effect.

The method for restricting access to commands is defined in CNMSTYLE and can
be changed dynamically using the NetView REFRESH command.

Command lists are different from other types of commands because specified
keywords and values when invoking the command list cannot be protected with
command authorization. Verify keywords and values that are entered with a
command list in the following ways:

* The called command list can check the parameters that are passed and check the
operator that called it. Then the called command list is coded to exit if it was
called inappropriately.

e REXX command lists can use the AUTHCHK() function.

* You can start a command list from a PL/I or C command processor. Use the
command processor to authorize a keyword and value, start the command list,
and pass the operands to the command list.

Generally, commands or command lists that are called from a command list are
also eligible for command authorization. An exception to this rule is when a

6 Customization: Using REXX and the NetView Command List Language

Basic Topics

command list is called from the automation table, and AUTOSEC=BYPASS is in
effect. Refer to the DEFAULTS command in the NetView online help for more
information.

For more information about how to protect command lists from unauthorized

users, refer to the Livali NetView for z/QS Security Referencd. For more 1nformat10n

about wr1t1ng command processors in PL/I or C, refer to the
book.

Loading Command Lists into Storage

The NetView program enables you to load command lists into main storage before
execution of the command list. Although it is not mandatory that you load a
command list into main storage before it is executed, preloading promotes
improved performance of your computer system.

If you invoke a command list that has not been preloaded, it is loaded into main
storage, executed, and then dropped from main storage. Therefore, every time the
command list is executed, it must be retrieved from the auxiliary storage device
where it resides. If you preload the command list, it can be executed multiple
times without having to be retrieved from auxiliary storage each time.

Three NetView commands enable you to move command lists into and out of
main storage, and to list command lists that are currently in main storage:

LOADCL
Loads command lists into main storage shared by all operators

DROPCL
Drops a command list that was previously loaded into main storage using
the LOADCL command

MAPCL
Lists command lists that currently reside in main storage

For more information about the LOADCL, DROPCL, or MAPCL commands, refer
to the NetView online help.

The NetView program provides a sample REXX command list, AUTODROP
(CNMS8003), that can help you manage the number of command lists that are
loaded into storage using the LOADCL command. The sample uses the MAPCL
and DROPCL commands to conditionally drop commands from main storage.

If you have command lists that are frequently executed, load them into main
storage when the NetView program is initialized. For example, if the command
lists STARTJOB and SETTERM are run often, you can load them into main storage
by coding the statement in your initialization command list as follows:

LOADCL STARTJOB,SETTERM

After initialization, the STARTJOB and SETTERM command lists reside in main
storage and are available for execution. For more information about loadin
command lists into storage when the NetView program is initialized, see Eé@

”

Chapter 1. Getting Started 7

Basic Topics

Running Command Lists

Design command lists that run with little assistance from operators. Some of the
ways you can run command lists are:

* When the NetView program is started

* When the operator logs on

* After receiving a message or MSU

* From a terminal

* At a specified time or time interval

¢ From another command list

¢ From a user-written command processor

Running Command Lists When NetView Is Started

You can specify that command procedures run automatically when the NetView
program is started by defining them in CNMSTYLE as an auxInitCmd. Refer to
sample CNMSTYLE for more information. These commands run under the primary
program operator interface task (PPT). See UPrimary PQI Task Restrictions” onl

for information about PPT restrictions.

Running Command Lists When Logging On

You can define a command list to run automatically after an operator successfully
logs on. You can define only one command list to run when an operator logs on,

but this command list can activate other command lists. See I'Running Command
Lists from Another Command Tist” on page 10 for rules that apply when calling

another command list.

Code the name of the command list you want to run in the operator’s profile using
the IC operand of the PROFILE statement, or the IC field in the NETVIEW
segment of the SAF product. For example, if you want to run the HELLO
command list each time an operator logs on, and if the operator has a profile of
PROEFBEG, the IC operand can be added to the operator’s profile as follows:

PROFBEG PROFILE IC=HELLO

For more information about the PROFILE definition statement, refer to the Cinell
NetView for z/OS Administration Referencd book.

Note: Some operator IDs, known as autotasks, are started by using the
AUTOTASK command. Tasks started by the AUTOTASK command do not
have a terminal attached. Therefore, if an initial command list is to run after
the autotask initializes, the initial command list cannot set any function keys
or invoke any NetView full-screen panels.

You can include many types of commands in your initialization command list. The
following list describes some of the commands you can include:

e To start autotasks, use AUTOTASK commands. Use START commands to start
other tasks, such as DSTs (data services tasks).

* To restore all task global variables that were saved using the GLOBALV SAVET
command, include:

GLOBALV RESTORET =

Note: The RESTORET depends on two things: the task having previously
performed a SAVET, and the DSISVRT DST being active.

* To set operator-specific defaults that override NetView-wide values set using the
DEFAULTS command, use the OVERRIDE command.

8 Customization: Using REXX and the NetView Command List Language

Basic Topics

Running Command Lists after Receiving a Message or MSU

The NetView program’s automation table can initiate a command list upon receipt
of a message or MSU. These command lists can automatically respond to the
message or MSU, saving an operator from having to respond to them.

Command lists that the NetView program initiates upon receipt of a message or
MSU can contain a series of commands to perform a function as a result of the
message or MSU. For example, if the message or MSU reported that an NCP failed,
the command list can issue the VTAM command to reactivate the NCP. See

[‘Chapter 7_Automation Resource Management” on page 103 for more information.

Running Command Lists from a Terminal

You can enter a command listname from the terminal in the same way you enter
any other command and operands. When you enter the name of the command list,
the command list starts processing. Message responses and other information can
be sent to the operator, depending on how the command list is written.

NetView operators can activate, stop, suspend, or restart command list processing
by entering the NetView commands GO, RESET, STACK, or UNSTACK.

For command lists written in REXX, the commands are entered when the
command list is waiting for a response to a PARSE EXTERNAL, PULL, PARSE
PULL, or WAIT instruction.

Note: PARSE EXTERNAL is supported by TSO/E. It is not supported by Systems
Application Architecture®.

For command lists written in the NetView command list language, the commands
are entered during command list &PAUSE processing or command list &WAIT
processing.

The GO command must precede any data entered in response to a PARSE
EXTERNAL, PARSE, PARSE PULL, or &PAUSE. For more information about the
GO, RESET, STACK, and UNSTACK commands, refer to the NetView online help.

Running Command Lists at a Specified Time or Time Interval

Operators can use the following NetView commands to run command lists at a
specified time or time interval:

AFTER
Instructs the NetView program to run the command list after a specified
period of time.

AT Instructs the NetView program to run the command list at a particular
time.

CHRON
Instructs the NetView program to run NetView commands at timed
intervals.

EVERY
Instructs the NetView program to run the command list repeatedly at a
certain time interval.

Note: You can also issue the AFTER, AT, CHRON, and EVERY commands from a
command list.

Chapter 1. Getting Started 9

Basic Topics

You can set up the AT, EVERY, CHRON, and AFTER commands so the command
list runs even if the operator is not logged on at the time. This is done with the
PPT operand or by issuing the timer command under an autotask. However, some
commands cannot be used in a command list running under the PPT. See

PQI Task Restrictions” onpage 13 for more information.

You can define command lists so that they always interrupt the processing of other
command lists. You do this using the TYPE=B (for Both) operand of the CMDMDL
statement, or by issuing the timer command under an autotask. For more
information about how to code CMDMDL statements, refer to the

£/QS Adwinistration Referencd book.

To learn more about the AT, EVERY, CHRON, and AFTER commands, refer to the
NetView online help.

Running Command Lists from Another Command List

One command list can activate another command list. When a command list is
running under the control of another command list, it is nested within the calling
command list. To nest a command list within another command list, code the name
of the called command list as a command within the controlling command list.
When the NetView program reaches a statement with the name of a command list,
it starts running the nested command list. When the NetView program reaches the
end of the nested command list, it returns control to the calling command list and

proceeds to the next statement, as shown in [Eigure 12 an page 1d.

CMDLISTA CMDLISTB CMDLISTC
statementia statementib statementic
statement2a statement2b statement2c
statement3a statement3b statement3c
CMDLISTB statement4b statement4c
statementba CMDLISTC statement5c
statement6a statement6b statement6c
statement7a statement7c
statement8a EXIT
statement9a EXIT

EXIT g

Figure 12. Nested Command Lists

When planning to create command lists that run other command lists, keep the
following in mind:

* A REXX command list can be invoked as a REXX command, subroutine, or
function.

* A REXX command list can call a command list written in the NetView command
list language as a command but not as a subroutine or a function.

* A command list written in the NetView command list language can call another
command list written in the NetView command list language or a REXX
command list as a command.

e Command lists written in REXX and command lists written in the NetView
command list language can call each other.

* You can have 250 levels of externally nested command lists.

10 Customization: Using REXX and the NetView Command List Language

Basic Topics

Only REXX command lists invoked as commands, external subroutines, or
external functions count as one of the 250 levels of externally nested command
lists. You can invoke up to 250 REXX command lists as internal subroutines and
functions, but they do not count toward the 250 levels of externally nested
command lists.

* You should test each command list before running the command list as part of a
nested chain of command lists.

For information about REXX subroutines and functions, refer to the REXX library.

Passing Information from One Command List to Another

When REXX command lists and command lists written in the NetView command
list language call each other, operands can be passed from the calling command list
to the nested command list. However, when the nested command list is finished,
only a return code is sent to the calling command list.

To pass variables between the calling command list and the nested command list,
use NetView global variables. The GLOBALV command in the IILzzo.b_NaﬂZmqu.d
£/QS Command Referencd provides information about setting and retrieving global
variables in REXX command lists. For information about defining global variables
in command lists wrltten in the NetView command list language, see

" . Alternatively,
REXX variables in the caller can be accessed by the PIPE VAR stage. For more
information, refer to the NetView online help.

Error Handling
If a nested command list encounters an unrecoverable error, the command list ends
and passes the error back to the command list from which it was called.

If the calling command list is written in REXX, it might be able to take action to
recover from the error passed to it from the nested command list. For information
about coding REXX command lists that can recover from errors, see

Fom Forors oo REXX C it el

If the calling command list is written in the NetView command list language, and
an error occurs in the nested command list, the calling command list also ends. If
the calling command list was called by another command list, it continues to pass
the error back to the command list from which it was called.

Running Command Lists from a User-Written Command
Processor

You can write a command processor that invokes a command list. Command
processors are programs written in assembler, PL/I, or C. For information about

how to write command processors, refer to [Cinali NetView for z/QS Customi ation)
or [Civali NetView fnv JQS Customization: chnﬂo PL/ and d

Using Network Commands in Command Lists

The following sections describe how you can use network commands in command
lists.

Some of the types of network commands you can include are:
* NetView commands

e User-written NetView commands
e VTAM commands

Chapter 1. Getting Started 11

Basic Topics

The commands used within command lists are subject to command authorization,
unless SEC=BY was specified on the CMDMDL statement or AUTOSEC=BYPASS is
in effect. For more information, refer to [Civoli NetView for z/QS Administration

Notes:
1. The NetView RETURN command is not valid in a command list.

2. You can use only NetView and user-written commands that are defined on the
CMDMDL statement as regular or both (TYPE=R or TYPE=B).

3. You must use the appropriate prefix:
* NLDM for session monitor commands
* NPDA for hardware monitor commands
* STATMON for status monitor commands

Using System Commands

You can use system commands in command lists. For example, use one of the
following NetView MVS commands to enter MVS commands:

e MVS S jobname

e MVS D A,L

Refer to the NetView online help for more information.

Using Long-Running Commands

You can use long-running commands in your command lists. There are two types
of long-running commands:

* Major

* Minor

The type of long-running command, and whether the command list uses the CMD
command to queue the command, determines whether the long-running command
or the issuing command list receives execution priority.

Using long-running commands in your command list enables other commands on
the low-priority queue to begin executing.Refer to the NetView online help for
more information about command priorities.

Using Major Long-Running Commands
With the exception of the BGNSESS (FLSCN) and NCCF commands, most

long-running commands are major long-running commands. When a command is
issued from a command procedure, the command completes execution before the
command procedure resumes. The return code from the command is available
when the next command procedure instruction is executed. Execution for certain
long-running commands (for example, NLDM) can take an extended period of
time (until the operator chooses to exit).

Note: An exception is provided by the DSIPUSH MINOR function, which provides
for a command to resume after completion of an invoking command
procedure. The invoking procedure can obtain a return code or messages to
be trapped only from the initial execution phase of such a command, not
from the resumption.

Among NetView-supplied commands, only BGNSESS (FLSCN) uses this MINOR

option. When the issuing command list is complete, the minor long-running
command resumes execution.

12 Customization: Using REXX and the NetView Command List Language

Basic Topics

If a command list issues a major long-running command, and while the command
is executing, the same major long-running command is entered, the first command
is canceled. The major long-running command then passes control to the issuing
command list. In such a case, be aware of the following:

* When the issuing command list is written in REXX, code SIGNAL ON HALT. If
you do not code SIGNAL ON HALT, the operator sees inappropriate termination
messages. Code EXIT -5, and do not generate any messages in the HALT
subroutine. See L ”
for more information about coding SIGNAL ON HALT.

* When the issuing command list is written in the NetView command list
language, the command list is also canceled.

You can also cancel the calling command list with the UNIQUE command. Refer to
the [Winali NetView for z/QS Custamization Guidd book for more information about

UNIQUE. Refer to the [Cinali NetView for z/QS Customization: sing Assembled book

for information about DSIPUSH.

Using Minor Long-Running Commands

Examples of minor long-running commands are the NetView BGNSESS (FLSCN)
and NCCF commands. When issued from a command list, a minor long-running
command performs syntax checking and other synchronous error tests. The value
of the return code (RC in REXX command lists or &RETCODE in command lists
written in the NetView command list language) contains the result of these tests.
When the issuing command list is complete, the minor long-running command is
executed. Any errors that occur while the long-running command is executing are
reported in messages. To access these messages, use NetView automation, TRAP
and WAIT instructions (REXX), or the &WAIT control statement (NetView
command list language).

Notes:

1. When a task receives a message, a check is first made to determine if a
command list is waiting for a message. If not, and if NetView automation is
being used, the message is checked against the NetView automation table. Once
a message is suppressed by a command list using wait processing (TRAP or
&WAIT), that same message cannot be used by a NetView automation table.

2. You do not need to issue the NCCF minor long-running command from a
command list because the NetView program ensures that the command facility
panel is displayed when line mode messages are presented.

To define a user-written command as a minor long-running command, use the
DSIPUSH macro. Refer to the [Cinoli NetView for z/QS Customization: Lsing Assembled]
book for information about DSIPUSH.

Queuing Long-Running Commands

You can control the execution of long-running commands by using the NetView
CMD command to queue them. When queued, all long-running commands are
processed in the same manner, whether the command is minor or major. Queuing
a long-running command causes it to be processed independently of your
command list. The result of the long-running command does not influence the
result of the command list. When you queue a long-running command, the return
code indicates the result of the queuing operation only. You cannot get a return
code from the queued command.

To ensure that TAF command output is displayed before the command list resumes
processing, use CMD HIGH BGNSESS FLSCN. If the operator rolls from the current

long-running command, the command list continues. If the long-running command

Chapter 1. Getting Started 13

Basic Topics

is canceled, the cancelation is not passed back to the issuing command list. For
more information about TAF, refer to the NetView online help.

To delay the execution of NLDM until your command list is stacked, canceled,
interrupted, or completed, use CMD LOW NLDM.

Using NetView Pipelines

NetView pipelines provide another level of function and flexibility to command
lists. Among many pipeline capabilities is the automation of full-screen

aEEIications. For more information, refer to Liuali NetView for z/QS Custamizatioul

or the NetView online help.

Using the VIEW Command

You can use the VIEW command in command lists to display panels. The VIEW
command has access to local and global variables set in the command list that
issues the VIEW command and to NetView local variables.

When the VIEW command is invoked with the INPUT option, the contents of the
following variables are passed from the command list to the VIEW command:

* VIEWICROW

* VIEWICCOL

When the VIEW command is invoked with the INPUT option, the contents of the
input fields on a panel and the following variables are returned to the invoking
command list:

* VIEWAID

* VIEWCURROW

* VIEWCURCOL

* VIEWCOLS

* VIEWROWS

The VIEW command has several other commands and command lists associated
with it:

e UPPER command

* UNIQUE command

* SHOWCODE command list

Refer to the [[inoli NetView for z/OS Customization Guidd book for more information
about local and global variables, and using the VIEW command with commands
and command lists.

Using Full-Screen Commands

If a command list that is executed from a full-screen processor issues a full-screen
command, the NetView program can display the command facility panel before
displaying the output of the full-screen command. The command facility panel is
displayed only if the command list generates any other output that is displayed to
the operator. Display of the command facility panel suspendsany AUTOWRAP
setting and prevents the full-screen output from being automatically displayed. To
minimize the possibility of displaying command facility panel output, define and
code the command list so that it does not generate any other output to be
displayed. For example:
* Code a CMDMDL definition statement with ECHO=N for the command list.
Refer to the [Tivali T\TPfViMnfnr /QS Administration R@FPWWPJ for information about
coding a CMDMDL statement.

14 Customization: Using REXX and the NetView Command List Language

Basic Topics
¢ Code TRACE ERRORS or TRACE OFF at the beginning of a REXX command
list. Refer to the REXX library for information about the TRACE instruction.
* Do not code SAY instructions in a REXX command list.

* Code &CONTROL ERR at the beginning of a command list written in the
NetView command list language.

* Do not code &WRITE or &BEGWRITE control statements in a command list
written in the NetView command list language.

* Do not issue commands that have line mode output.

Note: If a command list encounters a statement with a timeout greater than 30
seconds while a full-screen command processor is running, the following
message is issued:

DSI594A COMMAND PROCEDURE cmdlistname WARNING - type STATE ENTERED

You can then enter the necessary information if the command list is waiting for an
operator response, or ensure that a WAIT or &WAIT is satisfied before rolling to
other components.

Primary POI Task Restrictions

Command lists can run under the primary POI task (PPT). However, when
possible, command lists should be executed under an autotask. See QTASK]

OST Restrictions” on page 14 for more information about running command lists

under an autotask.

You can run command lists under the PPT when the command lists meet any of
the following criteria:

* Routed to the PPT for execution as a result of NetView automation.

* Coded on a CNMSTYLE definition statement to run when the NetView program
is initialized.

e (Called with an AT, EVERY, AFTER, or EXCMD command that uses the PPT as
an operand. (PPT on AT, EVERY, and AFTER enables the command to be run
even when the operator who scheduled it is not logged on.)

The following restrictions apply to command lists that run under the PPT:

* In general, you cannot use full-screen commands and immediate commands. Do
not use the following NetView commands:
- AUTOWRAP
— BGNSESS
- CLOSE
- GO
- INPUT
- LOGOFF
- MOVE
— PIPE with the CONSOLE stage
— RETRIEVE
- ROUTE
- SET
— START
- STOP
— SUBMIT
- SWITCH
- VIEW
- WTO

Chapter 1. Getting Started 15

Basic Topics

- WTOR

* Do not use the following REXX instructions:
- FLUSHQ
- MSGREAD
— PARSE EXTERNAL
— PARSE PULL if there is nothing in the REXX data stack
— PULL if there is nothing in the REXX data stack
- TRAP
- WAIT

* Do not use the following NetView command list language control statements:
- &PAUSE
- &WAIT

* Do not execute command processors that use the MVS operating system
STIMER macro.

* Do not use the PIPE command with the CORRWAIT stage.

Note: Command lists running under the PPT should not generate messages
containing non-Latin characters (such as double-byte characters) that are
routed to the system console.

AUTOTASK OST Restrictions

The following restrictions apply for automation tasks that are started with the

AUTOTASK command:

* Use the ATTACH command if you want to automate full screen commands.

* Do not use commands that use keyboard functions; for example, setting function
keys

Because autotasks have fewer restrictions than the PPT, use them instead of the
PPT whenever possible.

Controlling Command List Output

You can control the amount of data displayed to the operator during the execution
of a command list. Responses to commands in the command list or messages the
command list sends to the terminal screen can be displayed to the operator.

To control the amount of data displayed to the operator during the execution of a
REXX command list, use the NetView PIPE CONSOLE command, TRAP
instruction, or the suppression character (see

E'Suppressing Display of Non-REXX
Commands” on page 23). Refer to the NetView online help and the REXX library

for information about the TRAP instruction.

To control the amount of data displayed to the operator during the execution of a
command list written in the NetView command list language, use the &CONTROL

control statement (see L&C.QLERDLStaiement_w:age_Sd) the &WAIT

SUPPRESS control statement (see L

or the suppression character (see tCammnhans_Eorﬁup.p.t@smn_ClwdersLad
)-

The commands and messages displayed during execution of a command list
appear in the message area of the NetView panel. Output from the command list is
preceded by a type code of C. For a complete description of the NetView panel
layout and the format of messages sent to the panel, refer to the [Linoli NetView fol
B/QS Lser’s Guidd,

16 Customization: Using REXX and the NetView Command List Language

Part 2. Writing Command Lists in REXX Language

Chapter 2. REXX Language Overview .
Introduction to the REXX Language .
Compiling and Executing REXX Command Llsts
Using Data REXX o
/*%DATA .
/*%LOGIC
Coding Conventions for REXX Command Llsts and
Data REXX Files.
Record Size .
Using Quotation Marks .
Suppressing Display of Non-REXX Commands
NetView Restrictions on REXX Instructions.
Pausing for Operator Input .
Using the SAY Instruction
Using the CALL Instruction .
NetView Restrictions on REXX Functlons
Writing REXX Function Packages .
Changing the Environment Addressed by REXX
Command Lists . ..
Data REXX Host Command Env1ronment
Using the EXECIO Command .
Using MVS and VTAM Commands
Using the NetView ALLOCATE and FREE
Commands
Using REXX Command Llsts .
Nesting REXX Command Lists from Assembler C
or PL/I. . .
Parsing in REXX Command Llsts .
Tracing REXX Command Lists . .
Return Codes in REXX Command Lists .
Recovering from Errors in REXX Command Llsts

Chapter 3. REXX Instructions Provided by
NetView

Using TRAP in Nested REXX Command Llsts
Using WAIT in Nested Command Lists .
Using MSGREAD in Nested Command Lists .
Functions Set by MSGREAD. .

.19
. 19
. 20
. 20
.21

.22

.23
.23
.23

25

. 26
. 26
. 26
. 27
.27
. 28

. 28
. 29
. 29
. 30

. 30
.31

.32
.32
. 32
. 33
. 34

. 37
. 38
. 38
. 39
. 39

17

18 Customization: Using REXX and the NetView Command List Language

Chapter 2. REXX Language Overview

This chapter includes a brief introduction to REXX. Not all of the features and
syntax rules of REXX are described in this document. This document focuses
primarily on the REXX instructions and functions provided by the NetView
program.

Notes:

1. The power and flexibility of the REXX programming language makes it easy to
inadvertently write programs that have unpredictable results. Therefore, be sure
to thoroughly test all NetView REXX command lists before putting them into
production.

2. For REXX on MVS systems support, TSO/E Version 2 or a later version of TSO
must be installed, but not necessarily active. For complete information about
REXX, refer to the REXX library.

Introduction to the REXX Language

REXX is an interpretive language; the REXX interpreter operates directly on the
program as it executes, line-by-line and word-by-word. An interpreted language is
different from other programming languages, such as COBOL, because it is not
necessary to compile a REXX command list before executing it. However, you can
choose to compile a REXX command list before executing it to reduce processing
time.

As with all non-NetView REXX execs and macros, each NetView REXX command
list or Data REXX file must begin with a comment. REXX comments are marked
with /* at the beginning and */ at the end, and can be used in your REXX
command list wherever necessary.

A REXX command list or Data REXX file consists of a series of clauses, each
having a separate purpose. In a simple REXX command list, the clauses are
interpreted in the sequence in which they are coded. You can control the sequence
in which clauses are executed by using specific commands that alter the processing
order.

A REXX instruction tells the REXX interpreter to do something. A REXX instruction
is identified by its keyword, which must be the first item in the clause.

When an equal sign (=) is the second item in a clause, the clause is identified as an
assignment clause. Assignment clauses enable you to give a value to a variable.
Variables enable you to define different values for the clauses within a command
list.

When the second item in a clause is a colon (:), the clause is interpreted as a label.
Labels identify the target statement for a transfer of control.

The REXX language enables you to call internal or external routines, called
functions. REXX function names must always be followed by parentheses. There
can be up to 10 expressions, separated by commas, between the parentheses. An
expression is something that can be computed. The REXX interpreter performs the
computation named by the function and returns a result. The result is then used in
the expression in place of the function call. To use a function, place the function

19

REXX Language Overview

name in the command list or Data REXX file at the location where you want the
result to be accessed. There are also several built-in functions included in the REXX
language that perform predefined operations. Refer to the REXX library for a
complete description of the features of the REXX language.

Compiling and Executing REXX Command Lists

REXX command lists can be compiled to significantly improve performance.

The IBM REXX/370 compiler product must be installed on the system where the
command lists will be compiled.

Refer to the REXX library for directions on how to compile a REXX command list.
For additional performance information about compiled REXX command lists, refer
to the Tivoli NetView for z/OS Tuning Guide.

Notes:
1. You do not need to install or start the compiler on the system where NetView
resides.

2. The compiled executable might be larger (take up more space) than the original
uncompiled command list.
3. The NetView program supports the CEXEC (Compiled EXEC) and OBJECT
(Object deck) output formats of the REXX/370 compiler.
4. When creating a Load Module from an Object Deck, note the following items:
* The object deck must be created and saved from a REXX compiler.
* Two DDNAME:s in the REXXL cataloged procedure are particularly
important:
— The SYSIN DD statement must refer to the object deck (input).

— The SYSLMOD DD statement must refer to the load library specified with
the load module (output).

— The object deck must be link-edited with the EFPL stub to create a load
module, and the load module name cannot conflict with any NetView,
REXX, or other load module name.

— The REXXL cataloged procedure is used to create a load module; the
procedure can be found in REXX.V5R1IM0.EAGPRC.

— The load module can only be invoked through or by a REXX CALL
instruction, or as a REXX function.

5. To execute CEXEC format compiled REXX command lists, place the output file
into a member of one of the DSICLD data sets.

6. Install the compiler run-time library in an authorized library on the system that
executes the compiled REXX command lists.

Using Data REXX

Data REXX enables you to include REXX instructions and functions in data files.
Data REXX uses two formats: DATA and LOGIC. Use DATA for sections of the file
that are primarily data and use LOGIC for sections of the files that are primarily
logic. Sample DSICMD is an example of a DATA file and sample BNJMBDST is an
example of a LOGIC file. CNMSTASK uses both formats.

The following information applies to both DATA and LOGIC files:

» Data REXX is supported only in files that are contained in the following
libraries:

20 Customization: Using REXX and the NetView Command List Language

REXX Language Overview

— DSIPARM
- CNMPNL1
— DSIPRF
- DSIVTIAM
- BNJPNL1
— BNJPNL2
— DSIOPEN
— DSILIST
- DSIMSG
— DSIASRC
— DSIARPT

¢ Data REXX is not supported in VSAM files.

* The first line of the file must begin with either the /*%DATA or /*%LOGIC
NetView REXX directive.

e A file can contain both DATA and LOGIC NetView REXX directives.

* DATA REXX files should be small because they are read entirely into storage.
Note that %INCLUDE files that are referenced in a Data REXX file are also read
into storage if they are Data REXX files; files that are not Data REXX files are not
read entirely into storage. Therefore, to save storage, %INCLUDE files that
contain a large amount of data should not be data REXX files.

* REXX clauses, which are treated as external commands by REXX, are treated as
external data by Data REXX.

* Strings output by the SAY and TRACE instructions are written to the network
log.

¢ The REXX keyword instruction ADDRESS can be used; however, the only
address that is supported is NETVDATA.

* The following REXX functions cannot be used in Data REXX files:
- GETMSG
- LISTDSI
- MSG
- MVSVAR
- OUTTRAP
- PROMPT
- SETLANG
- STORAGE
- SYSDSN
- SYSVAR

* The following REXX keyword instructions cannot be used in Data REXX files:
— TRACE ? (interactive trace)
- PARSE EXTERNAL

* The PULL and PARSE PULL instructions can only be used to access data from
the REXX data stack. Do not use PULL and PARSE PULL to pause for operator
input. Data REXX has no operator input facility.

[*%DATA

The /*%DATA NetView REXX directive starts a Data REXX file in data mode. The
file remains in data mode until either the /*%LOGIC directive is encountered or
the end of file (EOF) is reached.

The syntax for the /*%DATA NetView REXX directive is:

Chapter 2. REXX Language Overview 21

REXX Language Overview
I*%DATA

»>—/+%DATA comments*/

v
A

Where:

[*%DATA
The first line of the file must begin with /*%DATA and the / must be the first
character on the line. A space is required after DATA and the word DATA must
be in all capital letters.

comments
Specifies any comments that you want to include. Comments can span
multiple lines.

*/ Specifies the end of the DATA statement.

Usage Notes:

* In data mode, all REXX instructions must be preceded by %> (for example, %>
ELSE). Lines that do not begin with %> in column one are treated as data.

* The % sign must be in column one.

Example: The following is an example of how to code Data REXX in data mode:

/*%DATA --- demonstrate data mode */
Data 1ine (this line has two leading blanks)

%>IF CGLOBAL('ABC') = 1 THEN

%INCLUDE ABCFILE

>ELSE

> DO

> '%INCLUDE' CGLOBAL(XYZfilenameVar)

Another data line

%> END

Final data line

N N P

Related Statements: /*%LOGIC

[*%LOGIC

The /*%LOGIC NetView REXX directive starts a Data REXX file in logic mode.
The file remains in logic mode until either the /*%DATA directive is encountered
or the end of file (EOF) is reached.

The syntax for the /*%LOGIC NetView REXX directive is:
I*%LOGIC

v
A

»>—/+%L0GIC commentsx/

Where:

*%LOGIC
The first line of the file must begin with /*%LOGIC and the / must be the first
character on the line. A space is required after LOGIC and the word LOGIC
must be in all capital letters.

22 Customization: Using REXX and the NetView Command List Language

REXX Language Overview

comments
Specifies any comments that you want to include. Comments can span
multiple lines.

*/ Specifies the end of the LOGIC statement.

Usage Notes:

* REXX clauses, which are treated as external commands by REXX, are treated as
external data by Data REXX.

* In logic mode, REXX instructions do not need to be preceded by %>.

Example: The following is an example of how to code Data REXX in logic mode:

/*%L0GIC --- demonstrate logic mode */
' Data Tine (this line has two leading blanks)'
IF CGLOBAL('ABC') = 1 THEN

! %INCLUDE ABCFILE'
ELSE

DO

"%INCLUDE' CGLOBAL(XYZfilenameVar)

'"Another data Tine'

END
'"Final data line'

Related Statements: /*%DATA

Coding Conventions for REXX Command Lists and Data REXX Files

This section describes the syntax rules that apply when coding REXX command
lists or Data REXX files for the NetView program.

Record Size

The data portion of records in REXX command lists or Data REXX files for the
NetView program can be up to 80 characters in length (the records need to be a
fixed length of 80 characters). If the first record of a REXX command list or Data
REXX file contains a sequence number in columns 73 through 80, all records in
that command list or Data REXX file are truncated to 72 characters. The NetView
program also truncates trailing blanks from all REXX records in REXX command
lists and Data REXX files. Blank REXX records are not discarded, but are truncated
to one blank character.

Using Quotation Marks

To avoid variable substitution on a string in a REXX command list or Data REXX
file in logic mode, enclose the string in either single quotation marks (') or double
quotation marks ("). The quotation marks signify that you do not want REXX to
perform variable substitution on the string. That is, you do not want the REXX
interpreter to interpret the string. When REXX encounters a beginning quote
(single or double) on a command list statement or Data REXX statement , it stops
interpreting until it reaches a matching ending quote.

Do not enclose REXX instructions in quotation marks. REXX recognizes its own
instructions and does not perform variable substitution on REXX instructions. The
following examples show how to use quotation marks to prevent variable
substitution with the REXX SAY instruction:

SAY 'THIS IS A STRING WITH SINGLE QUOTATION MARKS'
SAY "THIS IS A STRING WITH DOUBLE QUOTATION MARKS"

Chapter 2. REXX Language Overview 23

REXX Language Overview

These two instructions display the following at your terminal when using REXX or
writes to the network log when using Data REXX:

THIS IS A STRING WITH SINGLE QUOTATION MARKS
THIS IS A STRING WITH DOUBLE QUOTATION MARKS

To use an apostrophe or double quotation marks within the text of a string
enclosed in quotation marks, you can do the following;:

SAY "IT'S EIGHT 0'CLOCK. TIME TO BRING UP CICS."

SAY 'IT'S EIGHT 0'CLOCK. TIME TO BRING UP CICS.'

SAY 'PLEASE ENTER "GO NODENAME" OR "GO STOP"'
SAY "PLEASE ENTER ""GO NODENAME"" OR ""GO STOP"""

In the following example, either of the first two instructions displays the first line
or writes to the network log when using Data REXX. Either of the last two
instructions display the second line:

IT'S EIGHT 0'CLOCK. TIME TO BRING UP CICS.
PLEASE ENTER "GO NODENAME" OR "GO STOP"

Generally, you enclose any NetView commands, or system commands recognized
by the NetView program, in quotation marks. The exception is when you want
variable substitution to take place on an operand of such a command. If you want
variable substitution to take place, leave the operand outside the quotation marks.

Note: NetView commands cannot be issued from Data REXX files. The only
address environment supported by Data REXX is ADDRESS NETVDATA.
REXX clauses, which are treated as external commands by REXX, are treated
as external data by Data REXX.

For example, if you want to use the NetView INACT command in a command list
to deactivate a node named NODE]I, code:

"INACT NODE1'

However, if the command list contains a variable named NODE and you want to
deactivate the node whose name is the current value of the NODE variable, code:

"INACT ' NODE

The next example uses quotation marks to have REXX perform variable
substitution for only part of a command. The example assumes that the DDNAME
has already been allocated. This example first parses the user’s input into a
variable called DDNAME. The TSO/E EXECIO command is then used to read a
line of that DDNAME. ADDRESS MVS is a REXX instruction, so it is not enclosed
in quotation marks. The quotation marks begin before EXECIO because it is a
TSO/E command. The quotation marks end before DDNAME to enable REXX to
substitute the current value of the DDNAME variable into the EXECIO command.
The rest of the EXECIO command is enclosed in quotation marks so that variable
substitution does not take place on the STEM and LINE operands.

ARG DDNAME
ADDRESS MVS 'EXECIO 1 DISKR ' DDNAME ' (STEM LINE'

Notes:

1. Use caution when writing REXX clauses that have quoted strings that span
multiple records. Because the NetView program truncates trailing blanks from
all REXX command list records before executing the command list, REXX
clauses that have quoted strings that span multiple records may not execute as

24 Customization: Using REXX and the NetView Command List Language

REXX Language Overview

expected. For example, in the following set of REXX clauses that span records,
The NetView program removes the blanks in the middle of the quoted string
from the output.

Enter the following:

say 'ABC
DEF'

The output is:
ABCDEF

All the trailing blanks were removed between the characters C and D.

Blanks that are to be retained are coded on the next line as in the following
example:

say 'ABC
DEF'

The output is:
ABC DEF

2. When it is necessary to continue a quoted string on the next line in a NetView
command list, code the following:

SAY 'THIS IS AN EXAMPLE OF A LONG',
'QUOTED STRING'

The output is:
THIS IS AN EXAMPLE OF A LONG QUOTED STRING

Notice that the continuation comma displays a blank at your terminal after
displaying the first quoted string. If you do not want the space, you can use
concatenation bars to eliminate it. This is useful when you code long system
commands in your command list. Code the concatenation bars as follows:

SAY 'THIS IS AN EXAMPLE OF A LONG QUO'[],
"TED STRING'

The output is:
THIS IS AN EXAMPLE OF A LONG QUOTED STRING

Suppressing Display of Non-REXX Commands

Use the REXX TRACE command to control the echoing of REXX instructions. Use
the SUPPCHAR operand in CNMSTYLE to influence the suppression of non-REXX
(for example, NetView) commands.

Note: IGNRLSUP is ignored for commands issued from a REXX command list.
Refer to [Cinali 7\Tpr1'p7nfnr /QS Command Rﬂfprﬂnm&l for more information.

When issuing a command that returns its status in the return code, you can
enhance the performance of your command list by suppressing synchronous
output from the command. To suppress synchronous output, code the suppression
character twice. If the suppression character is not known, or it might change, or a
suppression character is not explicitly defined in CNMSTYLE, use the following
general form for suppression:

SUPPCHAR() | |[SUPPCHAR() | | 'SET PF24 IMMED RETRIEVE'

No synchronous output from the command is displayed to the operator.

Chapter 2. REXX Language Overview 25

REXX Language Overview

Use the double suppression character when sufficient status is provided by the
return code and to enhance performance of commands that produce line mode
messages synchronously. Using the double suppression character does not affect
output that is scheduled by a command (for example, D NET,APPLS), nor does it
reliably reduce output from a long-running command (for example, NLDM).

See the SUPPCHAR() function in Bess:.gn_hignmah.gn_ﬁm.chgnslgn_pa.geJ.Eﬂ for

more information about suppression characters. You can also do suppression with

the HOLE stage of the PIPE command. Refer to izali NetView for z/Qd

for information.

NetView Restrictions on REXX Instructions

This section describes the restrictions that apply when coding REXX instructions in
REXX command lists for the NetView program.

Pausing for Operator Input

The REXX instructions (PARSE EXTERNAL, PARSE PULL, PULL, and TRACE ?)
cause a command list to pause for operator input.

Using the PARSE EXTERNAL or PARSE PULL instructions along with other
instructions, you can code command lists that ask the operator questions and pick
up entered responses. Use the REXX SAY instruction to describe what the operator
should enter. Code the PARSE EXTERNAL or PARSE PULL instruction after the
SAY instruction to temporarily stop the command list (unless, in the case of PARSE
PULL, there is data on the REXX data stack). After the command list has
temporarily stopped, the operator enters the NetView GO command before it
continues. Any data to be passed to the command list is to be entered as an
operand or operands on the GO command. For example, to have the command list
process a YES or NO answer from the operator, code the following SAY and
PARSE EXTERNAL instructions:

SAY 'ENTER "GO YES" OR "GO NO" TO CONTINUE'
PARSE EXTERNAL ANSWER

The operator responds to the command list with either GO YES or GO NO. The
GO command causes the command list to continue processing, and the YES or NO
value is picked up by the PARSE EXTERNAL instruction by placing the value in
the variable ANSWER.

For restrictions on using PARSE EXTERNAL, PARSE PULL, PULL, and TRACE in

Data REXX files, see I'lsing Data REXX” on page 2(.
Using the SAY Instruction

The REXX SAY instruction enables a character string of any length; however,
NetView can display only 32728 characters at a time.

When you issue a REXX SAY instruction in a REXX command list for the NetView
program, a 12-character header precedes the data displayed on the operator’s
screen. The header contains the 1-character NetView message type of the message
(HDRMTYPE()), followed by three blanks and the identifier of the domain under
which the command list is runmng (APPLID()). For more mformatlon about
HDRMTYPE() and APPLID() see

26 Customization: Using REXX and the NetView Command List Language

REXX Language Overview

For Data REXX files, strings output by the SAY and TRACE instructions are
written to the network log.

Do not use MSGID() as the first item of output from a SAY instruction because the
text of the SAY instruction is processed as a regular NetView message. This
processing can cause the message to be trapped by a TRAP instruction and can
incorrectly satisfy a WAIT instruction, or cause automation processing to loop.

Using the CALL Instruction

When you use the CALL instruction in REXX command lists or Data REXX files
for the NetView program, enclose the name of the command list or Data REXX file
you want to call within single quotation marks. You can call only REXX command
lists and assembler programs (not NetView command list language command lists
or Data REXX files) with the CALL instruction. Operands to be passed to the
called command list or assembler program need to be outside the quotation marks
enclosing the name of the command list. If you want to avoid variable substitution
for an operand, enclose the operand in quotation marks. For example, if you code
the following CALL instruction to call an external command list named CLIST2:

CALL 'CLIST2' P1 P2 'RESOURCE PU1 INACTIVE'

and CLIST2 contains the following PARSE UPPER ARG statement,
PARSE UPPER ARG RES1 RES2 STATUS

the RES1 and RES2 variables are assigned the current values of P1 and P2 when
CLIST?2 is called.

If you execute CLIST2 as a command from another command list without the
CALL instruction, for example:

'"CLIST2' P1 P2 'RESOURCE PU1l INACTIVE'

CLIST?2 receives the same values for the variables on the PARSE UPPER ARG
statement, but the value of the ARG() function is set to 1 and the entire parameter
string is placed in the variable RES1. RES2 and STATUS are set to null.

Note: REXX clauses, which are treated as external commands by REXX, are treated
as external data by Data REXX.

Be careful when you use the CALL instruction to call a REXX command list from
another REXX command list. The command list you call is treated like a
subroutine, and some data is shared between the initial command list and the
called command list. For example, trapped message queues, values of NetView
commands (such as GETMLINE), and the values of message processing REXX
functions (such as MSGID) are shared between the two command lists. To prevent
this sharing of data, do not use the CALL instruction to invoke another command
list.

NetView Restrictions on REXX Functions

This section describes the restrictions that apply when coding REXX functions in
REXX command lists or Data REXX files for the NetView program.

Some REXX functions return different values depending on the operating system

under which the command list containing the functions runs. For example, DATE()
returns the current date in different formats depending on the operating system.

Chapter 2. REXX Language Overview 27

REXX Language Overview

The REXX LINESIZE() function always returns the value 32,728 when used in
REXX command lists or Data REXX files for NetView.

For restrictions on using REXX functions in Data REXX files, see Flsing Datd

R >3

Use the REXXSTRF keyword on the DEFAULTS or OVERRIDE command to enable
the REXX STORAGE() function.

Note: The REXX STORAGE() function cannot be used in Data REXX files.

Writing REXX Function Packages

You can write your own REXX function packages for the NetView program. The
NetView program supplies two dummy directories to help you write function
packages for use with NetView REXX command lists. One directory is for a user
function package (DSIRXUFP), and the other directory is for a local function
package (DSIRXLEP).

Link-edit the real directory and function code into load module DSIRXUFP for a
user function package or into DSIRXLFP for a local function package. As part of
coding the interface to your function code, use the NetView DSIRXEBS macro to
obtain a new EVALBLOCK.

Refer to the REXX library for instructions on coding a real directory and coding
the interface to your function code.

Refer to [Tinali NetView for z/OS Customization: qung Assembled for information
about the DSIRXEBS macro and function packages, and about writing function
package directories.

Refer to the [Cinali NetView for z/OS Installation: Configuring Additional (’nm‘nnm’nf&
and the Tivoli NetView for z/OS Tuning Guide for information about improving the
performance of REXX function packages for the NetView program.

Changing the Environment Addressed by REXX Command Lists

REXX command lists for the NetView program use NETVIEW as the default
addressing environment. If you want to change the environment, use the REXX
ADDRESS instruction. For example, if you want your command list to execute
MVS subcommands, first change the addressing environment with an ADDRESS
MVS instruction.

In ADDRESS MVS, you can use the following commands:
* DELSTACK
* DROPBUF
* EXECIO

* MAKEBUF
* NEWSTACK
* QBUF

* QELEM

* QSTACK

+ SUBCOM

+ TE

+ TS

28 Customization: Using REXX and the NetView Command List Language

REXX Language Overview

Refer to the TSO/E REXX library for more information about these commands and
the REXX ADDRESS instruction.

In the NETVIEW addressing environment, the entire command string is converted
to uppercase characters. If you want to issue a command using lowercase
characters, change the addressing environment to NETVASIS, as follows:

address netvasis 'WTO This is a mixed case message.'

You can also define the command name in a CMDMDL statement and the
synonym (using lowercase characters) in a CMDSYN statement. For example, if
you want to enter the WTO NetView command in lowercase characters, change the
CMDMDL and CMDSYN statements for WTO in DSICMD as follows:

WTO CMDMDL MOD=DSIWTC...
CMDSYN wto

If you code a CMDSYN statement for the WTO NetView command as shown in
the previous example, you can use the following coding technique:

address netvasis 'wto This is a mixed case message.'

Notes:

1. The command must either be uppercase, or exactly match the case in a
CMDSYN statement.

2. The only valid addressing environments recognized in a NetView REXX
command list are NETVIEW, NETVASIS, and those supported by TSO/E REXX
in any MVS address space.

3. Programs, such as SDSF, that do program calls will abend if they are linked or
attached. Because the NetView status monitor can perform program calls,
NetView cannot link or attach to a program that can perform program calls.

4. The NetView program does not support a TSO/E environment in the NetView
address space.

5. The NetView program returns an error if you try to execute a command that is
routed to an incorrect addressing environment.

6. The ADDRESS command only supports address environment NETVDATA
when issued from Data REXX files.

Data REXX Host Command Environment

NETVDATA is the host command environment for Data REXX. No other
environments are supported. This host command environment does not support
commands.

Using the EXECIO Command

If you use the EXECIO command in a command list, code the command list so that
it issues an EXECIO command with the FINIS option before the command list
completes its processing. If the command list using EXECIO is part of a nested
chain of command lists, code the chain so that one of the command lists issues
EXECIO with the FINIS option before the chain of command lists completes
processing.

Coding the chain this way enables you to use SIGNAL ON HALT to try to recover
if EXECIO with the FINIS option encounters an error closing a file. If the EXECIO

Chapter 2. REXX Language Overview 29

REXX Language Overview

command encounters an error, it sets the RC variable to a nonzero return code.
Refer to the REXX library for information about return codes used by the EXECIO
command.

If you use EXECIO to read or write a member of a partitioned data set (PDS) and
are not sure whether the member exists, use the FNDMBR(...) NetView REXX
function to determine the members existence before issuing the EXECIO command.

See PRINT Example” on page 184 and ETYPE Example” on page 188 for examples

of how EXECIO can be used in a REXX command list.

Note: The EXECIO command cannot be used in Data REXX files.

Using MVS and VTAM Commands

MVS and VTAM commands are examples of asynchronous commands. To obtain
the output of these commands for processing by your procedure, use either
NetView Pipelines or the techniques described for TRAP and WAIT.

Note: REXX clauses, which are treated as external commands by REXX, are treated
as external data by Data REXX.

If you are issuing these command as a shortcut, you should be aware that MVS
and VTAM commands do not have a definite indication of ending like NetView
commands. In many situations, issuing these commands will cause an extended
wait period that continues after your procedure ends. These waits are generally 60
seconds, and are seen when operators use procedures from NMC, using
CONSOLE=*ANY* support, when issuing labeled commands and similar
situations.

To avoid wait conditions, do one of the following:

1. Define appropriate wait conditions for your command to NetView. Use the
CCDEF command to do this.

2. Isolate MVS and VTAM commands inside pipelines within your procedure as
follows:

"PIPE CC MVS D A,L | CONS'

The wait due to MVS D AL is resolved directly by the pipeline and is not
inherited by the procedure that it is in.

Note: Pipelines cannot be issued with Data REXX files.

Using the NetView ALLOCATE and FREE Commands

The NetView program provides the ALLOCATE and FREE commands to enable
you to dynamically allocate and deallocate data sets from the NetView program.

These commands closely resemble the TSO/E commands for allocating and
deallocating data sets. However, because these commands are provided by the
NetView program, you do not need to use the ADDRESS MVS instruction when
using these commands in a command list. Simply enclose the commands in
quotation marks as you do for other NetView commands. The TYPE, TYPEIT, and
PRINT examples in [i i

use the NetView ALLOCATE command.

30 Customization: Using REXX and the NetView Command List Language

REXX Language Overview
Refer to the NetView online help for the syntax of the ALLOCATE and FREE

commands.

Note: REXX clauses, which are treated as external commands by REXX, are treated
as external data by Data REXX.

Using REXX Command Lists

Each time a REXX command list is executed in the NetView program, REXX sets
up a REXX environment for NetView. When the command list ends, this unique
environment can be held for reuse by the same task. If two command lists are
executing at the same time on one operator task (for example, one command list is
suspended while the other is running), two environments are required. Any REXX
command lists called from another REXX command list use the caller’'s REXX
environment.

Before executing REXX command lists, consider how many concurrent REXX
command lists are normally active for any given NetView task. NetView retains up
to 10 REXX environments and their associated storage until you log off, unless you
use the DEFAULTS or OVERRIDE command to change the number of REXX
environments retained. Refer to the NetView online help for additional information
about the DEFAULTS and OVERRIDE commands.

The NetView program retains REXX environments to improve REXX environment
initialization performance. If more than one REXX environment is available when a
REXX command list is executed, the REXX command list can execute using a
different REXX environment. Whether this occurs depends on the order in which
other REXX command lists were started and ended during concurrent execution of
the REXX command lists. Storage associated with each REXX environment can
increase depending on the needs of the REXX command lists. Since each REXX
command list can have different storage needs, REXX environments can grow to
meet the needs of the most demanding REXX command list.

You can reduce the number of REXX environments the NetView program retains,
to minimize the storage each task using REXX requires. However, if you set this
number to zero, the NetView program does not save any REXX environments and
the initialization performance of every REXX command list is affected.

Consider the storage required to initialize a REXX environment before executing
any REXX command lists. By default, REXX gets sufficient storage for a REXX
command list with about six levels of nested invocations. You can change the
acquired storage amount with the DEFAULTS or OVERRIDE command.

REXX command lists that use large numbers of REXX variables or that nest more
than six levels cause the storage to increase as needed. Each REXX command list
requires approximately 12K of storage to start. If you set the amount of
initialization storage to zero, storage is acquired as needed, but performance is
degraded for the first REXX command list using this REXX environment.

Notes:

1. Two entries in the REXX IRXANCHR table are required for each non-nested
NetView or REXX command list to run. If a REXX command list is invoked
from another REXX command list, a new environment is not required. The
nested command list uses the environment of the primary command list.

Chapter 2. REXX Language Overview 31

REXX Language Overview

2. A recommended default number of REXX environments slots in IRKANCHR
for the NetView program is twice the maximum number of command lists that
can be scheduled to run concurrently under all active NetView tasks, plus one
for Data REXX for each active NetView task.

Nesting REXX Command Lists from Assembler, C, or PL/I

Each time a REXX command list is nested by an assembler, C, or PL/I command
processor, a unique REXX environment is created for that REXX command list. The
data stacks from any previous REXX command lists in the nested chain are not
passed to the additional unique environment. For example, if a REXX command
list calls a PL/I command processor and the PL/I command processor calls
another REXX command list, an additional unique REXX environment is created
for the second REXX command list.

The number of unique REXX environments that can be created at one time is
limited by MVS. Therefore, your nested chains are also limited in the number of
REXX command lists that can be called by the assembler, C, or PL/I command
processors.

Refer to the REXX library for information about the maximum number of
environments in an address space.

Parsing in REXX Command Lists

In a REXX command list, you can parse character strings using either the REXX
PARSE instruction, the NetView PARSEL2R command, or the PIPE EDIT stage.

PARSEL2R is provided by the NetView program to make an instruction equivalent
to the REXX PARSE instruction available in both the NetView command list
language and REXX. The REXX PARSE instruction performs better than
PARSEL2R, and you should use it where possible.

When you use PARSEL2R in a REXX command list, enclose the command in
quotation marks to avoid variable substitution. For example:

TITLE = 'PROCEDURE/ACTION NOT SUPPORTED: X''087D'''
'"PARSELZ2R TITLE Al A2 A3 A4 A5 A6 A7 A8'

Refer to the NetView online help for information about the PIPE EDIT and
PARSEL2R commands. Refer to the REXX library for information about the REXX
PARSE instruction.

Note: Data REXX only supports the REXX PARSE instruction.

Tracing REXX Command Lists

During the creation of a REXX command list for the NetView program, you can
see how the REXX interpreter evaluates an expression using the TRACE START
(TS) command. The TS command sets an indicator that is checked by the REXX
interpreter when it starts to interpret a command list or when control is returned
to a command list after a nested command list completes execution. The syntax of
the TS command is:

32 Customization: Using REXX and the NetView Command List Language

REXX Language Overview
TS

»»—TS

A\
A

After receiving the following message:

CNM4311 REXX INTERACTIVE TRACE. ENTER 'GO TRACE OFF' TO END TRACE,
ENTER 'GO' TO CONTINUE.

Enter GO TRACE OFF to end the trace, or enter GO to continue tracing. Also, after
receiving one of the messages indicating a trace point is reached, you can enter GO
followed by a command or instruction you want to execute at a given point in the
command list. For example, to set a variable to a certain value at that point in the
command list, you can enter:

GO X=5

Or, to display the current value of a variable, you can enter:
GO SAY 'VARL CURRENTLY IS 'VAR1

If you enter a TS command but decide before the trace begins that you do not
want to run the trace, use the TRACE END (TE) command to cancel the trace. You
can also use the TE command to end a trace that is not interactive.

Note: The TS and TE commands are not supported in Data REXX.

The syntax of the TE command is:

TE

»»—TE »<

For more information about TS and TE, refer to the NetView online help.

Return Codes in REXX Command Lists

The REXX return code variable, RC, is set after execution of each instruction,
command, or nested command list. You can use the EXIT statement in a nested
command list to end the command list and set RC to a value that is passed back to
the calling command list. RC is not given an initial value when a command list
begins.

Possible RC values and their meanings are as follows:

Values Meaning

0 No error. The command, instruction, or nested command list completed
successfully.
-1 The command, instruction, or nested command list encountered an error.

The -1 return code passes control to the FAILURE label if you code
SIGNAL ON FAILURE.

-3 The command or nested command list is not authorized for this operator.
The -3 return code passes control to the FAILURE label if you code
SIGNAL ON FAILURE.

Chapter 2. REXX Language Overview 33

REXX Language Overview

-5 The command list canceled. The -5 return code passes control to the HALT
label if you code SIGNAL ON HALT.

Others
Other return codes are set by individual commands, instructions, or nested
command lists.

”

See L for more
information about using the SIGNAL instruction with the NetView program.

Recovering from Errors in REXX Command Lists

When an error occurs in a REXX command list, you can use the SIGNAL
instruction to enable processing to continue at a certain point. If the REXX
command list calls a command processor that is external to REXX, such as TRAP
or WAIT, use the SIGNAL instruction to handle error conditions from that
command processor. A command list can encounter an error for the following
reasons:

* An error exists in the coding of the command list.

* The command list is part of a nested chain, and one of the other command lists
in the chain contains an error that is passed back to the calling command list.

* An operator enters a command that causes an error in the command list.

If an error occurs, the SIGNAL instruction passes control to another part of the
command list. Depending on the error condition, the SIGNAL instruction can pass
control to three different labels in the command list. These labels are as follows:

* SIGNAL ON FAILURE passes control to a label named FAILURE when the error
condition results in a negative return code. The only negative return codes
returned by NetView are -1 and -3. However, if your command list calls
user-written commands, control is passed to FAILURE when any negative return
code, except -5, is returned.

If your command list recovers from the error, you can return the appropriate

return code to the calling command list. If your command list does not recover

from the error, pass the failure to the calling command list with EXIT -1.

* SIGNAL ON ERROR passes control to a label named ERROR when any
command or function in your command list returns a positive return code.
Control is also passed to ERROR when you do not code SIGNAL ON FAILURE
and a command or function returns any negative return code except -5.

The return code you pass to any command list that nested your command list

should reflect the severity of the error. A zero (0) return code is recognized by all

NetView commands as an indication of successful completion, while all positive

return codes indicate that an error occurred.

* SIGNAL ON HALT passes control to a label named HALT when the command
list is canceled. A command list is canceled when:

— A RESET NORMAL command is executed on the current operator task while
your command list is running.

— A CLOSE IMMED command is executed on any task in your NetView
program while your command list is running. The command list continues
processing as long as it does not issue NetView commands.

— During SNA sessions, an operator presses the Attn key while your command
list is running.

— A command issued by your command list is canceled or returns a return code
of -5.

34 Customization: Using REXX and the NetView Command List Language

REXX Language Overview

— The operator’s terminal session is lost for any reason, including the operator
entering the LOGOFF command, while the command list is running.

To pass the HALT condition to any command list that nested your command list,
end the command list with EXIT -5.
Notes:

1. If you do not code SIGNAL ON HALT, the NetView program passes the halt
condition to the command list that nested your command list.

2. Whenever you call another REXX command list as a function or subroutine, the
following statement of the command list tests the RESULT variable for the -5
cancel condition.

3. If you code SIGNAL ON FAILURE, the NetView program passes only the halt
condition to the calling command list if you code EXIT -1.

For more information about the SIGNAL instruction, refer to the REXX library.

Chapter 2. REXX Language Overview 35

36 Customization: Using REXX and the NetView Command List Language

Chapter 3. REXX Instructions Provided by NetView

Some instructions used in REXX command lists for the NetView program are
provided as part of the NetView program so that REXX command lists can
perform specific NetView activities. Because these instructions are provided by
NetView and are not standard REXX instructions, they can be used only in
command lists that run in a NetView environment. These instructions do not
function in REXX EXECs that are running in non-NetView environments. The
REXX instructions provided by the NetView program can be used only in
command lists, and are not available for entry at operator consoles. To handle error
conditions, code the SIGNAL instruction in any REXX command list that uses one
of these NetView instructions.

This chapter contains a description of each REXX instruction provided by the
NetView program, how the instruction works, and how to code the instruction in a
REXX command list.

X_A amparison of REXX and NetView ommand [ANg11a
for a complete list of the REXX instructions that are equivalent to
NetView command list language control statements. This list includes both
instructions provided by NetView and instructions provided by REXX.

The REXX instructions provided by the NetView program are:
+ TRAP

+ WAIT

* WAIT CONTINUE

* MSGREAD

* FLUSHQ

* GLOBALV

Note: These instructions are not supported by Data REXX.
Pipelines, invoked with the PIPE command, provide both extended function and

reduced complexity for the automation of message handling. The PIPE command
is therefore a recommended alternative to the TRAP and WAIT instructions.

For information about NetView pipelines, refer to the [livoli NetView for z/O9
Customization: 1sing Piped

For more information about REXX syntax rules and information about other REXX
instructions, refer to the REXX library.

The TRAP, WAIT, WAIT CONTINUE, and MSGREAD instructions monitor the
operator station task (OST) for specific messages or wait for a specified period of
time.

Use the TRAP instruction to define the messages for which the command list
should wait. When a TRAP instruction is issued, NetView begins monitoring the
operator task for an occurrence of a specified message. If the message is received,
it is stored in a message queue.

When a WAIT instruction is issued, the command list stops processing until one or
more of the messages specified on the TRAP instruction are received or until the

37

NetView REXX Instructions

specified period of time elapses. When a WAIT instruction completes, the value
returned by the EVENT() function will indicate the reason that the WAIT
instruction completed.

The WAIT CONTINUE instruction causes the command list to wait for additional
messages or the remainder of the specified period of time before resuming.

If the operator task receives any of the messages specified on a TRAP instruction,
you can use the MSGREAD instruction to read the trapped messages from the
message queue. The command list can then take action based on the content of
each message.

The FLUSHQ instruction is used to remove all trapped messages from the message
queue.

The GLOBALV command defines, gets, puts, saves, restores, and purges tasks and
common global variables in REXX command lists.

Refer to the NetView online help for more information about these REXX
instructions and their syntax.

Using TRAP in Nested REXX Command Lists

You can code a TRAP instruction in a REXX command list that contains nested
command lists. Nested REXX command lists can also contain a TRAP instruction.
However, trapped messages are available only to the command list that issued the
TRAP instruction.

Note: The TRAP instruction cannot be used in Data REXX files.

REXX command lists called as subroutines or functions are considered to be part of
the invoking command list. Therefore, TRAP commands issued from subroutines
or functions operate the same as if they were invoked in the calling command list.

If you used the REXX CALL instruction to invoke the nested command list,
trapped messages that have not been removed using MSGREAD remain available
because the trap message queue is shared with the nested command list. However,
if you invoked the nested command list without using the CALL instruction, the
trapped messages are available only to the command list that issued the TRAP
instruction.

Note: If a nested command list ends before trapped messages return and these
same messages were being trapped by the calling command list, the
messages will be available to the calling command list and will be placed in
the message queue. It is possible, therefore, for the message queue to grow
large enough for NetView to run out of storage.

To prevent that from happening, you can do one of the following:
* End the calling command list

* Issue the instruction TRAP NO MESSAGES

* Issue the instruction FLUSHQ periodically

Using WAIT in Nested Command Lists

REXX command lists that call other command lists or are called by other command
lists can issue a WAIT instruction.

38 Customization: Using REXX and the NetView Command List Language

Notes:

NetView REXX Instructions

1. The WAIT instruction cannot be used in Data REXX files.
2. You do not need to use the WAIT instruction if the command list starts VIEW.

For more information on VIEW, refer to the Linali NetView for z/Qd
C i Cuidd.

The following considerations apply when using WAIT with nested command lists:

* Messages that arrive for the waiting command list are queued until the nested
command list finishes processing.

* If you specify the same message number on TRAP instructions in both the
waiting and nested command lists, the message satisfies the WAIT in the nested

command list.

 If you used the REXX CALL instruction to invoke the nested command list,
trapped messages that have not been removed using MSGREAD remain
available because the trap message queue is shared with the nested command
list. However, if you invoked the nested command list without using the CALL
instruction, the trapped messages are available only to the command list that
issued the TRAP instruction.

Using MSGREAD in Nested Command Lists

You can code the MSGREAD instruction in both a nested REXX command list and
the initial REXX command list. If you use the REXX CALL instruction to invoke a
nested command list, trapped messages are available to both the initial and nested
command lists. If you invoke a nested command list without using the CALL
instruction, trapped messages are available only to the command list that issued

the TRAP instruction.

Note: The MSGREAD instruction cannot be used in Data REXX files.

Functions Set by MSGREAD

NetView sets the values of the following functions based on the information
contained in a message read by a MSGREAD instruction. The functions are:

ACTIONDL()
ACTIONMG()
AREAID()
ATTNID()
AUTOTOKE()
CART()
DESC()
HDRMTYPE()
IFRAUGMT()
IFRAUIND()
IFRAUIN3()
IFRAUI3X
IFRAUSB2()
IFRAUSC2()
IFRAUSDR()
IFRAUSRB()
IFRAUSRC()
IFRAUTA1()
IFRAUWF1()
JOBNAME()
JOBNUM()

KEY()
LINETYPE()
MCSFLAG()
MSGASID()
MSGAUTH()
MSGCATTR()
MSGCMISC()
MSGCMLVLY()
MSGCMSGT()
MSGCNT()
MSGCOJBN()
MSGCPROD)
MSGCSPLX()
MSGCSYID()
MSGDOMFL()
MSGGBGPA()
MSGGDATE()
MSGGFGPA()
MSGGMFLG()
MSGGMID()

MSGGSEQ()
MSGGSYID()
MSGGTIME()
MSGID()
MSGORIGN()
MSGSRCNM()
MSGSTR()
MSGTOKEN()
MSGTSTMP()
MSGTYP()
MSGVAR(n)
MVSRTAIN()
NVDELID()
PARTID()
PRTY()
REPLYID()
ROUTCDE()
SESSID()
SMSGID()
SYSCONID()
SYSID()

Chapter 3. REXX Instructions Provided by NetView 39

NetView REXX Instructions

For example, if MSGREAD is used to read the following message from domain
DOMO1:

DSIOO8I SPAN1 NOT ACTIVE

The functions are set as follows:

Variable Value
MSGORIGN()

DOMO01
MSGID() DSI008I

MSGSTR() SPAN1 NOT ACTIVE
MSGCNT() 3
MSGVAR(@1) SPAN1
MSGVAR(22) NOT
MSGVAR(@3) ACTIVE
MSGVAR(4)-MSGVAR(31)

null.

For more 1nformat10n about these and other message processing functlons see
Z 4 o
and =

Notes:

1. Before a MSGREAD instruction is issued, the values of MSGID(),
MSGORIGN(), and MSGSTR() are null. The value of MSGCNTY() is 0. The
MSGVAR(n) functions retain any values they are given when the command list
is run.

2. If you issue a MSGREAD instruction when the message queue is empty, the
values of MSGID(), MSGORIGN(), MSGSTR(), and MSGVAR(n) are set to null.
The value of MSGCNT() is zero.

3. If MSGREAD reads a multiline message, the functions are set according to the
first line of the message. Refer to the GETM commands in the NetView online
help or Volume 2 of the [Linali NetView for z/OS Conmand Referenca for
information concerning working with multiline messages.

4. The MSGVAR(1) - MSGVAR(31) functions can be given values when a
command list is invoked in the same way as the &1-&31 NetView command
list language parameter variables. If MSGVAR(1)-MSGVAR(31) are given values
when the command list is invoked, save those values in variables before
issuing a MSGREAD instruction. This lets you use the values that are modified
by MSGREAD.

5. After using MSGREAD, save the values of the message functions in variables
before issuing another MSGREAD instruction.

40 Customization: Using REXX and the NetView Command List Language

Part 3. Writing Command Lists in the NetView Command List
Language

Chapter 4. Writing Simple Command Lists in the &WAIT Control Statement . 81
NetView Command List Language 43 Coding an &WAIT Control Statement . 82
What the NetView Command List Language The Event=-Label Pair. . 83
Includes 43 Error Conditions. . 86
Coding Conventlons for NetV1ew Command L1st Coding Message=-Label Palrs . 86
Language Statements . . . < Ending an &WAIT . . 86
Conventions for General Codlng B ¥ Using NetView Commands w1th &WAIT . 86
Conventions for Continuing a Statement. . . . 44 Control and Parameter Variables Used with
Conventions for Double-Byte Character Set Text 45 &WAIT . . 87
Conventions for Suppression Characters. . . . 46 Using &WAIT in Nested Command Llsts . 88
Labels46 Customizing the &WAIT Statement .. 8
Variables . . . B 4 Ending &WAIT If CONTWAIT Is in Effect .91
Variable Subst1tut1on Order P v Suggestions for Coding &WAIT .91
Parameter Variables 48 Sample Using &WAIT . .92
Passing Parameter Variable Informatlon to a
Command List49 Chapter 6. NetView Command List Language
Using Parameter Variables in a Command Llst . 50 Global Variables . . 95
Passing Parameter Variables to a Nested Using &TGLOBAL and &CGLOBAL . 96
Command List50 &TGLOBAL . . 96
Using Quoted Strings or Spec1al Characters in &CGLOBAL . . .97
Parameter Variables5l Updating Task Global Varlables Usmg &TGLOBAL 98
Null Parameter Values.51 Extent of Variables When Usmg &TGLOBAL and
Control Variables52 &CGLOBAL . .) R
User Variables52 GLOBVAR1 Example.100
Hexadecimal Notation.53 GLOBALV Command102
Comments.54
Null Statements54
Assignment Statements54
Control Statements56
&CONTROL Statement56
Writing to the Operator57
&WRITE Control Statement58
&BEGWRITE Control Statement59
&PAUSE Control Statement 61
Using NetView Commands with &PAUSE . .62
An Example Using &PAUSE.63
NetView Built-in Functions63
&BITAND.64
&BITOR64
&BITXOR65
&CONCAT66
&HIER.66
&LENGTH69
&MSUSEG70
&NCCFID.7
&NCCFSTAT.72
&SUBSTR73
Using &SUBSTR w1th DBCS Characters . .74
Chapter 5. NetView Command List Language
Branching . . N 4
&IF Control Statement N 4
&GOTO Control Statement79
&EXIT Control Statement.79

41

42 Customization: Using REXX and the NetView Command List Language

Chapter 4. Writing Simple Command Lists in the NetView
Command List Language

This chapter explains the basics of writing command lists for the NetView program
using the NetView command list language. This chapter also describes how
variables, assignment statements, and built-in functions fit together and how to
combine them in command lists.

What the NetView Command List Language Includes

The NetView command list language consists of six types of statements:
* Command

* Comment

* Control

¢ Assignment

* Label

e Null

Within command list statements, you can use the following:
* Parameter variables

* Control variables

» User variables

* Global variables

* Built-in functions

All except global variables are described in detail in later sections of this chapter.
Global variables and descriptions of passing parameter values are described in

4 ”

The NetView command list language enables you to write application code to
perform repetitive or alternate processing (loop or if-then structures). These
features are implemented with the following control statements:

¢ &IF

* &GOTO

¢ &EXIT

s &WAIT

Control statements are described in {!Chapter 5. NetView Command List languagd

Note: Command lists can interrupt the processing of other command lists. This is
done using the CMDMDL statement in the DSICMD.

Coding Conventions for NetView Command List Language Statements

Like any other language, the NetView command list language requires that you
follow syntax rules. The following coding conventions for NetView are divided
into sections describing the conventions for:

* General coding

* Continuing a statement

* Double-byte character sets

* Suppression characters

43

NetView Command List Language Command Lists

Conventions for General Coding

Use the following coding conventions when writing command lists in the NetView
command list language:

* Code a CLIST statement as the first line of your command list; the CLIST
statement is optional.

Code CLIST statements as follows:

— Optionally, code a label. The label must begin in column 1. You cannot branch
to this label.

— Code the word CLIST beginning in column 2 or later. The word CLIST must
be preceded by at least one blank.

* Do not code the name of the command list on the first line unless accompanied
by the word CLIST.

* Leave column 72 blank for all statements.

* Do not use columns 73-80. They are reserved for optional sequence numbers.

* Code at least one blank after a label (if there is one) or before a keyword.

* Code at least one blank between a control statement and the first operand.

* Separate operands with one or more blanks, or a single comma with no blanks.
* Code any number of leading or trailing blanks on your statements.

* Use lowercase letters only as comments or part of a message sent to the
operator. In all other cases, use uppercase for alphabetical characters A-Z.

* Code statements so that the maximum length is 32000 characters after variable
substitution.

Note: To familiarize yourself with how variable substitution works, see

* Code comment lines with an asterisk (*) as the first nonblank character of the
command list line. Place the comment after the asterisk. Comment lines cannot
appear on the first line of a command list.

* Code the command list so that it ends by processing the last command list
statement, or by reaching an &EXIT statement. An operator entering RESET also
ends the command list.

Conventions for Continuing a Statement

Use a plus sign (+) or a hyphen (-) as a continuation character to continue a
statement that is too long to fit on one line. Code the continuation character as the
last nonblank character before column 72 on the line to be continued.

Note: Do not code a comment between the beginning and end of a continued
statement.

* The plus sign causes the text of the continuation line to begin where the plus
sign was placed without any of the blanks leading up to the first nonblank
character on the continued line.

The plus sign causes these lines:

&WRITE THIS STATEMENT IS CODED +
AS +
THREE LINES

To become this single statement:
THIS STATEMENT IS CODED AS THREE LINES

44 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Command Lists

The hyphen causes NetView to keep all the blanks at the end of the line with
the hyphen (up to but not including column 72) and then fill the line to its end
with characters from the beginning of the continuation line. The hyphen is
replaced by a blank. When filling a line with characters from the beginning of
the continuation line, NetView does not split a word across lines of an output
screen. The last character used for filling in from the continuation line must be a
blank or the last character on the line.

For example, if you coded the following &WRITE statement to be displayed on
an 80-character-wide terminal:

SWRITE STATEMENT CONTINUED WITH THE HYPHEN TO KEEP -
BLANKS

All the blanks from the P in KEEP to the B in BLANKS would be kept. The first line
would write 64 characters to the output screen (43 characters of text plus 21
blanks from the end of the text to column 72). The output screen has 68 columns
to be used for display (80 minus the 12-character prefix), so the hyphen would
cause the first four characters of the second line to be placed at the end of the
first line. In the example, this would be two blanks and the letters BL. However,
because NetView will not split a word across lines of the output screen, the
message is displayed as:

STATEMENT CONTINUED WITH THE HYPHEN TO KEEP
BLANKS

Conventions for Double-Byte Character Set Text

In a double-byte character set (DBCS), each symbol is represented by a 2-byte code
rather than a 1-byte code.

Use A-Z, 0-9, @, $, and # characters to code NetView commands and command
lists used as commands. The command list name must begin with a nonnumeric
character.

DBCS data input is not supported.

Enclose all DBCS strings within shift-out (X'0E') and shift-in (X'0F') control
characters. Be sure there are an even number of bytes in each DBCS string. (If
you are using an editor and terminal that supports double-byte characters, this
is done automatically.)

You can code label names, variable names, and variable values in DBCS
characters. Restrict variable names and label names to a length of 11 bytes. This
11 bytes includes shift-out (X'0E") and shift-in (X'0F') control characters.

When DBCS labels and variables are displayed on a DBCS terminal, the shift-out
and shift-in control characters appear as blanks.

DBCS text can be split across multiple lines, using an EBCDIC plus sign (+) or
hyphen (-) as a continuation character. To split a string, end the string with a
shift-in (X'OF") control character followed by the continuation character. Start the
next line with a shift-out (X'0E') control character to resume the string.

When writing DBCS text in a &BEGWRITE statement, the SUB option is
required.

Comments can contain DBCS strings enclosed by shift-out (X'0E') and shift-in
(X'OF") control characters.

&WRITE, &CONCAT, and &SUBSTR are enabled for DBCS.

Chapter 4. Writing Simple Command Lists 45

NetView Command List Language Command Lists

Conventions for Suppression Characters

You can define a suppression character in CNMSTYLE and use it to prevent a
command list command or statement from being displayed on the operator’s
screen during execution.

Note: IGNRLSUP is ignored for commands issued from a NetView command list.

The following rules apply when coding suppression characters:
* The first nonblank character before a command is the suppression character.
* When you browse or list a file, you can see every line, even suppressed lines.

* In general, do not use suppression characters preceding a label. The suppression
character will prevent you from branching to the label unless the command list
line containing that label has already been processed.

In Figure 13 on page 44, the control variable &SUPPCHAR is replaced with the
character defined as a suppression character. The last line of the command list in
the example is suppressed.

&CONTROL CMD

* COMMAND LIST UPDATED 2/5/95 BY OPERATOR CARL

START DOMAIN=&1

&WRITE ENTER GO WHEN MESSAGE DSI809I ARRIVES FROM &1
&PAUSE

&SUPPCHAR ROUTE &1,0PER1,123456

Figure 13. Example of Using Suppression Characters

When issuing a command that returns its status in the return code, you can
suppress synchronous output from the command by coding the suppression
character twice.For example, if you use the following code in a command list, no
synchronous output from the command list is displayed to the operator:

&DOUBLESUPP = &CONCAT &SUPPCHAR &SUPPCHAR
&DOUBLESUPP SET PF24 IMMED RETRIEVE

Use the double suppression character when sufficient status is provided by the
return code and to enhance performance on commands that produce line mode
messages synchronously. Using the double suppression character does not affect
output that is scheduled by a command (for example, D NET,APPLS), nor does it
consistently reduce output from a long-running command (for example, NLDM).

Labels

Labels identify command list statements for control of flow, for internal
documentation, or to indicate the target statement for a transfer of control.

Transferring control is explained in I‘Chapter 5 NetView Command List [anguagd

”

You can code labels on any command list statement except a comment statement.
You can code labels on commands, control statements, assignment statements, and
null statements. If NetView cannot find the label, processing stops, and NetView
issues an error message.

A label must be the first nonblank word on a command list line. A label consists of
an EBCDIC hyphen (-) followed by 1 to 11 characters (A-Z, 0-9, #, @, $). You do

46 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Command Lists

not have to code a command list statement after a label. If you do, however, start
the command list statement after the label, leaving at least one blank between the
label and a keyword.

You can also code other labels. All labels must be unique within a command list. If
you have two identical labels in one command list, NetView ends the command
list. You can also code labels as internal comments to show where different parts of
your command list start. For example, you can use labels to highlight certain
processing routines.

The following examples are labeled command list statements:

-MYLABEL VARY NET,INACT,ID=LU1234
-$PROC2 &LEN = &LENGTH &1
-SETUP &USER =

-ALLALONE

Note: Labels are used with &BEGWRITE to show where a message stops.
Variables are not allowed in labels, but you can code a variable as the label
name with the &BEGWRITE, &GOTO, or &WAIT statements. These
statements for transfer of control are described in I/Chapter 5 NetVieul

Command Tist T anguage Branching” on page 77.

Variables

Variables enable you to accept from an operator, or define for yourself, different
values for the statements within a command list. With the following variables, you
can write a command list that operates correctly in many different situations:

¢ Parameter

¢ Control

* User

* Global

This section describes how to use parameter, control, and user variables. This
section also describes how to use the NetView PARSEL2R Command to parse
variables in a command list. See [

Global Variables” on page 93 for a description of global variables.

Code the variable as the first nonblank word in the command list.

A variable consists of an EBCDIC ampersand (&) followed by 1 to 11 characters
(A'Z, 0_9/ #/ @/ $)

Variable Substitution Order

Variable substitution is performed when NetView scans each statement from right
to left and substitutes values for each variable as follows:

1. Each element is scanned from right to left for an ampersand (&).

* If found, the ampersand and the rest of the element to the right are
substituted with the value of that variable.

e If no value exists, the variable becomes null.

e If the first character to the right of the ampersand is a number, the variable is
assumed to be a parameter variable. NetView then scans to the right and
takes any following numbers as part of the parameter variable. When
NetView comes to a blank or a letter, the search stops. If a special character
(nonalphanumeric) is found, NetView delimits the variable name.

Chapter 4. Writing Simple Command Lists 47

NetView Command List Language Command Lists

For example, &21A is taken as &21 and is replaced by the value of &21.
Therefore, &21A becomes valueA. For another example, if an element
contains &A=&XYZ, NetView first substitutes the value of &XYZ, then
NetView replaces &A with the value substituted for &XYZ.

Note: The value of X'50' (ampersand in the EBCDIC character set) is ignored
within double-byte character sets. If you want to use an ampersand,
end the string using a shift-in (X'0F') control character and enter the
variable. To resume the string, begin the string using a shift-out (X'0E")
control character.

2. The scan resumes at the next character to the left, and the search for an
ampersand continues. If found, the ampersand and the entire syntactical
element to the right, including the previous substitution, are taken as the name
of a variable and are replaced by the variable value.

Note: The value substituted is not scanned for an ampersand.

If the element is the target of an assignment statement, the scan stops on the
second character to preserve the variable name that will be assigned a value.
For example, the statements in the following example set the value of user
variable &A1l to 2.

& =1
3AB = 2

Variable substitution is not done on the following:

Control keywords
For more information, see “&CQONTRQI Statement” an page 54

&PAUSE statement
The variables are assigned values when you enter a GO command. For
more information, see F'&PATISE Control Statement” on page 61l

&THEN clause on an &IF statement
If the &IF clause is true, the &THEN clause is made into a statement and
processed as if it is coded separately. For more information, see

7

Any statements in an &BEGWRITE NOSUB series of messages
For more information, see ‘&BEGWRITE Control Statement” on page 5

Built-in functions
For more information, see [“NetView Built-in Functions” on page 63.

Parameter Variables

A parameter variable is a positional variable that is defined at the time a command
list is run. You specify parameter variables by entering them as operands following
the name of the command list that you are running. Parameter variables have the
following characteristics:

¢ Identified within the command list by a numbered position, for example, &1

* Entered following the command list name at run time

* Delimited by commas, apostrophes, or blanks

When you code your command list with parameter variables, use the following
guidelines:

* You can use up to 31 parameter variables in a single command list
* You can use the same parameter variables more than once in a command list

48 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Command Lists

¢ The value of a parameter variable can be 238 characters long
e Parameter variables can contain either numerical or character values

* When used in an arithmetic expression (for example, addition or subtraction), a
parameter variable can have a numerical value between -2147483647 and
2147483647. When used in a nonarithmetic expression (for example, assignment
statements, &IF statements, &CONCAT, or &SUBSTR statements), a parameter
variable can have a value up to 238 digits long, including the sign.

Note: When NetView receives a message coded in an &WAIT statement, NetView
sets some control variables (for example, &MSGORIGIN, &MSGID,
&MSGCNT, and &MSGSTR) and also changes the values of the parameter
variables (&1 — &31) to reflect the information in the received message.

ee 'Control Variables” on page 52 for information about these variables. LINKPD
sets the same control and parameter variables. See ILINKPD Results” on page 111

for more information about the LINKPD command.

Passing Parameter Variable Information to a Command List

When activating a command list that uses parameter variables, the operator enters
the command list name followed by a value for each parameter variable in the
command list. The following example shows the format for an operator passing up
to 31 parameter variables to a command list:

cmdlistname , , se o s

&1 &2 &3 &31

The first value after the command list name replaces &1 in the command list, the
next value replaces &2, and so on. For example, the second parameter variable in a
command list would be coded &2 at the place where you want the value of that
parameter.

Assume that you wrote a command list named RESC to start resource LU100 as
shown in the following example.
RESC CLIST

&CONTROL ERR
VARY NET,ACT,ID=LU100

If you want the command list to use parameter variables, you can change it to
activate or inactivate any resource. The following example shows how the
command list looks with parameter variables:

RESC CLIST

&CONTROL ERR
VARY NET,&1,ID=&2;

The operator can then start resource LU100 by entering RESC ACT,LU100.
When the command list runs, &1 and &2 are replaced with the following
positional parameters:

* &1 with ACT

* &2 with LU100.

The command list takes the values for &1 and &2 from the entered operands in the
order in which the operands are entered after the command list name.

Chapter 4. Writing Simple Command Lists 49

NetView Command List Language Command Lists

Note: The operator who uses the command list must be told how many parameter
variables to supply and what values to provide.

If a command list is activated by a message, each word of the message becomes a
separate parameter variable. This is explained in more detail in @b

7

Using Parameter Variables in a Command List

There is no set order for placing the parameter variables in the command list. The
following example shows that you can use &2 before &1.

V NET,&2,ID=8&1
&1 is given the first value the operator enters, and &2 is given the second value.

If there are two or more parameter variables in one command list statement, the
rightmost variable is changed first. NetView continues to scan right to left and
replaces the next variable. You can use this method to change the meaning of some
of your parameter variables. If you need to test how many parameters an operator
entered or what parameter values were entered, use the control variables

&iPARMCNT and &PARMSTR. They are described in !Cantrol Variables” on pagd
5.

Passing Parameter Variables to a Nested Command List

You can code parameter variables on the command list statement that activates the
nested command list. These parameter variables follow the same basic rules as
other parameter variables. In addition, you can pass either actual values or other
variables as parameter variables. If you pass other variables, make sure these
variables are known to the next activated command list.

The following are examples of passing parameters.

Command list CALLER contains a line of code such as:
CALLEE LINES,TERMS,CDRMS

Command list CALLEE uses the following variables:

&1 LINES
&2 TERMS
&3 CDRMS

Command list MAJOR is activated by entering MAJOR ALPHA,BETA and contains
the following statements:

&A = 55
MINOR &A,&1,&2

Command list MINOR uses the following variables:

Variable

Value
&1 55
&2 ALPHA
&3 BETA

50 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Command Lists

Command list MINOR takes the value of &A (55) as its first parameter, the value
of MAJOR’s first parameter (ALPHA) as its second parameter, and the value of
MAJOR'’s second parameter (BETA) as its third parameter.

If you need to pass a nested command list a variable containing a quoted string,
enclose the variable in single quotes on the nested command list call. In the
following example, CLIST1 calls CLIST2:

CLIST1 CLIST

&STR = &1
CLISTZ2 '&STR'
&EXIT

Note: The parameter variable on the nested command list call must be surrounded
by quotation marks.

Using Quoted Strings or Special Characters in Parameter
Variables

If you need to use a blank, apostrophe, or comma as part of a value, you must
make the value a special character string by using single quotes. If you want a text
string to be taken as the value for one parameter, it must also be made a special
character string.

A NetView command list language quoted string is any text that meets one of the
following requirements:

¢ Text preceded by a delimiter and a single quote, followed by either a single
quote and a delimiter or a single quote that is the rightmost nonblank

* Text preceded by a single quote that is the leftmost nonblank, followed by a
single quote and a delimiter

* Text preceded by a single quote that is the leftmost nonblank, followed by a
single quote that is the rightmost nonblank.

Suppose you activate a command list name RESC by entering the following;:
RESC ACT, 'LU200,LOGMODE=S3270"

The parameter variables in the RESC command list would contain the following

values:
&1 = ACT
&2 = LU200,LOGMODE=S3270

Suppose you activated the RESC command list by entering;:
RESC ACT,LU200,L0GMODE=S3270

The parameter variables in this case contain the values:

&1 = ACT
&2 = LU200
&3 = LOGMODE=S3270

Null Parameter Values

Use a comma immediately following another comma (,,) to give a parameter
variable a null value when it is followed by other non-null parameters. After the
last non-null parameter, all remaining parameter variables up to &31 are
automatically given null values. Null parameters are useful when a value is not
required. For example, assume you wrote a command list called CONN that
contained the following statement:

Chapter 4. Writing Simple Command Lists 51

NetView Command List Language Command Lists
BGNSESS FLSCN,APPLID=81,SRCLU=82,L0GMODE=83, INT=84,D=85

If you do not want to specify all the values, you can enter the following:
CONN TSO,TAFO1F0O,,,PF12

In this example, TSO is &1, TAFO1F00 is &2, &3 and &4 are null, and &5 is PF12.
The extra commas between TAF01F00 and PF12 represent positional place holders
for &3 and &4, and tells the command list that they are null. If you use only one
comma, the command list takes PF12 as &3 and incorrectly uses PF12 as the
LOGMODE.

Test for null parameter variables in your command list and provide default values
to avoid possible syntax errors.

Control Variables

The following sections describe the control variables as used in NetView command
list language.

Control variables are set by NetView based on system information. To use a control
variable, place the variable name in the command list at the location where you
want the information to be accessed. When the command list runs, NetView gives
the correct values to each control variable. Use the LISTVAR command to view the
values of some of the control variables.

For more information about control variables used with the SPCS commands
LINKDATA and LINKTEST, see ELINKDATA and TINKTEST Results” on page 110

Note: A command list can create a user variable that NetView has already defined
as a control statement, control variable, or built-in function. However, if
such a user variable is created, you cannot use that NetView provided
control statement, control variable, or built-in function anymore in that
command list.

User Variables

User variables are variables you create and set within the command list. You can
set user variables with an assignment statement or an &PAUSE control statement.

Assignment statements are explained in [’Assignment Statements” on page 54

The &PAUSE control statement halts the command list, enables the operator to
enter data, and picks up the value of the user variable from the operator when the
command list continues. &PAUSE is described in z

When you create user variables, observe the following rules:
* The first character must be an ampersand (&).

¢ The first character following the ampersand must be a letter or a symbol, not a
number. Otherwise, NetView treats it as a parameter variable.

* The ampersand must be followed by 1 to 11 characters. A-Z, 0-9, #, @, and $ are
valid characters.

* The value of the user variable can be 255 characters long. The maximum number
of double-byte characters between the shift-out (X'0E') and shift-in (X'OF') control
characters is 126.

52 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Command Lists

* A user variable can have a numerical value that is 255 digits long, including the
sign. However, if the value of the user variable is obtained using an arithmetic
expression (for example, addition or subtraction), or if the user variable is used
in an arithmetic expression, the user variable can have a numerical value
between -2147483647 and 2147483647. The only characters you can use in a
numeric value are 0-9. The numeric value can be immediately preceded by a
character indicating whether the value is positive (+) or negative (-).

Note: A command list can create a user variable that NetView has already defined
as a control statement, control variable, or built-in function. However, you
cannot use that NetView provided control statement, control variable, or
built-in function anymore in the command list.

[Lable 4 on page 53 shows some examples of user variable names.

Table 4. User Variable Names

Valid Non-valid Reason

&A &2A Will be read as &2, a parameter variable
&USERNAME &INVALIDUSERNAMEToo long

&@23456 &A% % is not a valid character

The following example shows how to manipulate user variables in assignment
statements to set parameters and to communicate with the operator.

&PAUSE VARS &ONE &TWO

&SUM = &ONE + &TWO

CLEAR

&WRITE >>> THE SUM OF &0ONE + &TWO IS --->&SUM

Hexadecimal Notation

The NetView command list language provides a hexadecimal notation capability to
process hexadecimal data. You can use hexadecimal notation anywhere you can
use a command list variable, except as the receiver in an assignment statement.

The following syntax describes the hexadecimal notation for the NetView
command list language:

»—X'n! >«

Where:

n Is an even or odd number of hexadecimal digits (0-9 or A-F in uppercase) with
no embedded blanks. If # is an odd number of digits, NetView prefixes the
number with a zero (for example, X'2C6' would be converted to two bytes
whose hex value would be 02C6). The maximum length of n is 255
hexadecimal digits.

The following are examples of the use of hexadecimal notation:
&A = X'3B9' &IF &A = X'3B9' &THEN....

Chapter 4. Writing Simple Command Lists 53

NetView Command List Language Command Lists

Comments

It can be helpful to code comments in a command list. Command lists with
comments are easier to maintain and expand than command lists without
comments.

You can use comments to show the following;:

* When the command list was created and updated

* Who wrote the command list

* The function of the command list

* What input and output is expected

* Whether the command list depends on other programs or on other command
lists.

To write a comment, code an asterisk (*) as the first nonblank character of the
command list line. Be sure that you do not use a string of hyphens to separate
sections of the command list.

Null Statements

A null statement contains all blanks or a label followed by all blanks. A null
statement with a label can be the target of flow control (conditional processing)

statements or &BEGWRITE statements. See 'Labels” an page 44 for details about
using labels.

You can use a null statement to help format a message to the operator or to break
up a long command list so that it is easier to read and update. If a null statement
is part of a message written with an &BEGWRITE statement, it is sent to the
operator as a blank line. If a null statement is used to break up the command list,
NetView ignores the statement when the command list is run.

Assignment Statements

Assignment statements give values to variables and do arithmetic operations
within a command list. The syntax of an assignment statement is:

assighment

»»>—&variable = expression ><

Figure 14. Assignment Statement

There must be a blank before and after the equal sign.

When the command list runs, the value of the user variable is set to the value of
the expression. For example, the assignment statement &A = 5 sets the &A to 5.
The assignment statement &B = &1 sets the &B to the value of &1, and &1 keeps
its value.

An expression is one of the following:

Constant
A constant consists of alphanumeric characters that are not replaced by
other values. The values are fixed. For example, if you code the following
assignment statement:

&VAR = 5

54 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Command Lists

the value 5 is assigned to user variable &VAR.

If you want to use a constant that contains a blank, comma, apostrophe, or
hyphen, use single quotes. For example:

&NAME = 'JOHN B. DOE'

The constant cannot be longer than 255 characters. If it is a number, the
constant must be between -2147483647 and 2147483647. The only characters
you can have in a numeric value are 0-9. The numeric value can be
immediately preceded by a character indicating whether the value is
positive (+) or negative (-).

Variable
A variable can be a parameter variable, control variable, user variable, or
global variable.

The following assignment statement:
&PARMVAR = &4

assigns the value of parameter variable &4 to user variable &PARMVAR.

To assign the value of control variable &OPID to user variable &USERVAR,
code the following:

&USERVAR = &OPID

Note: Using a control statement as a variable is not valid, even if the
control statement is enclosed in single quotes. For example, the
following assignment statements are not valid:

&A = &IF
&A = '&WAIT ERROR'

Arithmetic operation
The addition and subtraction operations are allowed in an assignment
statement. The format is two numbers separated by a plus (+) or minus (-)
sign. You can also use a variable that will be set to a number. The only
characters you can use in a numerical value are 0-9. The numerical value
can be immediately preceded by a character indicating whether the value
is positive (+) or negative (-).

The plus or minus sign must be separated from the numbers on each side
by at least one blank unless it indicates a positive or negative number (-2,
—4). For example, both 4 — 2 and 4 — -2 are correct, but 4 -2 does not
work.

The result of the arithmetic operation must be between -2147483647 and
2147483647. The following assignment statement shows how you can use a
control variable in an arithmetic operation:

&SUM = 38 - &PARMCNT

The value of control variable &PARMCNT is subtracted from 38, and the
resulting value is assigned to variable &SUM.

In arithmetic expressions with leading zeros, the leading zeros are not
shown in the result. For example, assume &A is 01 and you code the
following:

& = &8A + 1

The value of &C becomes 2, not 02.

Chapter 4. Writing Simple Command Lists 55

NetView Command List Language Command Lists

Note: To avoid an error condition in an arithmetic operation, code a zero
before a potential null variable.

Built-in function
You can use a built-in function in an assignment statement. The result of
the operatlon is placed in the user variable. See NetView Built-in
i for a detailed description.

The following examples show how to code built-in functions in assignment
statements:

&STRZ = &SUBSTR &STRING 2 1
&STR1 = &SUBSTR &STRING 1 1
&NEWSTR = &CONCAT &STR5 &STR4
&NEWSTR = &CONCAT &NEWSTR &STR3

Control Statements

Control statements are unique command list statements that control the way

NetView acts on other statements in the command list. You can use the control

statements in this chapter either for straight-line coding or in conjunction with the

statements described in LCha.pierj_NeﬂbﬂALCQmmand_LJsLLan.guage_Bmchmgﬂ
for conditional processing.

You can use control statements to change the sequential order of processing.
Command list control statements enable you to:

* Send messages to the operator from the command list.

* Control the order in which commands are run.

* Ask the operator to enter information needed to continue the command list.
* Wait for a solicited message to arrive before continuing the command list.

Each command list control statement begins with the control symbol in the form
&word. Only one control statement can be coded on a line, except when using &IF.

After reading the descriptions of the control statements, you should have a general
idea of the capability of these basic statements. Read the sections that follow for
details concerning each control statement.

The control statements follow:

&BEGWRITE
Writes a message or series of messages to the operator.

&CONTROL
Indicates the command list statements that are shown on the operator’s screen
while the command list is running.

&PAUSE
Halts the command list until the operator enters information needed to
continue the command list.

&WRITE
Writes a message to the designated operator.

&CONTROL Statement

The &CONTROL statement lets you indicate which command list statements are
displayed at the operator’s terminal while the command list is running. The
indicated command list statements are displayed after all substitutions have been

56 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Command Lists

made and before the command list statements run. You can use the display of the
command list statements from &CONTROL ALL or &CONTROL CMD to help
debug your command list.

Set &CONTROL at the beginning of the command list. You can change the
&CONTROL setting within the command list as many times as necessary.
&CONTROL is in effect from that point in the command list until the next
&CONTROL statement is reached. For example, if you just added a new section of
code to a command list, you can display the entire new section of code but view
only the errors for the existing sections of code. Code this control statement by
typing &CONTROL followed by a blank and an operand. The syntax of the
&CONTROL control statement is:

&CONTROL
ALL
»»—&CONTROL »<
i:CMD:I
ERR:
Where:
ALL

Displays all command list statements at the operator’s terminal. Each statement
is displayed just before it is processed. &CONTROL ALL is a good choice
when you first write the command list and want to test it. Once your
command list is tested, &CONTROL CMD or &CONTROL ERR is a better
choice. When processing for this command list is complete, the following
message is displayed:

DSIO13I COMMAND LIST clistname COMPLETE

If you code &CONTROL without operands, or if you do not code
&CONTROL, the default is &CONTROL ALL.

CMD
Displays all commands at the operator’s terminal. Each command is displayed
just before it runs. The other command list statements—such as comments,
control statements, and other command list language statements—are not
displayed unless they contain an error. When processing for this command list
is complete, message DSIO131 COMMAND LIST clistname COMPLETE is displayed.

ERR
Displays only statements that contain errors and commands that have nonzero
return codes. If &CONTROL ERR is in effect at the end of a command list,
message DSI013I is not displayed.

Writing to the Operator

The &WRITE and &BEGWRITE statements send messages to the operator terminal.
&WRITE sends a one-line message, and &BEGWRITE sends multiline messages.
These statements are used to give the operator information, such as what the
command list is doing.

The messages are sent to the operator regardless of the &CONTROL setting. If you

code a command on an &WRITE control statement, the text is sent to the operator
as a message, but it is not run as a command list command.

Chapter 4. Writing Simple Command Lists 57

NetView Command List Language Command Lists

Do not confuse the use of &WRITE and &BEGWRITE with the use of command
list comments. Comments are for the person writing the command list and are not
sent to the operator, unless &CONTROL ALL is set. &WRITE and &BEGWRITE
send messages to the operator.

If you are sending more than one message line or displaying a table that takes up
the whole screen, you might want to use the NetView VIEW command instead of
using &WRITE or &BEGWRITE.

&WRITE Control Statement

The &WRITE statement sends one line of text to the operator. NetView performs
variable substitution on the message text before sending the message to the
operator. If you do not want substitution performed on the message text, use
&BEGWRITE. If you do not include message text, NetView sends a blank line to
the operator. The syntax for the &WRITE statement is:

&WRITE

»>—8WRITE message_text ><

If you want to include blanks in front of the first character of the line, code a
nonblank character after &WRITE.

In the following line:
&WRITE . THIS LINE WILL START IN COLUMN 8

The period causes the line to print like this:
THIS LINE WILL START IN COLUMN 8

Otherwise, the line shifts left until the first nonblank character is in column 1.

The following line has no period:
&WRITE THIS LINE WILL SHIFT TO COLUMN 1

So it prints like this:
THIS LINE WILL SHIFT TO COLUMN 1

The following is an example of a command list called PATH that uses the &WRITE
control statement and a VTAM command.

PATH CLIST

&CONTROL CMD

* THIS COMMAND LIST DISPLAYS INFO ON VTAM SWITCHED PATHS

S8WRITE *xx STATUS OF VTAM SWITCHED PATHS FOR &1 #xx

D NET,PATHS,ID=&1

Activating this command list by entering PATH HD3790N1 causes w
to be displayed.

58 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Command Lists

/*** STATUS OF VTAM SWITCHED PATHS FOR HD3790N1 === h
D NET,PATHS,ID=HD3790N1

ISTO971 DISPLAY ACCEPTED

IST1481 DIAL OUT PATH INFORMATION FOR PHYSICAL UNIT HD3790N1

IST1491 LINE GRP TELEPHONE NUMBER OR LINE NAME PID GID CNT

IST1681 EGROUP40 4094 001 001 005 AVA

AUT

IST1681 EGROUP50 4094 002 002 001 AVA

MAN

IST3141 END
A J

Figure 15. Result of PATH Example Command List

Notice that the &1 in the &WRITE statement is replaced by the value HD3790N1
before it is sent to the operator. Because &CONTROL CMD was coded, the
command is also shown. The rest of the display is the response to the VTAM
command.

Eigure 16 on page 59 shows several &WRITE statements, which send one-line
messages to the operator.

CLEAR
&WRITE >>> THE SUM OF &ONE + &TWO IS --->&SUM

&WRITE THE MIRROR IMAGE IS: &NEWSTR
&WRITE TOTAL CHARACTERS ENTERED: &LEN

&WRITE %+ END OF SAMPLE CLIST #xx

Figure 16. Sending One-line Messages to the Operator

&BEGWRITE Control Statement
You can use &BEGWRITE to write a series of lines to the operator terminal. You
can also control whether variables are replaced before sending the messages.

You code the &BEGWRITE statement on a line by itself, one line above the first
operator message you want to send. You can also specify a label on &BEGWRITE.
The label tells the command list where the messages end and command list
processing continues. See L i for more information about labels.

You can indicate that you want variables replaced by their actual values before the
messages are sent to the operator. If you do not indicate a choice, variables are not
replaced.

The syntax for the &BEGWRITE statement is:
&BEGWRITE

NOSUB
»>—8&BEGWRITE <

l—SUBJ I— —Zabel—|

Where:

-label
Indicates the line that follows the text to be displayed to the operator. If you

Chapter 4. Writing Simple Command Lists 59

NetView Command List Language Command Lists

code a label in the statement, this label must be on a statement following the
end of the message text lines in the command list. The command list lines
between &BEGWRITE and the statement with the label are sent to the
operator. The command list statement with the label is not sent to the operator;
it is processed as the next command list statement. If NetView cannot find the
label, the rest of the command list statements are sent to the operator as
comments and the command list is ended. If there is no label on &BEGWRITE,
only the first command list statement after &BEGWRITE is sent to the operator.

You can code a variable for your label on &BEGWRITE. Replace the variable
with a valid value.

NOSUB
Writes the messages to the operator exactly as they are typed, with no variable
substitution. In other words, &1 is sent as &1, not as the value of &1. Use this
operand to write about the command list variables in your messages. NOSUB
does not remove blanks. It displays the text exactly as it is entered. If you code
&BEGWRITE without an operand, NetView assumes NOSUB.

SUB
Causes NetView to carry out substitution on the message text before sending

the messages to the operator. See ["Variable Substitution Qrder” on page 47 for

information about how NetView carries out variable substitution.

If there are blanks before the first character on a message line, the line is
shifted left until the first nonblank character is in column 1. If you want the
blanks sent to the operator’s screen, code a nonblank character in column 1. If
you are using &BEGWRITE to write a message containing double-byte
character set (DBCS) characters, you must use the SUB option. These coding
rules are the same as those for &WRITE.

Eigure 17 on page 60 is an example of a &BEGWRITE statement with variable
substitution.

&BEGWRITE SUB -ENDTEXT

>>> HELLO &0P.
>>> YOU CAN INITIATE CROSS-DOMAIN SESSIONS WITH &ID.

NOW FOR SOME CHARACTER MANIPULATION
ENTER 'GO' FOLLOWED BY A FIVE CHARACTER STRING.
THE CLIST WILL PRINT OUT THE MIRROR IMAGE TO YOU.

-ENDTEXT

Figure 17. 8BEGWRITE with Variable Substitution

In some cases, you might not want variable substitution. In the following example,
the &BEGWRITE statement shows the operator how to use the ENDIT command
list:

&CONTROL ERR

&BEGWRITE NOSUB -OVER

TO END FULL SCREEN SESSIONS,
TYPE "ENDIT &1,8&2,&3"
REPLACE &1,&2,&3 WITH

THE APPLID NAMES OF THE
FLSCN SESSIONS TO BE ENDED
-0VER

60 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Command Lists
The ENDIT command list is called by entering ENDIT. Figure 18 on page 61 shows

the messages that the operator sees when ENDIT is used.

TO END FULL SCREEN SESSIONS,
TYPE "ENDIT &1,&2,&3"
REPLACE &1,82,&3 WITH

THE APPLID NAMES OF THE
FLSCN SESSIONS TO BE ENDED

Figure 18. Result of ENDIT Example Command List

Notice that &1, &2, and &3 are not replaced by their values when the messages are
sent to the operator.

&PAUSE Control Statement

Using the &PAUSE control statement along with other commands, you can code
command lists that ask the operator questions and pick up the entered responses.
Use the &BEGWRITE and &WRITE control statements to send instructions to the
operator. For example, you can code the command list to instruct the operator to
enter the NetView GO command followed by a value or values for a user variable.
Then code the &PAUSE statement to temporarily halt the command list. The
command list pauses until the operator enters the GO command to continue
processing, or the RESET command to end the command list. You can code the
&PAUSE command to enable the command list to pick up the operands followmg
the GO commands and take them as user variables. See L

B2 for more information.

Notes:

1. Using &PAUSE in an automation task command list or a command list that
runs under the PPT is not valid.

2. The VIEW command obtains operator input without requiring the use of the
GO command.

The syntax for the &PAUSE statement is:

&PAUSE
|—NOINPUT
»>—&PAUSE <
VARS —Y—variable
STRING variable
Where:
NOINPUT

Pauses until the operator enters the GO or RESET command. Operands cannot
be specified with the GO command. If the operator enters operands, an error
message is returned. NOINPUT is the default.

STRING wvariable
Pauses until the operator enters the GO command with or without a string, or
the RESET command. A previous &WRITE or &BEGWRITE statement notifies

Chapter 4. Writing Simple Command Lists 61

NetView Command List Language Command Lists

the operator to enter operands with the GO command. The entire string of
operands is taken as one user variable. The variable can then be used in the
command lists.

VARS uvariable
Pauses until the operator enters the GO command with or without the correct
number of operands, or the RESET command. A previous &WRITE or
&BEGWRITE statement notifies the operator to enter operands with the GO
command. Each operand is taken as a user variable coded on the &PAUSE
VARS statement. These variables can then be used in the command list.

When the command list interprets an &PAUSE control statement, the letter P
appears in the upper right corner of the panel to alert the operator that the
command list is in pause state. Pause state means that the command list has halted
and is waiting for input from the terminal.

Note: If a command list in pause state was called by an NNT session, the P
indicator is not displayed on the OST panel.

Using NetView Commands with &PAUSE

The operator can enter the NetView commands GO, RESET, STACK, and
UNSTACK during a pause.

STACK and UNSTACK enable the operator to suspend and then resume command
list processing during an &PAUSE. Once the STACK is issued, the operator can
enter any network command.

Note: While an &PAUSE is suspended with the STACK command, the P is
removed from the upper right corner of the panel. The P reappears after
UNSTACK is issued. After UNSTACK is issued, the operator enters GO,
with or without operands, to continue the command list, or enters the
RESET command to end the command list. RESET also ends any nested
command lists.

The operands on the GO command are positional. This means the first operand
becomes the first user variable, the second operand becomes the second user
variable, and so on. Operands are separated by either a blank or a comma. If you
want to include a blank or a comma as part of one variable, use either &PAUSE
STRING or put the operand between single quotes.

Code a user variable for each expected operand. If the operator enters more
operands on the GO command than expected by the command list, the extra
operands are ignored. If the operator enters fewer operands than expected, the
remaining variables are set to null. The operator can also skip over one operand by
coding two commas in a row.

Precede the pauses for operator input with messages that supply the information
to enter. Use the &WRITE or &BEGWRITE statements to send this information.

Note: The operator can invoke your command list from any NetView component.
If you expect the command list to run from components other than the
command facility, use the NetView command NCCF in the command lists to
present the operator with the command facility panel and command panel
input area. (Do this before issuing any messages.) If the command list is
running in the command facility, the NCCF command has no effect. Refer to
the NetView online help for more information about NetView commands.

62 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Command Lists

An Example Using &PAUSE

The following example contains a portion of a command list that illustrates how to
request information from an operator:
&BEGWRITE SUB -ENDTEXT
ENTER 'GO' FOLLOWED BY YOUR LAST NAME,
. FIRST NAME, AND MIDDLE INITIAL.
-ENDTEXT
* GET THE INPUT FROM THE USER
&PAUSE VARS &LAST &FIRST &MI

The example writes a message to the operator prompting for the operator’s last
name, first name, and middle initial. The command list pauses until the operator
enters a GO or RESET command. To continue processing the current command list,
the operator enters the GO command followed by the string required by the
command list.

If the operator enters the following;:
GO SMITH JOHN A

The value of &LAST becomes SMITH, the value of &FIRST becomes JOHN, and
the value of &MI becomes A. These variables can then be used by other statements
in the command list.

NetView Built-in Functions

Built-in functions perform predefined operations. They are used as expressions
either in an assignment statement or in an &IF control statement. (See
Caontrol Statement” on page 77 for information about the &IF control statement.) In
an assignment statement, the value of the user variable is set to the result of the
built-in function’s operation. Two of NetView’s built-in functions, &HIER and
&MSUSEG, have REXX-format functions—HIER() and MSUSEG()—for use in
NetView REXX-only command lists.

Do not confuse built-in functions with variables of the same name. (All NetView
command list language variables are described in l!Chapter 9 REXX Functiond
Provided by NetView” on page 117.) Although they appear similar, they are not
the same. With the exception of HIER() and MSUSEGY(), both built-in functions and
NetView command list language variables start with an ampersand (&). The
difference is as follows:

* A variable is replaced by its value when the command list runs. The variable is
really just a placeholder for the value.

* A built-in function is never replaced by a value. A built-in function is an action
indicator rather than a placeholder.

These are the built-in functions you can use:
* &BITAND

* &BITOR

* &BITXOR

* &CONCAT
* &HIER

* &LENGTH
* &MSUSEG
* &NCCFID

* &NCCFSTAT
* &SUBSTR

Chapter 4. Writing Simple Command Lists 63

Built-In Functions

The examples in this section use built-in functions in assignment statements.
Examples with built-in functions in the &IF control statement are in

Btatement” on page 74.

In an &IF control statement, the result of the built-in function is used as one or
both of the compared expressions. For example, you might use the &LENGTH
built-in function to compare the lengths of two variables.

&BITAND

The &BITAND function returns a string composed of the two input strings
logically ANDed together, bit by bit. The length of the result is the length of the
longer of the two strings. If the AND operation ends when the shorter of the two
strings is exhausted, the unprocessed portion of the longer string is appended to
the partial result. If the value of both strings is null, the result is a null string.

The following syntax describes the &BITAND function:

&BITAND

v
A

»»>—8&BITAND stringl |_
stringZ—l

Where:
string1

Can be either a constant or a command list variable.
string?2

Can be either a constant or a command list variable.

The following are two examples of the &BITAND operation:
&BITAND X'73" X'27' results in X'23'

&BITAND X'13"' X'5555' results in X'1155'

Notes:
1. If string2 is null, the result is stringl unchanged.

2. If you specify more than two strings, message DSI186I is issued and the
command list ends. This is consistent with the equivalent REXX function.

3. If you do not specify stringl, message DSI1871 is issued and the command list
ends. This is consistent with the equivalent REXX function.

&BITOR

The &BITOR function returns a string composed of the two input strings logically
ORed together, bit by bit. The length of the result is the length of the longer of the
two strings. If the OR operation ends when the shorter of the two strings is
exhausted, the unprocessed portion of the longer string is appended to the partial
result. If the value of both strings is null, the result is a null string.

The following syntax describes the &BITOR function:

64 Customization: Using REXX and the NetView Command List Language

Built-In Functions
&BITOR

v
A

»»>—_&BITOR stringl |_
stringZ—l

Where:
string1

Can be either a constant or a command list variable.
string2

Can be either a constant or a command list variable.

The following are two examples of the &BITOR operation:
&BITOR X'15"' X'24" results in X'35'

&BITOR X'15' X'2456"' results in X'3556"
Notes:

1. If string2 is null, the result is stringl unchanged.

2. If you specify more than one string, message DSI186I is issued and the
command list ends. This is consistent with the equivalent REXX function.

3. If you do not specify stringl, message DSI1871 is issued and the command list
ends. This is consistent with the equivalent REXX function.

&BITXOR

The &BITXOR function returns a string composed of the two input strings logically
exclusive ORed together, bit by bit. The length of the result is the length of the
longer of the two strings. If the XOR operation ends when the shorter of the two
strings is exhausted, the unprocessed portion of the longer string is appended to
the partial result. If the value of both strings is null, the result is a null string.

The following syntax describes the &BITXOR function:

&BITXOR

»»>—JBITXOR stringl > <

l—stringZ—l

Where:

stringl
Can be either a constant or a command list variable.

string2
Can be either a constant or a command list variable.

The following are two examples of the &BITXOR operation:
&BITXOR X'12' X'22"' results in X'30'

&BITXOR X'1211"' X'22"' results in X'3011"

Notes:
1. If string2 is null, the result is stringl unchanged.

Chapter 4. Writing Simple Command Lists 65

Built-In Functions
2. If you specify more than one string, message DSI186l is issued and the
command list ends. This is consistent with the equivalent REXX function.

3. If you do not specify stringl, message DSI1871 is issued and the command list
ends. This is consistent with the equivalent REXX function.

&CONCAT

The &CONCAT function concatenates the values of two variables, two constants,
or a variable and a constant to form a new value. The syntax of the &CONCAT
built-in function is:

&CONCAT

»»>—&CONCAT &variable &variable <
—[constant——l_ —[constantJ

Ensure that when the two items are joined, the resulting value does not exceed the
maximum of 255 characters; higher values are truncated. If the value of both items
being joined is null, the result is null.

For example, suppose you had the following statement:

&PREFIX = SN/
&ID = 5497
&SERIAL = &CONCAT &PREFIX &ID

After processing, the user variables are set as follows:
&PREFIX SN/

&ID 5497

&SERIAL SN /5497

Note: When &CONCAT is used to concatenate two double-byte character set
(DBCS) strings, it removes adjacent shift-in (SI) and shift-out (SO) characters.

&HIER

The &HIER function provides user access to the NetView hardware monitor
hierarchy data associated with an MSU.

The &HIER syntax is:
HIER

»»—8&HIER >

L,

Where:
n Specifies the index number (1-5) of a specific name/type pair.

Notes:

1. &HIER without n returns a resource hierarchy slightly different than that found
in BNJ146I messages. The name/type pairs look like:

aaaaaaaallllbbbbbbbb2222....eeceeeeee5555

66 Customization: Using REXX and the NetView Command List Language

Built-In Functions

The letters represent the resource name and numbers represent the resource
type.

The hardware monitor defines from one to five name/type pairs. Each name is
eight characters long and each type is four characters. The names and types are
padded with blanks if necessary.

&HIER with 7 returns the name/type pair aaaaaaaallll that corresponds to n.
If there is no name/type pair that corresponds to n, then a null value is
returned.

&HIER returns null under the following conditions:

e If the command list is not executed by the automation table

¢ If the automation table was not driven by an MSU

¢ If the MSU does not have a hardware monitor resource hierarchy

. You can test whether a resource is present in a resource hierarchy by using the
examLEgle NetView command list language parsing template shown in @b

If a complex link exists in a resource hierarchy, there might be resource levels
that do not appear in the information returned by the &HIER function. You
must use a system schematic to determine the complete hierarchy configuration
when a complex link is present.

Chapter 4. Writing Simple Command Lists 67

Built-In Functions

*

* Set up variables for search
*

&RESNAME = AAAA

&RESLN &LENGTH &RESNAME
&SOURCE = &HIER

&SOURCLN = &LENGTH &SOURCE

*

* Check for existence of Hierarchy
*
&IF &SOURCLN = O &THEN -

&GOTO -NOTFOUND

Parse out desired resource name with PARSEL2R

* ok

PARSEL2R SOURCE FIRSTSEG /&RESNAME/ LASTSEG

*
* If the last segment is non null, we found the resource name
* imbedded in the hierarchy.

*

&IF &LASTSEG = '' &THEN -

&GOTO -CKLAST

&GOTO -FOUNDMSG

Check Tlast segment of the hierarchy for desired resource name.
(If the desired resource name is the last entry in the hierarchy,
PARSEL2R will not detect it. We need to make a special check for
the last entry.)

* Ok ok X X X

-CKLAST

*

* Trim any trailing blanks
*

-TRIMBLANK
&LASTCHAR = &SUBSTR &SOURCE &SOURCLN 1
&IF &LASTCHAR —= ' ' &THEN -

&GOTO -OUTTRIM
&SOURCLN = &SOURCLN - 1
&IF &SOURCLN > O &THEN -

&GOTO -TRIMBLANK
-OUTTRIM

*

Figure 19. Example of a &HIER Parsing Template (Part 1 of 2)

68 Customization: Using REXX and the NetView Command List Language

Built-In Functions

&IF &SOURCLN < &RESLN &THEN -
&GOTO -NOTFOUND
&INDEX = &SOURCLN - &RESLN
&INDEX = &INDEX + 1
&LASTENT = &SUBSTR &SOURCE &INDEX &RESLN
&IF &LASTENT = &RESNAME &THEN -
&GOTO -FOUNDMSG
&GOTO -NOTFOUND

*

* Issue found message
*

-FOUNDMSG
&WRITE THE RESOURCE &RESNAME EXISTS IN THE HIERARCHY
&GOTO -LAST

*

* Issue not found message
*

-NOTFOUND
&WRITE THE RESOURCE &RESNAME DOES NOT EXIST IN THE HIERARCHY

*

* Exit

*
-LAST
&EXIT

Figure 19. Example of a &HIER Parsing Template (Part 2 of 2)

&LENGTH

The &LENGTH function returns the length of a variable or a constant. The syntax
of &LENGTH is:

&LENGTH

A\
A

»»>—8&| ENGTH &variable
—[constant

The length of the variable value or constant is returned. If the variable is null or
the constant is a null string, the value returned is 0.

The following is an example of how to use &LENGTH. Suppose you called
command list SAMP by entering SAMP LU2525. Assume the name of the hardcopy
printer (&HCOPY) control variable is HC55.

SAMP CLIST
&HCLENGTH = &LENGTH &HCOPY
&RESLEN = &LENGTH &1

After processing, the variable settings are:
&HCOPY HC55

&HCLENGTH
4

&1 LU25257
&RESLEN 6

User variable &HCLENGTH is set to the length of the hardcopy device name. The
hardcopy device is HC55. HC55 has four characters, so &HCLENGTH becomes 4.

Chapter 4. Writing Simple Command Lists 69

Built-In Functions

&RESLEN becomes the length of the first parameter variable. The first parameter
variable is LU2525, so &RESLEN becomes 6.

&MSUSEG

The &MSUSEG function provides the parsing capability needed to extract
information from a management services unit (MSU) or other similarly architected
pieces of data. Use this function in a command list that is invoked by the NetView
automation table or an LU6.2 application.

The &MSUSEG syntax is:

&MSUSEG

»>—8MSUSEG |_ _|
H

LT

|—(ocz:)—| L’ |—1—|
I—byte—| I—, length—|

v
A

Where:

byte

The byte position into the lowest ID specified in id, counting from 1 in
decimal. Position 1 is the first length byte in the header of the lowest ID. The
header is composed of one or two length bytes followed by the 1- or 2-byte ID.
This entry is optional. The default is 1.

Is inserted if the first ID is to be obtained from the next higher level
multiple-domain support message unit (MDS-MU) as opposed to the
NMVT/control point management services unit (CP-MSU) level. You can code
the H in uppercase or lowercase. You can place H inside or outside of the
quotes when quotes are coded.

Is the 2- or 4-character representation of 1- or 2-byte hexadecimal ID of GDS,
major vector (MV), subvector, subfield, or sub-subfield. The hexadecimal
characters (0-9, A-F, a—f) can be mixed case. The first ID is required; additional
IDs are optional.

length

occ

Is the number of bytes in decimal to be returned from the lowest ID specified
in id and starting at the byte position. This entry is optional. The default is
equal to the remainder of the lowest id specified, and starting at the byte
position.

The occurrence number, counting from one (1) in decimal. You can use an
asterisk (*) to specify the first occurrence found. This entry is optional at every
level. The default is 1.

The period establishes a hierarchy of IDs. Thus, the vector ID specified on the
right side of the period is contained within the vector specified on the left side.

Notes:

1.

You can use blanks as delimiters between operands, but blanks do not act as
place holders. For example, if you code a variable for the byte and the value of
the variable is null and you used a blank as a delimiter, the length would be
considered as the byte operand.

70 Customization: Using REXX and the NetView Command List Language

Built-In Functions

2. If the location is not found, or if the command list containing the &MSUSEG
function was not executed by an automation table statement because of an
MSU, or if the function was not driven by an MSU, then the value of the
&MSUSEG function is null.

3. If you do not specify a byte position, the data returned includes the 1- or 2-byte
length followed by the 1-or 2-byte ID of the lowest ID specified in id.

4. If the byte position is beyond the end of the location, a null value is returned.

5. If the specified length is longer than what remains at the location specified,
whatever remains at the location is returned.

For more information about the automation table, refer to thellizali NetView fod
£/QS Automation Guidd book. For more information about vector definitions, refer to
the SNA library. For more LU6.2 and MSU information, refer to the

&NCCFID

The &NCCFID function returns the NetView domain identifier of a domain with
which you can establish a cross-domain session. The domains with which you can
establish cross-domain sessions are defined by the DOMAINS statement of your
operator profile. However, if your profile specifies AUTH CTL=GLOBAL, you can
establish cross-domain sessions with the domains specified by the RRD statements
in CNMSTYLE. If neither DOMAINS nor CTL=GLOBAL is specified in your
operator profile, you receive an error message when using this function.

For more information about the domains and RRD statements, refer to the inell
NetView for z/QS Administration Referencd

The syntax of NCCFID is:
&NCCFID

»»—8NCCFID number

v
A

Where:

number
Is either a number or a variable that becomes a number. The largest number
permitted is the value of &NCCFCNT, the control variable that shows the total
number of cross-domain sessions this operator can start.

The command list can use &NCCFID to automatically start or stop a cross-domain
session.

The following is an example of how to use &NCCFID:

&DOM1 = &NCCFID 1
&DOM2 = &NCCFID 2
&DOM3 = &NCCFID 3

START DOMAIN=&DOM1
START DOMAIN=&DOM2
START DOMAIN=&DOM3

Assume your operator profile defines three domains with which you can establish
cross-domain sessions:

1 ALPHA

Chapter 4. Writing Simple Command Lists 71

Built-In Functions

2 BETA
3 GAMMA

After processing, the user variables are set as follows:

&DOM1 ALPHA
&DOM2 BETA
&DOM3 GAMMA

The three domains are then started with the NetView START command.

In this example, the operator must know there are three domains that can be
started. You can also use the &IF control statement to test &NCCFCNT to find the
number of domains and start them.

&NCCFSTAT

The &NCCFSTAT function returns a value indicating whether you have an active
cross-domain session with the specified domain. The syntax of &NCCFSTAT is:

&NCCFSTAT

»>—8&NCCFSTAT domain ><

Where:

domain
Is either a domain name or a variable that becomes a domain name.

The function call is replaced by the characters ACT if the operator has an active
cross-domain session with the domain. The function call is replaced by the
characters INACT if the operator does not have an active cross-domain session
with the domain.

For example, you can write a command list to check the status of a domain and
start that domain if it is not active. Assume you activated the STARTEM command
list in the following example by entering STARTEM NCCFA.

STARTEM CLIST

&CONTROL ERR

&STATUS = &NCCFSTAT &1

&IF &STATUS = INACT &THEN START DOMAIN=&1

&IF &STATUS = ACT &THEN &WRITE DOMAIN &1 IS ALREADY ACTIVE

After processing, the variables are set as follows:

&1 NCCFA
&STATUS ACTIINACT

The parameter variable &1 is set to NCCFA, and the status of domain NCCFA is
checked. If you have an active cross-domain session with NCCFA, &STATUS is set
to ACT. If not, &STATUS is set to INACT. The &IF statement tests whether
&STATUS is set to ACT or INACT (for more information, see

Btatement” on page 74).

72 Customization: Using REXX and the NetView Command List Language

Built-In Functions

If NCCFA is inactive, the command list starts it. If NCCFA is active, you receive
the following message:

DOMAIN NCCFA IS ALREADY ACTIVE

&SUBSTR

The &SUBSTR function returns the specified portion of an input variable by
parsing the variable, starting at position start for length characters. The syntax of
&SUBSTR is:

&SUBSTR

»»>—_&SUBSTR &variable start >

|—Zength—|

Where:

length
The number of characters to parse, beginning with the specified start position.
If no length is specified, the parsing will be from the start to the end of the
variable.

start
Is the starting position of the parsing operation within the &uvariable.

&uvariable
Is the variable to be parsed.

For example, suppose you had the following statements:

&HOLD = ACF/VTAM

&FIRST = &SUBSTR &HOLD 1 3
&SECOND = &SUBSTR &HOLD 5 4
&THIRD = &SUBSTR &HOLD 6

After processing, the user variables are set as follows:

&HOLD ACF/VTAM®
&FIRST ACF
&SECOND VTAM
&THIRD TAM

The first line of the previous example sets the value of variable &HOLD to
ACF/VTAM. In the next line, &SUBSTR starts at the first character of &HOLD (the
letter A) and moves three characters to the right (to the character F). The letters
ACF become the value of the variable &FIRST. In the next line, &SUBSTR starts at
the fifth character of &HOLD (the letter V) and goes for a length of four (to the
character M). The letters VTAM are put into variable &SECOND. In the last line,
&SUBSTR starts at the sixth character of &HOLD (the character T) but does not
specify a length. &THIRD is therefore TAM, the value of &HOLD from the letter T
through the end of the variable (M). The starting positions are determined as

shown:
1 2 3 4 5 6 7 8
A C F / \% T A M

Chapter 4. Writing Simple Command Lists 73

Built-In Functions

Note: The first starting position is 1, the second is 2, and so on. Zero is not a valid
position. Because the largest variable value is 255 characters, it is not valid
to have a starting point greater than 255.

You do not have to specify a length. If the length is not specified, the remainder of
the string to the right beginning with the starting position becomes the substring.
NetView never pads substrings with blanks. If you specify a length that is too
long, NetView assumes no length was specified and uses the entire string
beginning at the starting position. If the length is 0, or the starting position is
beyond the variable length, the result of &SUBSTR is null.

Eigure 20 on page 74 shows how you can use a substring of the &APPLID control
variable to determine the name of the domain running the command list:

GETDOMID CLIST

&CONTROL ERR

= DETERMINE THE LENGTH OF THE APPL ID

&LENAPPL = &LENGTH &APPLID

* SUBTRACT 3 TO GET THE LENGTH OF THE DOMAIN ID

&LENAPPL = &LENAPPL - 3

* START AT COLUMN 1 OF NEW LENAPPL FOR LENGTH OF DOMAIN ID
= THE VALUE OF &DOMAIN WILL BE THE DOMAIN ID

&DOMAIN = &SUBSTR &APPLID 1 &LENAPPL

* &DOMAIN NOW CONTAINS THE DOMAIN ID

Figure 20. Using &APPLID to Determine the Domain Name

Using &SUBSTR with DBCS Characters

When using double-byte characters along with Roman characters (A-Z; a-z), the
&SUBSTR function adjusts the variable as follows:

Start byte = shift-out character
No adjustment

Start byte = shift-in character
Replace with blank

Start byte = first half of double-byte
Replace with blank and shift-out character

Start byte = second half of double-byte
Replace with shift-out character

Last byte = shift-out character
Replace with blank

Last byte = shift-in character
No adjustment

Last byte = first half of double-byte
Replace with shift-in character

Last byte = second half of double-byte
Replace with shift-in character and blank.

The following is an example of the &SUBSTR statement used on a double-byte
character and Latin character string:

&DBCS = 'AB<D1D2D3>EFG'

Where:
« A, B, E, F, G are Latin characters

74 Customization: Using REXX and the NetView Command List Language

Built-In Functions

* < (X'OE') represents the shift-out control character
e > (X'OF) is the shift-in control character; and D1, D2, D3 are double-byte
characters.

Using this value, &SUBSTR works as follows:

&FIRST= &SUBSTR &DBCS 1 3
= '"AB<' (interim string)
= '"AB ' (recovery string)

&SECOND = &SUBSTR &DBCS 3 5
= '<D1D2' (interim string)
= '<D1> ' (recovery string)
&THIRD &SUBSTR &DBCS 4 5

'D1D2D' (interim string)
' <D2D' (interim string)
' <D2>' (recovery string)

Note: The DBCS delimiters are 1 byte long; the DBCS codes are 2 bytes long.

Chapter 4. Writing Simple Command Lists 75

Built-In Functions

76 Customization: Using REXX and the NetView Command List Language

Chapter 5. NetView Command List Language Branching

This chapter describes the conditional and unconditional branching statements in
NetView command list language.

¢ The &IF statement causes a conditional branch based on logical or arithmetical
comparisons. The result of a test or comparison in an &IF statement determines
the alternative to perform. Conditional processing statements give you the
flexibility to code if-then and loop structures.

¢ The &GOTO statement causes unconditional branching.

* The &EXIT statement lets you code logical exit points within a command list.

¢ The &WAIT statement suspends processing and waits for the completion of an
event.

&IF Control Statement

The &IF control statement tests a condition and performs processing based on the
results of the test. The condition consists of two expressions and a logical or
arithmetical operator.

If the condition is true, the &THEN clause is processed. If the condition is false,
processing continues at the statement following the &IF control statement. The
syntax of the &IF control statement is:

&IF&THEN

»»—&IF expression I LEQ] expression_2 &THEN statement ><
e |
LT |
e |
e |
Tad

Where:

=or EQ

Equal

expression_1
Is any expression that can be used in an assignment statement. It can be a
constant, a variable, an arithmetic operation, or a built-in function. For more

information, see /Assignment Statements” an page 54.

77

NetView Command List Language Branching

expression_2
Is the second term of comparison. It follows the same rules as expression_1.

> or GT
Greater than

>= or GE
Greater than or equal

<or LT
Less than

<=or LE
Less than or equal

-= or NE
Not equal

=> or NG
Not greater than

=< or NL
Not less than

Note: You can use either the symbol code or the 2-character letter code. Both
have the same meaning.

&THEN
Separates the comparison from the command list statement that is processed if
the condition is true. You must code &THEN in every &IF statement.

Note: Coding the ampersand (&) with THEN identifies the word as part of the
control statement.

statement
Is the command list statement that is processed if the comparison is true,
otherwise it is ignored. The statement can be any NetView command list
language statement.

Variables coded in the comparison expressions are replaced by their values before
the comparison is checked. You can use two single quotes (") with no space to test
whether a variable is null. For example, the comparison &1 = '' is true when &1 is
null.

The following example shows comparisons:
5 =8A

8l =

2 + 2 NE &ANSWER

&PARMCNT LE 5

If a variable used in an arithmetic expression could be equal to null, then the
following syntax should be used:

7 >3 + 0&l
In this example, the zero (0)&1 will evaluate to zero (0) because &1 is null.

Therefore, the expression 3 + 0 is compared to 7. If &1 was equal to 9, the
expression 3 + 09 would be compared to 7.

78 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Branching

The following five examples use the &IF control statement:

&IF &APPLID

NCCFA0O1 &THEN &USERVAR = 10

&IF &NCCFID = NCCFA &THEN &GOTO -PROC2
&IF &1 = LU200 &THEN VARY NET,ACT,ID=&1
&IF &SUBSTR &DATE 1 5 = '01/01' &THEN &WRITE HAPPY HOLIDAY

&IF &A = X'41"' &THEN &GOTO -PROC1

&GOTO Control Statement

The &GOTO statement unconditionally transfers control to another part of the
command list. &GOTO lets you rerun statements or jump ahead to a statement of
the command list. A statement label identifies the target or destination statement.
When you use both &IF and &GOTO, you can test for various conditions and go
to different parts of the command list, depending on the results. The syntax of the
&GOTO control statement is:

&GOTO

»»—_GOTO -label

A\
A

Where:

-label
Identifies the target statement in this command list where processing
continues.

When NetView interprets the &GOTO statement, it searches the command list for a
statement starting with this same label. NetView transfers control to that statement
and continues the command list processing. The statement identified by the label
can be before or after the &GOTO statement.

You can code a variable for your label as long as the variable is replaced by a
value before NetView processes the &GOTO statement. See L. Z
for more information about labels.

&EXIT Control Statement

When the command list reaches the &EXIT control statement, the command list
processing ends.

You can use &EXIT with &IF to check the command list and exit if there is an
error. You can use &EXIT with &GOTO to control the flow of the command list.
The syntax of the &EXIT control statement is:

&EXIT

»>—&EXIT

A\
A

|—number—I
Where:

Chapter 5. NetView Command List Language Branching 79

NetView Command List Language Branching

number
Is an error return code. It can be equal to -1, 0, or any positive number up to
2147483647. To debug potential problems in nested command lists, code a
return code on &EXIT.

The return code you set on the &EXIT control statement is placed in the
&RETCODE control variable. The calling command list can test &RETCODE and
take action based on the return code. See L i ion”

for more information about &RETCODE.

You can define meanings for the positive numbers. If you code a nonzero return
code on the &EXIT statement, and if &CONTROL ERR is in effect, the command
list command that generated the nonzero return code is echoed on the panel.

When a command list returns a -1, that command list, and all command lists in the
nested chain, end. If you do not code a return code on &EXIT, or if the command
list ends when the last line is processed and there is no &EXIT statement, a zero
return code is set.

Eigure 21 an page 80 shows an example command list named STOPTAF that uses

the ENDSESS command to stop all terminal access facility sessions. The command
list checks for errors. To start the command list, enter STOPTAF or STOPTAF ALL.
If you forget what the command list does or forget what to enter, use STOPTAF ?
to get help.

STOPTAF CLIST

&CONTROL ERR

* IF USER ENTERS STOPTAF ?, GO TO HELP SECTION

&IF &1 EQ ? &THEN &GOTO -HELP

* IF NO PARAMETERS, GO TO COMMAND

&IF &1 EQ '' &THEN &GOTO -CMD

* IF PARAMETER IS ALL, GO TO COMMAND. ELSE PRINT ERROR MSG
&IF &1 NE ALL &THEN &GOTO -ERROR

-CMD

ENDSESS OPCTL,ALL

ENDSESS FLSCN,ALL

&EXIT

-ERROR

&WRITE YOU ENTERED: STOPTAF &PARMSTR WHICH IS NOT CORRECT
-HELP

&BEGWRITE -END

ENTER: STOPTAF TO STOP ALL TERMINAL ACCESS FACILITY SESSIONS
-END

&EXIT 4

Figure 21. Example of a CLIST to Stop TAF Sessions

If you enter STOPTAF or STOPTAF ALL, only the results of the two ENDSESS
commands are displayed.

If you enter STOPTAF FLSCN, the following message is displayed:
YOU ENTERED: STOPTAF FLSCN WHICH IS NOT CORRECT
ENTER: STOPTAF TO STOP ALL TERMINAL ACCESS FACILITY SESSIONS

If you enter STOPTAF ?, the following message is displayed:
ENTER: STOPTAF TO STOP ALL TERMINAL ACCESS FACILITY SESSIONS

80 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Branching

&WAIT Control Statement

Sometimes you want a command list to wait for a specific event or message. With
the &WAIT control statement, you define what event causes the command list to
resume processing. The command list can wait for any message with a 1- to
10-character message identifier.

Notes:

1. You cannot use &WAIT when operating under the primary POI task (PPT), or
when using common operations services (COS) commands. See

- for more information using &WAIT under the
PPT. For additional information about using &WAIT with common operations

services commands, see EChapiELS_Comm:_Dpe.camsﬁeﬁuces_Cammandsﬂ

2. NetView pipelines, invoked with the PIPE command, provide both extended
function and reduced complexity for the automation of message handling. The
PIPE command is therefore a recommended alternative to the &WAIT control
statement. For information about NetView pipelines, refer to the
Jlfmf /QS Customization: Lising Pippc’ book.

If you use &WAIT in an automation task command list, be sure to specify a
reasonable time-out value. For instructions about coding a time-out event, see
Exent=-L abel Pair” on page ’3

If the trapped message satisfies the wait condition, processing of the waiting
command procedure resumes. If you do not suppress the message at this point, it
continues with the message flow. If you suppress the message, however, NetView
marks it for deletion. In this case, automation-table processing does not occur and
NetView does not display or log the message.

&WAIT does the following in a command list:

* It causes NetView to monitor the operator station task (OST) for specific
messages and takes action if the message arrives. For example, the command list
issues a VTAM command to activate a resource. When VTAM sends the message
saying the resource is active, &WAIT initiates a specific action based on the
successful activation of the resource.

* It initiates a specific action if a message does not arrive in a specified period of
time. For example, for your installation, you might want to display resources if
the activation message does not arrive within 5 minutes.

Therefore, you can use &WAIT in the following applications:

e The command list starts a session with an application program, such as IMS/VS,
or another NetView domain. The &WAIT causes NetView to monitor the OST
for messages indicating the session is started. This satisfies the &WAIT
condition. When the &WAIT condition is fulfilled, the command list resumes
processing and sends the logon and other information.

¢ The command list issues requests for status information from VTAM, and then
processes or reformats this information before sending it to the NetView
operator.

&WAIT and &PAUSE work differently. With &PAUSE, the command list does not
continue until the operator enters the GO command. Operands on the GO
command are used in the command list. However, because &WAIT causes the
command list to wait for a specific event or events, GO is used to resume the
command list only if the event never occurs. When a command list is in a wait

Chapter 5. NetView Command List Language Branching 81

NetView Command List Language Branching

state, NetView ignores operands on the GO command. RESET, STACK, and
UNSTACK work the same way for &WAIT and &PAUSE.

Coding an &WAIT Control Statement

You can code an &WAIT statement in several ways. This section describes the basic
format. t izi z describes ways to
customize &WAIT.

When the command list begins processing a &WAIT control statement, NetView
displays the letter W in the upper right corner of the panel if the panel is refreshed
because a message is received or the ENTER key is pressed. This W notifies the
operator that a command list process is in a wait state. Wait state means the
command list has halted its processing and is waiting for a specific message or
group of messages. When the specific message arrives, the control variables and
the parameter variables are set to their current values. The syntax of the &WAIT
control statement is:

&WAIT

Y_ event=-label ><
l— 'command'—|

»»—JWAIT

Where:

‘command’
Is any command or command list that you can issue from NetView. This
command is optional. It is usually the command from which the command list
is waiting for messages. For example, if you want the command list to wait for
a successful session startup, the entire BGNSESS command is coded between
single quotes. Be sure to code command list continuation characters before the
event=-label pairs. The command is run as soon as it is reached in the command
list.

You can code one of the NetView timer commands, AT, EVERY, or AFTER, in
the &WAIT statement. If the scheduled command is a command list, it cannot
run until either the current command list is complete or the STACK command
is entered.

event=-label
Is an event=-label pair. You can code as many of these pairs as you want on an
&WAIT statement, up to the limit of 255 characters. The event is usually a
message for which the command list is waiting. The event can be a trigger that
ends the wait state before the message arrives. The &WAIT statement causes
NetView to scan all messages sent to the operator. If a message matches one of
the events coded, the command list goes to the line with the specified label
and continues processing from the labeled statement. For more information
about the types of events that can satisfy an &WAIT, see [‘The Event=-T abel

When NetView receives the message it is waiting for, the message is displayed on
the operator terminal, as are all NetView messages. However, in this case, the
message type is W unless the message satisfying the &WAIT originated from a
command list, in which case the message type remains C. If you do not want the
operator to see this message, see [izi 7

82 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Branching

NetView checks only messages that are intended for the operator’s screen. If you
code exit routine DSIEX02A (output to the operator), the &WAIT control statement
might not set the message for matching. For example, if DSIEX02A deletes the
message, &WAIT does not get the message so a match is not made. Because the
operator does not receive the message, neither does the waiting command list.
Therefore, you should wait only for messages that are displayed on the NetView
console.

Notes:

1. When coding the &WAIT command control statement, it is important to code
an event=-label pair for message DSI210I and *NN. The DSI210I message is
returned when the command found in the command list is not authorized for
this operator, and the *NN event prevents waiting indefinitely for operator
intervention. The statements following labels should notify the operator of the
error and exit the command list.

2. The W signifying a wait state, if present, remains in the upper right corner of
the panel while this initial &WAIT command is processed. The W tells the
operator that NetView is still waiting for messages. If the operator enters GO
before this command or command list completes processing, the GO is rejected
with message DSI0O16I NOT IN PAUSE OR WAIT STATUS. When the command or
command list is complete, the GO is accepted. RESET ends a command list that
is in a wait state. If you enter the STACK command, the W does not remain in
the upper right corner of the panel.

3. You can code several event=-label pairs, but the first message or other condition
that matches one of the events stops the command list from waiting for more
messages. You can change this if you want to process several messages with

one &WAIT statement. See I‘Custamizing the &WAIT Statement” on page 89,
The Event=-Label Pair

The event=-label pair on the &WAIT statement lets you pass control to a statement
with a label when one of four types of events occurs. The label is a standard label
as described in I'Labels” on page 44. The label coded on the &WAIT statement can
be a variable, but you should not use parameter variables.

You can pass control to the label on an &WAIT statement by specifying an
event=-label pair. The events you can use are:

e token

* *ERROR

* *nn

e *ENDWAIT

Descriptions of the previously mentioned events are as follows:

token This event occurs when NetView receives a message matching token. The
token variable can be 1-10 characters that identify the first token of the
message or messages for which the command list is waiting. Optionally,
you can identify the domain of a message for which the command list is
waiting. If a domain identifier is specified, it precedes the token and is
separated from the token by a period (domainid.token). You can also use an
asterisk (*) to indicate you are specifying a partial domain identifier or
token. If you do not specify a domain identifier, the message for which the
command list is waiting can be from any domain.

The following are examples of some of the ways you can specify the
messages for which you want the command list to wait:

Chapter 5. NetView Command List Language Branching 83

NetView Command List Language Branching

domainid.token
The event occurs when NetView receives any message whose
domain identifier matches the 1-5 character domainid and whose
first token matches foken.

dom*.token
The event occurs when NetView receives any message whose
domain identifier matches the partial domain identifier specified
by dom* and whose first token matches token. For example,
NCCF*.DSI463] means the event occurs when a DSI463] message is
received from any domain with an identifier that starts with NCCF
(such as NCCFA or NCCEFB).

*.token The event occurs when NetView receives any message whose first
token matches token. The message can be from any domain.

token ~ The event occurs when NetView receives any message whose first
token matches token. The message can be from any domain.

tok* The event occurs when NetView receives any message whose first
token matches the partial token specified by tok*. For example,
DSI* means the event occurs when NetView receives any message
whose first token begins with DSI (such as DSI4631 or DSI386I).

The event occurs when NetView receives any message or other
output. For example, if you code &CONTROL ALL in the
command list, every line of the command list is echoed on the
panel. These echoes satisfy the * condition, and depending on the
code in the command list, could cause a loop or other undesirable
results. Therefore, use the *=-label condition with caution.

If you specify a token that contains a special character such as a comma,
period, asterisk, or most other nonnumeric and nonalphabetic characters,
use the DOMAIN.TOKEN format. Remember, however, that NetView does
not accept single quotation marks ('), commas (,), or blanks when you
specify a token because these characters are reserved as NetView default
delimiters. If the token contains the ampersand (&) then &CONCAT must
be used to concatenate the ampersand with the rest of the token.

EBigure 22 on page 84 shows examples of coding tokens that contain special

characters:

&WAIT DOMAINI1.*HASP=-MSG1
&WAIT DOMAINI1.=HASP=-MSG1
&X = &CONCAT & HASP
&WAIT DOMAINI.&X=-MSG1

Figure 22. Examples of Coding Tokens with Special Characters

Multiline messages such as multiline write-to-operators (MLWTOs) are
treated as one message. Therefore, only the message identifier of the first
message in a multiline message is available to the &WAIT, and the &WAIT
statement can be satisfied only by that message identifier. Use GETMSIZE,
GETMTYPE, GETMLINE, GETMPRES, and GETMTFLG to access the other
lines of a multiline message. Refer to the these commands in the NetView
online help for more information about multiline messages and an example
of using &WAIT with multiline messages.

84 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Branching

Notes:

1. When using a token event, messages not related to the command issued
by the &WAIT statement can be matched to the event and, depending
on the options on the &WAIT statement, can be suppressed. However,
use caution when coding * or *.* with SUPPRESS when specifying a
domain identifier or token. If the command list is suspended and the
SUPPRESS option is in effect on the &WAIT statement, any messages
the task receives are suppressed before the command list is resumed.

2. Because NetView-NetView tasks (NNTs), PPT, OSTs, and autotasks do
not process any commands or messages queued to the low priority
queue of a task that is running any command (assembler command or
HLL, REXX or NetView command list language command procedure),
only messages that are queued to the high or normal priority queue of
a waiting task are checked for matches to satisfy a wait condition.

3. Normally, messages queued to tasks through assign...copy= processing
can satisfy an outstanding &WAIT. However, a message is not sent to
the waiting task through assign...copy= processing if the message
contains a message automation table entry specifying DISPLAY(N). The
assign...copy= processing requires a displayed message, but
DISPLAY(N) specifies no display, which prevents that processing. The
message is not passed on; therefore, it cannot satisfy the &WAIT
condition.

For more information about message flow, refer to the [Linali NetView foi
2/0S Automation Guidd book.

*ERROR

This event occurs when the command specified on the &WAIT statement
returns a nonzero return code. If you do not code *ERROR, NetView
continues to wait for the messages associated with this command even if
the command ends with an error. If NetView is waiting for a message that
says the command was successful, the operators running this command list
are delayed until someone issues GO or RESET. If *ERROR is satisfied, the
message control variables are set as follows:
&MSGID *ERROR
&MSGORIGIN

Name of domain where the command list is running
&MSGSTR Null
&MSGCNT 0

Note: Messages associated with the command can be received before the
command returns a nonzero return code. If such a message is coded
on an event=-label pair, control is passed to the first statement whose
event has occurred.

For example, if you code the name of the &WAIT command on a
MSGID=-Iabel pair, and you also code an *ERROR=-Iabel pair, NetView
honors the MSGID=-Iabel pair first because that event occurs first.

This event occurs after nn seconds. If no other event occurs, the &WAIT
ends and control passes to the labeled statement. You can code a value
between 1 and 32767 seconds (9 hours, 6 minutes, 7 seconds). If you do not
code *nn and none of the events of the &WAIT are satisfied, &WAIT
continues until the operator enters a GO or RESET command.

*ENDWAIT

This event occurs when the operator or a command list issues a GO

Chapter 5. NetView Command List Language Branching 85

NetView Command List Language Branching

command. If you do not code *ENDWAIT=-label, the GO command
continues processing with the statement following the &WAIT command.

Error Conditions

If an error condition occurs, NetView should be able to go to another part of the
command list and take appropriate action. Consider the types of errors you can

have and plan to handle them by coding *ERROR, *nn, and *ENDWAIT events.

Coding Message=-Label Pairs
The order in which you code MSGID=-Iabel pairs is important. NetView scans the
pairs in the order you code them, from left to right.

For example, assume you code the following statement:
&WAIT IST*=-ALL,IST1231=-SPECIAL

When NetView receives IST123], it goes to the label -ALL, not -SPECIAL. You
should code IST123I before IST*.

You can code as many events as required on one &WAIT control statement up to
255 characters. Remember to use continuation characters if the event pairs take up
more than one line. Code the message and domain identifiers in the order that you
want them processed. NetView scans the list from left to right until a match is
found.

Ending an &WAIT

An &WAIT statement can end in one of the following ways:

* The operator enters the GO command. Processing continues with the next
statement, unless *YENDWAIT is specified on the &WAIT statement. If
*ENDWALIT is specified, processing continues with the statement marked by the
label.

* The operator enters the RESET command. The command list and all of its nested
command lists end.

* Coding *ERROR on the &WAIT statement. If the command specified on the
&WAIT statement ends with an error, the command list continues processing at
the statement marked with the label. If you do not code *ERROR in this
situation, the &WAIT does not end until the operator enters GO or RESET.

* Coding *nn on the &WAIT statement. The command list continues processing at
the statement specified by the label if another event does not occur within nn
seconds.

* Receipt of a message matching an event=-Iabel pair. The command list continues
processing with the statement marked with the label.

Using NetView Commands with &WAIT

When a command list written in the NetView command list language is in a pause
or wait state, operator commands that are entered can be deferred. Whether the
commands are deferred is based on the NetView DEFAULTS, OVERRIDE, and
CMD commands.

The GO, STACK, UNSTACK, and RESET commands affect the processing of
command lists in a wait state as follows:

GO Ends the wait.
If *ENDWAIT is coded, processing continues with the labeled statement.

86 Customization: Using REXX and the NetView Command List Language

STACK

NetView Command List Language Branching

Suspends command list processing and causes any commands that are
deferred to be processed. You can enter any command or command list for
normal processing while a command list is suspended. The &WAIT is not
suspended, and events are still matched as they occur. The command list
using &WAIT does not process messages as they occur, but after the
command list is given control again. The W does not remain in the upper
right corner of the NetView panel. The GO command is rejected until the

command list resumes processing.

UNSTACK

Resumes command list processing. The &WAIT resumes processing events
that were matched while the command list was suspended.

RESET

Ends a command list that is in a wait state, and all command lists related

to it by nesting.

Note: When processing MLWTO messages received in response to an &WAIT
control statement, use the GETMLINE, GETMSIZE, and GETMTYPE
commands. For more information about these commands, and the GO,
STACK, UNSTACK, and RESET commands, refer to the NetView online

help.

Control and Parameter Variables Used with &WAIT

NetView sets the values of the control variables. The following variables are based
on the receipt of a message coded on an &WAIT control statement:

&ACTIONDL
&ACTIONMG
&AREAID
&ATTNID (VSE only)
&AUTOTOKE
&CART
&DESC
&HDRMTYPE
&IFRAUGMT
&IFRAUIND
&IFRAUIN3
&IFRAUI3X
&IFRAUSB2
&IFRAUSC2
&IFRAUSDR
&IFRAUSRB
&IFRAUSRC
&IFRAUTA1
&IFRAUWF1
&JOBNAME
&JOBNUM

&KEY
&LINETYPE
&MCSFLAG
&MSGASID
&MSGAUTH
&MSGCATTR
&MSGCMISC
&MSGCMLVL
&MSGCMSGT
&MSGCNT
&MSGCOJBN
&MSGCPROD
&MSGCSPLX
&MSGCSYID
&MSGDOMFL
&MSGGBGPA
&MSGGDATE
&MSGGFGPA
&MSGGMFLG
&MSGGMID
&MSGGSEQ

&MSGGSYID
&MSGGTIME
&MSGID
&MSGORIGN
&MSGSRCNM
&MSGSTR
&MSGTOKEN
&MSGTSTMP
&MSGTYP
&MVSRTAIN()
&NVDELID
&PARTID (VSE only)
&PRTY
&REPLYID
&ROUTCDE
&SESSID
&SMSGID
&SYSCONID
&SYSID

&l - &31

NetView changes the values of the &1-&31 parameter variables to reflect the text
of the message. Each parameter variable is set to a token of the message. Tokens
are delimited by commas, apostrophes, or blanks. &1 is set to the first token
following the message identifier (the token used by the &MSGID control variable).
&2 is set to the next token to the right of &1, and so on up to a maximum of 31

variables.

Chapter 5. NetView Command List Language Branching 87

NetView Command List Language Branching

For more information, see ['Message Pracessing Information Functions” on pagd

@ and I”MV@—Qppriﬁc Message Pracessing Information” on page 134

The following is an example of how the variables are set when the message
DSIOO8I SPANL NOT ACTIVE from domain DOMOL1 is intercepted by an &WAIT
statement:
&MSGORIGIN
DOMO1
&MSGID DSI008I
&MSGSTR SPAN1 NOT ACTIVE
&MSGCNT 3

&1 SPAN1
&2 NOT

&3 ACTIVE
&4 - &31 NULL
Notes:

1. If NetView receives a multiline message, the control variables and parameter
variables are set according to the first nonblank line of the message. Refer to
the GETM commands in the NetView online help for information about
multiline messages.

2. If &1 — &31 are given values when the command list runs, save the parameter
variables in user variables before invoking the &WAIT control statement. This
procedure lets you use the original values after &WAIT changes them.

3. After issuing an &WAIT control statement, save the values of the control
variables in user variables before issuing another &WAIT control statement.
This procedure lets you use the values after another &WAIT changes them.

4. If you are using &WAIT CONTWAIT, be careful when using the control
variable &MSGID before the &WAIT has ended. If &MSGID is the first
character string on an &WRITE or &BEGWRITE, the output might be
suppressed or cause the command list to loop. If the &WAIT SUPPRESS option
is in effect, an &WRITE or &BEGWRITE with &MSGID as the first character
string of the text matches the MSGID=-label operand of the active &WAIT.
Therefore, the text of the &WRITE or &BEGWRITE is not sent to the operator’s
screen. If an &WAIT CONTINUE statement is encountered after a
MSGID=-Iabel is matched, and there is no other statement to end the command
list or the &WAIT, the command list loops.

Using &WAIT in Nested Command Lists

The command in the &WAIT statement can be a command list. The nested
command list can contain an &WAIT statement, too. You should be aware of the
following considerations when using &WAIT with nested command lists:

* Messages that arrive for the waiting command lists are queued until the nested
command list is finished processing.

* If you specify the same message number on &WAIT statements in both the
waiting and nested command lists, the message satisfies the &WAIT in the
nested command list.

If the nested command list ends before the message satisfies the &WAIT, the
message is queued for the waiting command list. Without the ending of the
&WAIT or the waiting command list, the message queue continues to grow and
NetView can run out of storage.

88 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Branching

Customizing the &WAIT Statement

The previous sections described the simplest form of the &WAIT command, in
which the first message received that satisfies the wait is displayed on the
operator’s terminal and causes the command list to continue processing.

This section describes how to customize the &WAIT statement for more flexibility.

To customize your &WAIT statements, use the following syntax.

&WAIT

DISPLAY ENDWATT
e HEE Il e
L suppress—) L contuarr

-or-

&WAIT

»—8&WAIT CONTINUE ><

Where:

DISPLAY
Indicates that the message the command list is waiting for is to be displayed at
the operator’s terminal upon arrival to NetView. DISPLAY is the default value.

SUPPRESS
Indicates that any messages that satisfy an &WAIT are not displayed, logged,
or automated.

Notes:

1. If neither DISPLAY nor SUPPRESS is specified, then either ENDWAIT or
CONTWAIT must be specified.

2. DISPLAY is the default only if ENDWAIT or CONTWAIT is specified and

SUPPRESS is not specified. See Lable 5 on page 90 for valid option

combinations.

3. The DISPLAY and SUPPRESS options can be changed at any point in a
command list. Once messages are suppressed, you must code another &WAIT
statement with the DISPLAY operand to begin displaying messages again.

4. &WAIT SUPPRESS overrides DISPLAY because the command list has been
given the message and does not issue an echo.

5. When SUPPRESS is in effect, you do not know whether messages are received.
Therefore, all of the messages might not be processed when an operator issues
a GO or RESET command to end an &WAIT.

CONTWAIT
Indicates that the next &WAIT event=-label statement encountered waits for
additional events until the wait is ended. CONTWAIT enables one &WAIT
statement to process more than one event. This operand is useful when you
want to retrieve more than one message from a single command, such as a
LIST command.

ENDWAIT
Sets up processing for the next event=-label pair to be processed. ENDWAIT is
the default value. ENDWAIT indicates that the wait ends after the first event

Chapter 5. NetView Command List Language Branching 89

NetView Command List Language Branching

that satisfies the &WAIT. Although ENDWAIT does not end a wait already in
process, operators can still use the GO command to end the wait. The RESET
command, which ends a wait, also ends the command list.

Notes:

1. If neither ENDWAIT nor CONTWAIT is specified, then either DISPLAY or
SUPPRESS must be specified.

2. ENDWAIT is the default only if DISPLAY or SUPPRESS is specified and
CONTWAIT is not specified. See [Lable 5 on page 9 for valid option

combinations.

3. The ENDWAIT and CONTWAIT options can be changed at any point in a
command list. Once CONTWAIT starts, you must code another &WAIT
statement with the ENDWAIT operand to return to the default value.

CONTINUE
Directs the command list to continue waiting for the next event that satisfies
the original &WAIT statement. CONTINUE is used only when &WAIT
CONTWAIT is specified prior to the &WAIT event=-label. If you want the wait
to continue after event processing is finished, code &WAIT CONTINUE. It is
similar to branching back into the &WAIT statement.

Table 5. &WAIT Customization Options Matrix.

S = Specified operand
. = Default invoked
DISPLAY SUPPRESS ENDWAIT CONTWAIT
S S
S S
S
S
. S
. S
S .
S .
Note:
At least one option must be specified. Defaults are not invoked if no option is specified.

The operands of this format are optional and can be coded in any order. However,
they cannot be coded on the &WAIT event=-label statement. The &WAIT statement
does not put the command list into a wait state. Instead, it indicates how the
command list processes the next &WAIT event=-label control statement.

If you update this statement using SUPPRESS, CONTWAIT, or CONTINUE, the
new settings remain in effect for the rest of the &WAIT statements in the command
list, including an &WAIT currently in process. To reinstate the initial settings, you
must code another &WAIT statement with the appropriate operands. If you
activate a nested command list, the default settings are in effect for that command
list unless an &WAIT statement is coded for the nested command list.

90 Customization: Using REXX and the NetView Command List Language

E

nding &WAIT If CONTWAIT Is in Effect
mgu_pagaﬁﬂ describes ways to end a wait when a command

NetView Command List Language Branching

list is waiting for only one event. When the command list is waiting to match more
than one event, you can end the wait in one of the following ways:

By entering the GO command at the terminal.

If an &WAIT CONTINUE was the last &WAIT statement encountered,
processing continues with the next command list statement following the
&WAIT CONTINUE statement. If the *(ENDWAIT event is coded, processing
continues at the label statement. If no event=-label match occurred, processing
continues with the line following the &WAIT statement.

By coding the GO command in the command list statement that follows an
&WAIT ENDWAIT statement.

If the *YENDWAIT event is coded, processing continues at the label statement. If
no event=-label match occurred, processing continues with the line following the
GO command.

By coding *ERROR as the event on the &WAIT statement.

If the command specified on the &WAIT statement ends with an error, the
command list continues processing at the statement specified with a label. The
&WAIT does not end unless an error occurs. However, if there is an error in the
command list and you do not have *ERROR coded, the wait might not end
without intervention.

By coding *nn on the &WAIT statement.

The command list continues processing at the statement specified with a label if
the event does not occur within nn seconds.

By coding *YENDWAIT on the &WAIT statement.

The command list continues processing at the statement specified with the label
when the operator enters the GO command.

By coding &EXIT following a label.

The command list ends normally.

By entering the RESET command.

The command list, including the command list that initiated it, ends.

Note: Because &WAIT CONTWAIT queues NetView messages, you should also

code &WAIT CONTINUE to receive these queued messages. If you code
&WAIT CONTWAIT with SUPPRESS and end the wait, you might lose
some messages.

Suggestions for Coding &WAIT

For the best performance, use the &WAIT [ENDWAIT | CONTWAIT] options in the
following way:

1.

Set up options for the &WAIT event=-label statement by coding &WAIT with
CONTWAIT, SUPPRESS, or their defaults.

Enter an &WAIT state by using an &WAIT event=-label statement.

* If you specify &WAIT ENDWAIT before the &WAIT event=-label statement, or
if &WAIT ENDWAIT is in effect by default, the first matched event ends the

waiti and command list processing continues. See ‘Ending an &WAIT” orl

* If you specify &WAIT CONTWAIT, the receipt of the first event does not end
the &WAIT unless this event is specified as shown in L

UEnding &WAIT Tf
CQNTWAIT Is in Effect” on page 91l The command list goes to the label

specified for the event and continues processing.

Chapter 5. NetView Command List Language Branching 91

NetView Command List Language Branching

To complete this section of the command list, do one of the following:
— Continue the wait by coding &WAIT CONTINUE.

— Specify that the next event is the last event of this wait by coding &WAIT
ENDWAIT and then &WAIT CONTINUE.

- End the wait by coding the &WAIT ENDWAIT statement and GO
command in the command list.

— End the command list by coding &EXIT.

Sample Using &WAIT
Eigure 23 on page 92 shows the use of &WAIT to wait for one message. The

command list is named ACTONE, and it issues a VTAM command to activate a
logical unit. The command list traps the messages responding to the activate
command, reformats the messages, and writes them to the operator’s screen.

&CONTROL ERR

ACTONE COMMAND LIST

THIS COMMAND LIST ISSUES A VTAM "V NET,ACT" COMMAND, TRAPS ITS
MESSAGES AND REFORMATS THEM.

* k% k% k k ¥ k ¥ ¥ k¥ ¥ k¥ k¥ k * k* k k* Kk *k *k Kk %k *k %k *k *k %k *x *x *x *x

* %k X X X %

IF THERE IS NO INPUT PARAMETER, ASK FOR ONE

&IF &1 = '' &THEN &GOTO -BADIN

* SAVE THE INPUT PARAMETER

&LU = &1

* END THE WAIT WITH THE FIRST MESSAGE AND DO NOT DISPLAY THE

* INPUT MESSAGE ON THE SCREEN

&WAIT ENDWAIT SUPPRESS

* ISSUE WAIT WITH THE COMMAND

&WAIT 'V NET,ACT,ID=&LU',ISTO93I=-REFORM,*ERROR=-FAIL,+
IST105I=-FAIL,*ENDWAIT=-GOIN

-REFORM

* REFORMAT MESSAGE IST093I (SUCCESSFUL) AND WRITE TO THE SCREEN

* &1 IN THE FOLLOWING LINE IS NOT THE ORIGINAL &1

&ACTIV = &l
&WRITE VTAM MESSAGE ISTO93I WAS RECEIVED
-REFORM

&WRITE &ACTIV IS NOW ACTIVE

&GOTO -ENDALL

-FAIL

* REFORMAT MESSAGE IST105I (UNSUCCESSFUL) AND WRITE TO THE SCREEN
&WRITE &LU COULD NOT BE ACTIVATED

&GOTO -ENDALL

-GOIN

* IF "GO" ISSUED, INDICATE THAT MESSAGES HAVE NOT BEEN RECEIVED
&WRITE "GO" INPUT COMMAND LIST ACTONE -- &LU IS NOT ACTIVE NOW
&GOTO -ENDALL

-BADIN

&WRITE RE-CALL COMMAND LIST ACTONE WITH PARAMETER OF LU TO BE ACTIVATED
-ENDALL

&WRITE COMMAND LIST ACTONE COMPLETE

&EXIT

Figure 23. Command List Issuing &WAIT for One Message

The ACTONE command list waits for one of the following messages:

ISTO93I modename ACTIVE
IST1051 modename NODE NOW INACTIVE

Activate the command list by entering ACTONE and operand NODEL. The
operand is the name of the logical unit to be activated. This operand supplies the

92 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Branching

value for parameter variable &1. Receipt of a message indicating success (IST093I)
or failure (IST105I) caused the wait to end because ENDWAIT was specified.
Processing continues at the specified label (-REFORM for IST093I, -FAIL for
IST105I). The awaited messages are not displayed because SUPPRESS was
specified, but any other messages are displayed.

U;Qéon successful activation of NODEL, the message text shown in w

is displayed on the operator’s terminal:

ACTONE NODE1

ISTO971 VARY ACCEPTED

VTAM MESSAGE ISTO93I WAS RECEIVED
NODE1 IS NOW ACTIVE

COMMAND LIST ACTONE COMPLETE

Figure 24. ACTONE NODE1 Message Text

Chapter 5. NetView Command List Language Branching 93

94 Customization: Using REXX and the NetView Command List Language

Chapter 6. NetView Command List Language Global Variables

This chapter describes the use of global variables in the NetView command list
language. Global variables enable values to be defined, referenced, and updated by
different operators. Values are passed to a command list for updates, and the
updated values can then be referenced by other command lists. For example,
command list CLISTA can assign a value to a task global variable, &VARI, and
then activate its nested command list, CLISTB. The nested command list, CLISTB,
can check the value assigned to &VAR1 by CLISTA, update the value, and return
control to CLISTA. The original command list, CLISTA, now has access to the
value assigned to &VARI1 by CLISTB.

The two types of global variables are task and common.

Task global variables can be defined, referenced, and updated by any command list
running under a particular task. Task global variables can only be referenced by
command lists running under the task in which the variable was defined.

Common global variables enable definition of user variables that can be referenced
by command lists running under any NetView task that supports command list
execution.

NetView provides two methods to access global variables:

* You can use &TGLOBAL, &CGLOBAL, and GLOBALV DEF to provide direct
reference to global variables.

* You can use the GLOBALV GET and PUT commands to copy and replace global
variable values.

Refer to the NetView online help for more information about the GLOBALV
command.

Notes:

1. Use caution when mixing &TGLOBAL, &CGLOBAL, or GLOBALV DEF with
the GLOBALV GET or PUT command. Using both methods to access global
variables of the same name within a single NetView command list language
command list is not recommended.

A direct set affects how subsequent copying and replacing are performed.
GLOBALV GETs and PUTs copy the value from one dictionary to the other.
&TGLOBAL and &CGLOBAL and GLOBALV DEFT or DEFC let you reference
the global variable and set it directly from that statement forward in the
command list. While both commands provide function, it is recommended that
you use one or the other within a single NetView command list.

2. When you create global variables, the variable can be 1 to 11 characters in
length. A-Z, 0-9, #, @, and $ are the only valid characters.

3. The value of the global variable can be 255 characters long. The maximum
number of double-byte characters between the shift-out (X'0E') and shift-in
(X'0F") control characters is 126.

4. You can give global variables a numerical value between -2147483647 and
2147483647. Numeric values outside these limits are treated as character strings.

95

NetView Command List Language Global Variables

Using &TGLOBAL and &CGLOBAL

You can specify more than one global variable using the &TGLOBAL and
&CGLOBAL control statements. The variable names must be delimited by a
comma or blank.

On the definition statement, do not code an & with the global variable name
except where you want variable substitution performed. Substitution occurs for
any variable with an &. Whenever you use the global variables (except when
defining them), you must append an & to the variable name, just as you would for
user variables.

You need two &s when referencing a global variable indirectly. See m
i i ist” and [Vari i
Qrder” on page 47 for more information about indirect referencing of variables.

&TGLOBAL

A task global variable can be referenced only by command lists that run under the
same task.

Use the following control statement to define any variable as a task global variable.
The syntax of the &TGLOBAL control statement follows:

&TGLOBAL

»>—&TGLOBAL—— variable

v
A

This statement defines the listed variables as task global variables. The value of
any variable defined by this statement is whatever was most recently assigned to it
by another command list running under the same task. If no value was assigned,
the value is undefined or null, and any attempt to retrieve the value causes a null
value to be returned. If you do not use the &TGLOBAL statement in each
command list before a variable is referenced, that variable defaults to a local user
variable.

An example using the &TGLOBAL control statement is as follows:

&NAME = JOHN
&TGLOBAL ABC,&NAME

The first line consists of a local user variable set to the value JOHN. The second
line defines two task global variables as follows:

* ABC becomes task global variable &ABC. The value of &ABC is null because a
value was not defined.

* The value of &JOHN is null because a value has not been defined. This is an
example of indirect referencing of variables.

7

See L
for information about the interaction of task global variables with user variables
and common global variables.

96 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Global Variables

If you specify more than one variable name on the &TGLOBAL statement, the
variable names must be delimited by commas or blanks.

The following are suggestions for using task global variables:

¢ The PROFILE IC can set task global variables to indicate a message suppression
level or message compression that is different for different types of operators.
Command lists driven by various messages can test these variables to determine
what information a particular operator needs.

* Any command list can set up and initialize any number of parameters for
another command list running under the same operator task. This improves
nested command list communication because task global variables can return
information from a nested command list.

&CGLOBAL

Use the &CGLOBAL control statement to define any variable as a common global
variable. The syntax of the &CGLOBAL control statement follows:

&CGLOBAL

»»>—8CGLOBAL—Y— variable ><

This statement defines the listed variables as common global variables. The value
of any variable defined by this statement is whatever was most recently assigned
to it by any other command list. If no value was assigned, the value is undefined
or null, and any attempt to retrieve the value causes a null value to be returned. If
you do not use the &CGLOBAL statement in each command list before a variable
is referenced, that variable defaults to a local user variable.

An example using the &CGLOBAL control statement follows:

&NAME = JOHN
&CGLOBAL ABC, &NAME

The first line consists of a local user variable set to the value JOHN. The second
line defines two common global variables:

* ABC becomes common global variable &ABC. The value of &ABC is null
because a value is not defined.

* &NAME becomes common global variable &JOHN. Because &NAME has a
value of JOHN, the &NAME on this line gets substituted as JOHN. This defines
the common global variable &JOHN. The value of &JOHN is null because a
value is not defined.

Note: If you have more than one command list running under different tasks
accessing the same global variable, the last value that the variable is set to is
the value that is set by any command list changing the variable.

For example, a command list accesses a common global variable and then before
that command list updates the variable, another command list running under a
different task accesses the variable. If both command lists update the variable, the
variable assumes the value given to it by the command list that updates it last.

Chapter 6. NetView Command List Language Global Variables 97

NetView Command List Language Global Variables

To prevent a common global variable from being updated by different command
lists at the same time, you can have all command lists that update the variable run
under the same task.

See a __--7 ALhen 7-:: SLOBA and & SLOBA a a
for information about the interaction of common global variables with user

variables and task global variables.

If you specify more than one variable name on the &CGLOBAL statement, the
variable names must be delimited by commas or blanks.

You can use the NetView-supplied command lists UPDCGLOB and SETCGLOB to
update and set common global variables. Refer to the NetView online help for
information.

You can use common global variables to maintain accurate information about the
network regardless of operators logging on and off.

You can use common global variables to keep cumulative information from
unsolicited access method messages. For example, you can use notification of a
failing resource to recover the resource. With a global variable, you can maintain a
count of the number of retries to prevent a loop.

Updating Task Global Variables Using & TGLOBAL

The following are two examples of command lists. The first command list, CLIST1,
calls the nested command list UPDT1. The CLIST1 and UPDT1 command lists
show how to define, reference, and update a task global variable.

* THIS STATEMENT DEFINES SYSVAR1 AS A TASK GLOBAL VARIABLE.
&TGLOBAL SYSVAR1

* THIS ASSIGNMENT STATEMENT GIVES THE TASK GLOBAL

* VARIABLE, "SYSVAR1", A VALUE OF 5.
&SYSVARL = 5

* THIS STATEMENT CALLS A NESTED COMMAND LIST NAMED UPDTI.

* SYSVARL IS A PARAMETER THAT IS PASSED TO COMMAND LIST UPDT1.
UPDT1 SYSVARL

* THIS STATEMENT WILL WRITE VALUE OF SYSVARI.
&WRITE SYSVAR1 = &SYSVARI
&EXIT

Figure 25. CLIST1 Command List to Define, Update, and Reference Task Global Variables

CLIST1 in Eigure 25 on page 98 defines a task global variable, SYSVARI1. The value
of the task global variable SYSVAR1 returns a null value until a value is assigned

using the hassignment statement, &SYSVARI = 5. CLIST1 activates a nested
command list named UPDT1.

98 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Global Variables

* THIS STATEMENT DEFINES &1 AS A TASK GLOBAL VARIABLE.
&1 IS SET TO THE VALUE OF THE POSITIONAL PARAMETER
SYSVARL, WHICH ON THE FIRST PASS IN THIS CASE IS 5.

&TGLOBAL &1

THIS STATEMENT TESTS FOR A NULL VALUE AND INITIALIZES
THE TASK GLOBAL VARIABLE PASSED AS &1 TO A VALUE OF
0 IF THE VALUE RETURNED WAS NULL.

THE TASK GLOBAL VARIABLE PASSED AS &1 IS REFERENCED
AS &&1. THE VALUE OF &&1 IS EQUAL TO THE VALUE OF SYSVARL,
WHICH WAS PASSED TO COMMAND LIST UPDATE FROM CLISTI.

&IF &&1 EQ '' &THEN &&1 =0

THIS STATEMENT UPDATES THE TASK GLOBAL VARIABLE, &&1,
BY AN INCREMENT OF 1.
THIS UPDATED VALUE OF &&1 PASSED BACK TO CLIST1
AS TASK VARIABLE &SYSVARI.

&1 = &&1 + 1

&EXIT

* ok

E S I

* ok k%

Figure 26. UPDT1 Command List to Update Task Global Variables

UPDT!1 in Eigure 26 on page 99 redefines the value stored in task global variable
&1. Task global variable &1 gets its original value from SYSVARI1, which was the
first (and only) variable passed to UPDT1 when it was called by CLIST1. Because
the NetView program scans variables from right to left, the &1 part of &&1 is
evaluated first, and the value of &1 is equal to the value of SYSVARI. The value of
the task global variable is referenced as &SYSVARI. The initial value of &SYSVARI1
is 5, and then &SYSVARLI is incremented by 1 using the &&1 = &&1 + 1 statement.
(&SYSVAR1 = &SYSVARI + 1 after it is evaluated by the NetView program.)

The updated value is available as a task global variable &SYSVARI1 in CLIST1. The
&WRITE SYSVARI = &SYSVARI statement displays the updated value of the
&SYSVARI task global variable.

Extent of Variables When Using & TGLOBAL and & CGLOBAL

If you define a global variable with the same name as a local variable, the value of
the local variable is lost. The global variable does not receive the value of the local
variable. The value of the global variable is null until a value is assigned.

If a command list defines a common global variable after the task global variable is
defined and has the same name as a task global variable, the value of the task
global variable remains unchanged. However, this command list can no longer
access the value of the task global variable unless you redefine the variable using
&TGLOBAL.

If a command list defines a task global variable after the common global variable is
defined with the same name as a common global variable, the value of the
common global variable remains unchanged. However, this command list can no
longer access the value of the common global variable unless you redefine the
variable using &CGLOBAL.

GLOBVARI, Figure 27 on page 104, illustrates the extent of user variables, task

global variables, and common global variables within individual command lists
and command lists running under different tasks. This command list gives you
examples of the following variable manipulations:

* Assigning values to user variables

* Defining task global variables

* Defining common global variables

Chapter 6. NetView Command List Language Global Variables 99

NetView Command List Language Global Variables

* Setting values for common global variables
¢ Changing common global to task global variables.

In the following example, the values of the variables are shown in parentheses.

GLOBVAR1 Example

The following is an example of a command list containing global variables:

&CONTROL ERR
*x% CLIST NAME: GLOBVARL
x%% ASSIGN VALUES TO SEVERAL USER VARIABLES AND PRINT THEIR VALUES

B R R R Rk R Rk R kR R R R R R R R R R Rk

&0PER = OPER1

&VTLV = VT33
&DOM1 = CNM01002
CLEAR

&BEGWRITE SUB -ENDLOCAL
FROM GLOBVAR1: AFTER LOCAL VARIABLES ASSIGNED

VARIABLE VARIABLE VARIABLE
TYPE NAME VALUE
LOCAL OPER &0PER (OPER1)
LOCAL VTLV &VTLV (VT33)
LOCAL DOM1 &DOM1 (CNMO1002)
-ENDLOCAL

*
%% DEFINE TASK GLOBAL VARIABLES
khkkhkhkhkhkhkhkhkhkhkhkhkkhhhkhkhhhkhkhhkhkhkhkhkhkikx
&TGLOBAL OPER VTLV CNT
&BEGWRITE SUB -ENDTGL
FROM GLOBVAR1: AFTER TGLOBAL VARIABLES DEFINED

VARIABLE VARIABLE VARIABLE
TYPE NAME VALUE
LOCAL DOM1 &DOM1 (CNMO1002)
TASK OPER &0PER (NULL)
TASK VTLV &VTLV (NULL)
TASK CNT &CNT (NULL)

NOTE THAT THE VALUES ASSIGNED TO OPER AND VTLV
HAVE BEEN LOST AS THEY ARE NO LONGER LOCAL
VARIABLES AND THE TASK GLOBAL VARIABLES HAVE NOT
BEEN ASSIGNED YET.

-ENDTG1

Figure 27. GLOBVAR1 Example Showing Extent of Global Variables (Part 1 of 3)

100 Customization: Using REXX and the NetView Command List Language

NetView Command List Language Global Variables
xx% ASSIGN VALUES TO THE TASK GLOBAL VARIABLES

R e T

&0PER = OPER2
&VTLV = VT33
&NT =3

&BEGWRITE SUB -ENDTG2
FROM GLOBVAR1: AFTER VALUES ASSIGNED TO TGLOBAL VARIABLES

VARIABLE VARIABLE VARIABLE
TYPE NAME VALUE
LOCAL DOM1 &DOM1 (CNMO1002)
TASK OPER &0PER (OPER2)
TASK VTLV &VTLV (VT33)
TASK CNT &NT (3)

-ENDTG2

*
#%+ DEFINE COMMON GLOBAL VARIABLES
dhkkhkkkhhkhhhhhhhhhhhhhhhkhhhhkhkhdhkhkhdx*k
&CGLOBAL OPER VTLV VAL
&BEGWRITE SUB -ENDTG3
FROM GLOBVAR1: AFTER CGLOBAL VARIABLES DEFINED

VARIABLE VARIABLE VARIABLE
TYPE NAME VALUE
LOCAL DOM1 &DOM1 (CNMO1002)
TASK CNT &CNT (3)
COMMON OPER &0PER (NULL)
COMMON VTLV &VTLV (NULL)
COMMON VAL &VAL (NULL)

NOTE THAT THE VALUES ASSIGNED TO TASK GLOBAL

VARIABLES OPER AND VTLV HAVE BEEN REPLACED BY

COMMON GLOBAL VARIABLES OPER AND VTLV. THESE ARE

NULL AS NO VALUE HAS BEEN ASSIGNED TO THEM YET.
-ENDTG3

Figure 27. GLOBVAR1 Example Showing Extent of Global Variables (Part 2 of 3)

Chapter 6. NetView Command List Language Global Variables 101

NetView Command List Language Global Variables

*

x% ASSIGN VALUES TO COMMON GLOBAL VARIABLES

EE R R R R R R R R R R R R R R R

&0PER = OPER3
&VTLV = VT32
&VAL = HEX

&BEGWRITE SUB -ENDTG4
FROM GLOBVAR1: AFTER CGLOBAL VARIABLES ASSIGNED

VARIABLE VARIABLE VARIABLE
TYPE NAME VALUE
LOCAL DOM1 &DOM1 (CNMO1002)
TASK CNT &CNT (3)
COMMON OPER %0PER (OPER3)
COMMON VTLV QVTLV (VT32)
COMMON VAL &AL (HEX)

-ENDTG3
#%% CHANGE ONE COMMON GLOBAL VARIABLE BACK TO A TASK GLOBAL VARIABLE
dhkhkhkhkkhhkhkhkhhkhhhhhhhhhhhhhddhhddhdhdhdhdhdhdhhhhhhhhhhhhhhhhhdrhhkhhhhhhhhdxkx
&TGLOBAL OPER
&BEGWRITE SUB -ENDTG5
FROM GLOBVARL: AFTER FINAL TGLOBAL STATEMENT

VARIABLE VARIABLE VARIABLE
TYPE NAME VALUE
LOCAL DOM1 &DOM1 (CNMO1002)
TASK CNT &CNT (3)
TASK OPER %0PER (OPER2)
COMMON VTLV QVTLV (VT32)
COMMON VAL &VAL (HEX)

NOTE THAT THE OPER NOW HAS THE VALUE OF THE TASK

GLOBAL VARIABLE OPER AGAIN AS THE MOST RECENT

DECLARATION STATEMENT DEFINED IT AS TASK GLOBAL.
-ENDTG5

Figure 27. GLOBVAR1 Example Showing Extent of Global Variables (Part 3 of 3)

GLOBALV Command

The GLOBALV command enables you to define, put, and get global variables in
NetView command list language command lists. The GLOBALV command also
enables you to save global variables in a VSAM database. You can restore saved
global variables if NetView is stopped and restarted, or erase (purge) saved global
variables from external storage. Global variables enable multiple command
procedures, regardless of their language, to share a common set of values.

Refer to the NetView online help for more information on the GLOBALV
command.

102 Customization: Using REXX and the NetView Command List Language

Part 4. Advanced Command List Topics

Chapter 7. Automation Resource Management
Defining NetView Automation Table Command
Lists
Routing Messages from Automat1on Table—Drlven
Command Lists .
Implementing NetView Automatlon

Suppressing Messages .

Determining What Task Controls a Command

List.

Testing Automatlon Command Llsts

Verifying NetView Automation Table Entnes

Keeping a Record of Automation Command

Lists Executed . .

Testing Automation Command Llst Executlon
Recovering from Looping Command Lists.
Considering Operator Interaction.
Common Automation Problems .

Chapter 8. Common Operations Services
Commands. .
Common Operations Serv1ce . .
Common Operations Services Return Codes .
LINKDATA and LINKTEST Results .
LINKDATA and LINKTEST Variables
LINKTEST Additional Variables
LINKPD Results
RUNCMD Results . .
Using RUNCMD in a Plpehne

105

. 105

. 105
. 105
. 106

. 106
. 106

106

. 106

107

. 107
. 107
. 107

. 109
. 109
. 110
. 110
. 110
. 111
. 111
. 112
. 112

103

104 Customization: Using REXX and the NetView Command List Language

Chapter 7. Automation Resource Management

This chapter is intended to help you perform NetView automation using command
lists.

Defining NetView Automation Table Command Lists

The automation table identifies which messages or MSUs are automated. It consists
of statements filed in a member of DSIPARM. The statements identify which
messages or MSUs are to be automated based upon many different possible
criteria. This criteria includes:

* Message number

* Specific MSU field values

* Origin of message or MSU.

As a result the automation table can cause various displaying, logging, or routing
to occur. Commands or command lists can be invoked to analyze the message or
MSU further before any action is taken.

To define an automation table, code automation statements in DSIPARM, then
issue the AUTOTBL command using the name of that specific NetView automation
table. You can enter the AUTOTBL command at a terminal, from a command list,
or in an initialization command list at system startup.

You can parse important variable information in the text of a message into
variables in the IF portion of an IF-THEN automation statement. You can use the
variables as parameters of the command list you call as an action in the THEN
portion of the statement. Using the variables this way enables you to ignore certain
characters of the message text (such as commas and apostrophes) instead of
treating them as command syntax elements.

For a complete definition of the syntax of the NetView automation statement, refer
to the [Cinali NetView for z/QS Automation Guidd book. For the syntax of the
AUTOTBL command, refer to the NetView online help.

Routing Messages from Automation-Table-Driven Command Lists

When command lists are invoked from the NetView automation table, the decision
on where to route a message cannot always be made from within the automation
table. For example, if you need to check the message text of a line other than the
first line in a multiline write-to-operator (MLWTO) message before you decide
where to route the message, you can do so in a command list, but not in the
automation table. To route a message that causes a command list to be driven, use
the MSGROUTE command from within automation-table-driven command lists to
route the message to operators or groups of operators.

For more information about the MSGROUTE command, refer to the NetView
online help.

Implementing NetView Automation

This section provides suggestions to help you implement NetView automation. For
more information, refer to the [Cinali NetView fnr /0S8 Automation Guidd book.

105

Advanced Topics

Suppressing Messages

You can suppress some messages so that the operator never receives them. To
suppress messages with NetView automation, make an entry in the NetView
automation member. Assume, for example, that you do not want the message
IST4001 TERMINATION IN PROGRESS FOR APPLID applnm to be displayed. The
following example shows the NetView automation statement:

IF MSGID='IST400I' THEN DISPLAY(N);

Determining What Task Controls a Command List

In REXX, if you are not sure of the type of task under which a command list will
run, have the command list check the TASK() function in the beginning of the
command list. You can then use conditional processing to make the command list
flexible enough to run differently under different tasks. Refer to the REXX library
for more information about conditional processing.

In NetView command list language, if you are not sure of the type of task under

which a command list will run, have the command list check the &TASK control

variable in the beginning of the command list. You can then use conditional

processing to make the command list flexible enough to run differently under

different tasks. See [i i ing”
for more information about conditional processing.

Testing Automation Command Lists

There are several ways to test automation command lists to ensure that the
command list is called correctly from the NetView automation table and executes
correctly after being called.

Verifying NetView Automation Table Entries

You can verify that an automation command list is driven correctly by the NetView
automation table by issuing the message from an operator station or command list.
From a NetView operator console, enter the message ID and message text from the
command line.

From a REXX command list, use the SAY instruction with the message ID and
message text in quotes.

From NetView command list language, use the &WRITE statement with the
message ID and message text in quotes.

If the message you create matches an entry in the NetView automation table, the
table executes any actions specified for that entry. Through this process, you can
test NetView automation table entries. This method works only if limited
information, such as the message identifier and message text, is checked in the
NetView automation table entry.

By using the AUTOCNT command with the STATS=DETAIL option, detailed
information, including the number of automated comparisons and matches, are
shown for each automation table statement. When your created message is
automated, the count of the number of comparisons and matches is incremented if
the message matches the intended automation statement.

Keeping a Record of Automation Command Lists Executed
Command lists can use the NetView MSG command to place information in the
network log. This transfer of information might be necessary because not all
command lists are executed directly from the NetView automation table. Having

106 Customization: Using REXX and the NetView Command List Language

Advanced Topics

automation command lists send a message to the network log using the NetView
MSG command enables you to keep track of which automation command lists are
driven by which tasks and at what time.

For example, each automation command list could send a message to the log
containing the name of the command list and the parameters passed upon entry.
The task from which the message is issued and the time of the logged message are
automatically saved in the log. You can remove these MSG commands from the
automation command lists when testing is successfully completed.

Testing Automation Command List Execution

To test REXX automation command lists by tracing their execution, use the TRACE
command. If your command list is being executed by a NetView automated
operator (autotask), the result of SAY or TRACE is not visible unless the autotask
is assigned an MVS console ID. The results are visible in the network log
regardless of whether the autotask is assigned to a console.

To test NetView command list language automation command lists by tracing their
execution, use the &CONTROL statement. If your command list is being executed
by a NetView automated operator (autotask), the results of &WRITE, &BEGWRITE,
or &CONTROL are not visible unless the autotask is assigned an MVS console ID.
The results are visible in the network log regardless of whether the autotask is
assigned to a console. Refer to the AUTOTASK command in the NetView online
help for more information about assigning an autotask to an MVS console ID.

Recovering from Looping Command Lists

If you write a command list that is driven by a message issued by a command in
the same command list, looping can occur. If a looping message-driven REXX
command list contains an instruction which causes a wait, issue the STACK
command from the operator’s console to recover. Then turn off NetView
automation with the command AUTOTBL OFF. If there is no instruction which
causes a wait, you can issue the AUTOTBL OFF command from your terminal.
Once the looping stops, you can revise the command list.

The REXX wait command is WAIT.

The NetView command list language wait statements are &WAIT and &PAUSE.

Considering Operator Interaction

Command lists used for automation of unsolicited messages should not ask the
operator for data.

For example, a REXX command list using a WAIT instruction requiring a GO
command is not appropriate.

For example, in NetView command list language, using either &PAUSE or &WAIT
statement and requiring a GO command is not appropriate.

Consider how messages from a command list affect operator requests, and try to
make automation command lists interfere as little as possible, because automation
runs at the same time operators enter requests.

Common Automation Problems

Because NetView automation is invoked after the command facility exit routines
(for example, DSIEX02A, DSIEX06, and DSIEX11) are called, changes made to

Chapter 7. Automation Resource Management 107

Advanced Topics

messages in these routines affect NetView automation. For example, if a message is
deleted by DSIEX02A, NetView does not invoke automation for that message. If a
message is assigned to SYSOP or LOG as the primary receiver, NetView does not
invoke automation for that message. Because NetView automation does not occur
in the preceding instances, the DISPLAY keyword in the NetView automation
member has no effect.

If the MVS message processing facility is used to suppress a message with
AUTO=YES coded and this message is used to drive a command list, when the
command list is driven and a WTO is issued, the WTO is also suppressed.

For REXX, you must change the setting of the MCSFLAG variable for the WTO to
be displayed.

For Command List, you must change the setting of the &MCSFLAG control
variable for the WTO to be displayed.

Refer to the PARSEL2R command in the NetView online help for an example of
how to change a function or control variable.

If a multiline write-to-operator (MLWTO) message is used to drive a command list
and a WTO is issued from the command list, the WTO might or might not be
displayed, depending on the setting of the MLWTO line type variable. If the
setting of WTO is a single-line message, change the setting to a blank.

The REXX MLWTO line type variable is LINETYPE.

The NetView command list language MLWTO line type variable is &LINETYPE.

108 Customization: Using REXX and the NetView Command List Language

Chapter 8. Common Operations Services Commands

This chapter describes how to use the common operations services (COS)
commands.

Common Operations Service

The common operations services is a set of commands that supports and enhances
the NetView program’s control of common operations, for example, NetView /PC.
A COS application manages nonsystem network architecture devices, such as
front-end line switches and multiplexers. You can send commands to the COS
application to do problem determination for these devices.

For detailed information on the vector formats used by COS, refer to NetView/PC:
Application Programming.

Four NetView COS commands are used with NetView/PC for problem
determination:

LINKTEST
Requests that the COS test a given link or link segment

LINKDATA
Requests that the COS return device data for a given link or link segment

LINKPD
Requests problem determination analysis from the COS on a given link or
link segment

RUNCMD
Sends COS application commands to the COS applications from NetView

Refer to the NetView online help for the syntax of the LINKTEST, LINKDATA,
LINKPD, and RUNCMD commands.

The COS commands are long-running commands that suspend the command list
when they are executed. The command list resumes when the COS command is
complete. While the command list is suspended, no other commands waiting on
the low-priority queue of the task executing the command list are executed until
the command list completes. This ensures that commands on the low-priority
queue can be executed in order.

You cannot use the NetView command list language &WAIT control statement or
the REXX TRAP and WAIT functions with the COS commands. Use automation
table-driven command lists to trap messages generated from the COS commands,
with the exception of:

e LINKPD messages DSI5331, DSI5341, DSI5351, DSI5361, and DSI5S82I. These five
messages are set to values you can use in the form of control and parameter

variables. See ELINKPD Results” on page 111l for more information about

LINKPD results.
* Responses to RUNCMD with the CLISTVAR keyword. CLISTVAR causes the

responses to be stored in variables. See FRIINCMD Results” on page 119 for

more information about RUNCMD results.

109

Advanced Topics

Common Operations Services Return Codes

After the command is completed, the RC for command lists written in REXX, or
&RETCODE for command lists written in the NetView command list language,
contains one of the following values:

Code Description
0 The command succeeded.

4 The command failed, CLISTVAR was specified with RUNCMD but no
response was returned, or the task is not authorized to issue the command.

16 The command was canceled by the CANCMD.
24 Some command list data was truncated.

28 The COS application returned more than 132 responses for the RUNCMD
with the CLISTVAR keyword.

32 The COS application did not respond within the amount of time specified
by the COS command timeout value in the NetView constants module.

LINKDATA and LINKTEST Results

You can use LINKDATA and LINKTEST in command lists to manage COS, for
example, NetView /PC. Refer to the NetView online help for the formats of these
commands.

Use the variable name without the ampersand for REXX command lists and the
variable name with the ampersand for NetView command list language command
lists.

Note: The path number is 01 for LINKTEST and LINKDATA.

LINKDATA and LINKTEST Variables

You can use the following LINKDATA and LINKTEST variable names in command
lists:

DSIPATHCNT or &DSIPATHCNT
Specifies the number of paths returned. It is always 01 for LINK
commands. The path count is the origin of the value of pp in the following
variable names.

DSIppRC or &DSIppRC
Specifies the number of resources for path pp. The resource count is the
origin of the value of rr in the following variable names.

DSIpprrEC or &DSIpprrEC
Specifies the number of entries for resource rr on path pp. The entry count
is the origin of the value of ee in the following variable names.

DSIpprrRN or &DSIpprrRN
Specifies the name of the resource rr on path pp.

DSIpprrRT or &DSIpprrRT
Specifies the type of the resource rr on path pp.

DSIpprreeDN or &DSIpprreeDN
Specifies the name of the data item ee for resource rr on path pp.

110 Customization: Using REXX and the NetView Command List Language

Advanced Topics

DSIpprreeDT or &DSIpprreeDT
Specifies the type of data item ee for resource rr on path pp. Possible values
are:
» BIT STRING
* CHARACTER
+ DECIMAL
* HEXADECIMAL

DSIpprreeDV or &DSIpprreeDV
Specifies the value of data item ee for resource rr on path pp.

The italicized letters in the variable names are replaced with the following values:
pp Path number (01)

" Resource number (01-99)

ee Entry number (01-99)

LINKTEST Additional Variables
In addition, LINKTEST uses the following variables:

DSIREQUEST or &DSIREQUEST
Specifies the number of tests requested.

DSIACTUAL or &DSIACTUAL
Specifies the actual number of tests executed.

DSITESTTYPE or &DSITESTTYPE
Indicates the type of test data reported. Possible values are:
¢ BACKGROUND
* REQUESTED

DSIRESULT or &DSIRESULT
Indication of the overall results of the test execution. Possible values are:
* PASSED
e FAILED
* INDETERMINATE

LINKPD Results

Results from the LINKPD command are returned in messages that you can use in
a command list to automate the recovery of resources controlled by a COS, for
example, NetView /PC.

LINK results can be accessed by the MSGCNT(), MSGID(), MSGORIGN(),
MSGSTR(), MSGTYP(), and MSGVAR(1) through MSGVAR(31) functions.

For more information about the REXX functlons MSGORIGN() MSGID()
MSGCNT() MSGSTR(), and MSGTYP(), see

Por more information about MSGVAR(1) through
MSGVAR(31), see L z 3

LINKPD results can be accessed by the &MSGCNT, &MSGID, &MSGORIGIN,
&MSGSTR, &MSGTYP control variables, and the parameter variables &1-&31.

For more information about the NetView command list language control variables
&MSGCNT &MSGID &MSGORIGIN &MSGSTR, and &MSGTYP see

” . For more information about
parameter variables used in command lists written in the NetView command list

language, see ‘Parameter Variables” on page 48,

Chapter 8. Common Operations Services Commands 111

Advanced Topics

RUNCMD Results

If you use RUNCMD without the CLISTVAR keyword, responses from the COS
application that performed the RUNCMD are sent to the network operator’s

terminal, and a return code is set. See ECommon Qperations Services Return

” for a description of the return codes.

In REXX, the return code is returned in the RC variable.

In NetView command list language, the return code is returned in the &RETCODE
variable.

If you use RUNCMD with the CLISTVAR keyword, the command results in the
following:

* A return code is set (RC or &RETCODE); see !‘Common Qperations Services
Return Codes” on page 110 for a description of the return codes.

* If the command completes with a return code of 0, 24, or 28, the following
variables are set.

Use the variable name without the ampersand for REXX command lists.

Use the variable name with the ampersand for NetView command list language
command lists.

DSIRUNCNT or &DSIRUNCNT
Contains the number of responses returned from the COS application.
The variable has a value in the range of 001-998.

DSIRUNxxx or &DSIRUNxxx
Contains the different responses from the COS application. The
responses are numbered from 001-998.

Note: The responses from the COS must be character data and cannot be longer
than 255 characters.

If you use RUNCMD with CLISTVAR=YES in a PIPE command, you receive
message BNHO074I. This occurs even if the PIPE command is issued from a
NetView command list. You must use CLISTVAR=NO (the default) in the PIPE
command.

Using RUNCMD in a Pipeline

An alternative to using CLISTVAR=YES is to execute your RUNCMDs in a
pipeline. The advantages of using pipelines are:

* You can run multiple invocations of RUNCMD in parallel.

* You have direct control over the timeout value.

* You can filter the data in the pipeline before setting any variables.

* You can choose the names of variables.

REXX-style stem names can be used.

For example, if you used the following segment of REXX code to set up commands
for service points:

RCMD.1 = 'RUNCMD SP=NT000001,APPL=APPLNAME,QUERY ABC'
RCMD.2 = 'RUNCMD SP=NTO00002,APPL=APPLNAME,QUERY ABC'
= 'RUNCMD SP=NT000003,APPL=APPLNAME,QUERY ABC'

RCMD. 3

RCMD.100 = 'RUNCMD SP=NT000100,APPL=APPLNAME,QUERY ABC'
RCMD.O = 100

112 Customization: Using REXX and the NetView Command List Language

Advanced Topics

You can then use the following command to issue all 100 commands as fast as the
requests can be scheduled, without waiting for results. NetView then waits up to
120 seconds (between messages) for results and places the messages in stem
RESULT.

"PIPE STEM RCMD. | NETVIEW | CORRWAIT 120 | STEM RESULT.'

Notice that this command does not wait 120 seconds after the last result (assuming
all 100 commands have completed). NetView counts the commands executed and
notes when the last response to each command has arrived. The results in stem
RESULT. are not necessarily in the same order as the commands in stem RCMD.
because some service points will respond faster than others. The number of lines
stored in RESULT. will be found in RESULT.0.

For more information about using NetView Pipelines, refer to Lizali NetView foi
b/QS Custamization: ITciwg Pippcl

Chapter 8. Common Operations Services Commands 113

114 Customization: Using REXX and the NetView Command List Language

Part 5. Commands, Functions, and Variables

Chapter 9. REXX Functions Provided by
NetView . Lo
Translation Functlons
Command List Information.
Cross-Domain Information Functlons
Data Set Information Functions
Global Variable Information Functions .
Message Processing Information Functions
MVS-Specific Message Processing Information
ROUTCDE Examples .
REXX Management Services Unlts (MSU)
Information Functions
Hardware Monitor (HMxxxxxx) Examples
HMASPRID .
HMBLKACT
HMCPLINK. .
HMEPNAU, HMEPNET and HMFWDSNA
HMEPNETV
HMEVTYPE.
HMFWDED .
HMGENCAU
HMONMSU.
HMORIGIN .
HMSECREC.
HMSPECAU
HMUSRDAT
MSUSEG Syntax and Examples
Syntax. .o .
Examples. .
Operator Information Functlons .
Session Information Functions. .
REXX Environment Information Functlons
Terminal Information Functions
Time and Date .
Nulls and Blanks Strlppmg

. 117
. 118
. 120
. 125
. 126
. 128
. 128

135

. 142

. 143
. 152
. 152
. 153
. 153

153

. 154
. 154
. 154
. 154
. 155
. 155
. 155
. 155
. 156
. 156
. 156
. 157
. 158
. 158
. 163
. 163
. 164
. 164

115

116 Customization: Using REXX and the NetView Command List Language

Chapter 9. REXX Functions Provided by NetView

The NetView program provides a number of REXX functions for use only in
NetView REXX command lists and Data REXX files. These functions are provided
as part of the NetView program so that command lists and Data REXX files written
in REXX can perform specific NetView activities. Because these functions are
provided by NetView and are not standard REXX functions, you can use them
only in command lists and Data REXX files that execute in a NetView
environment. These functions do not execute in any REXX execs that are run in
non-NetView environments.

You can improve the performance of your REXX command list by limiting the use
of REXX functions provided by NetView. If the same function, provided by
NetView, is used several times in the command list without a change in value, use
the function once to set a local variable to the function’s returned value. You can
then use the local variable in place of the function. If the value returned by the
function might change during execution of the command list, you will need to use
the function each time (instead of the local variable) to access its current value.

The functions provided by the NetView program return values based on system
information. To use a function, you must place the function name in the REXX
command list at the location where you want the information to be accessed.
When the command list runs, NetView returns the current value of the function’s
related system information.

The functions let you obtain information about the operating environment, test
conditions in a command list, and take actions based on the results.

Note: For more information about REXX syntax rules and other REXX functions,
refer to the REXX library.

- X A .ll.-.l. R XX and Ne 'A OMMANd i -I:
bn page 169 for a complete list of the REXX functions that are equivalent to
NetView command list language control variables. This list includes both functions
provided by NetView and functions provided by REXX itself.

The tables, in this chapter, show the tasks performed by each NetView REXX
function and equivalent NetView command list language control variable used in
NetView command lists. The tables are listed by NetView functions. REXX
functions and equivalent NetView command list language control variables are in
alphabetical order, with the REXX function shown first.

In the tables, the function and control variable are followed by the description.

Notes:

1. Where both a NetView command list language control variable and REXX
function exists for a task, descriptions are given generically without the NetView
command list language ampersand prefix or the REXX open/close parentheses
suffix.

2. Where NetView command list language control variables and REXX versions of
a function differ operationally, descriptions for each are given separately; the
NetView command list language control variable description will contain only
the differences between the two versions.

117

REXX Functions

3. REXX functions provided for use by the NetView program can be used only
with NetView. These functions are not supported by the REXX interpreter and
cannot be used in REXX EXECs executed in a non-NetView environment.

4. Not all NetView REXX functions can used in Data REXX files. See the function
description to determine if a function can be used in a Data REXX file.

5. REXX functions listed in [able 11 on page 129, [Table 12 on page 136, and
[Lable 13 on page 144 return a value consistent with no message to process
when used in Data REXX files.

Translation Functions

Table 6. Translation Functions

Function or Variable Description

CODE2TXT (table,code) Provides translation for various types of code points to national language text.

You can use NetView with a problem management database to open problem records
when NetView alerts are received. The code point translation function is provided in
REXX to translate the numeric code points received in the alert into readable text.

The syntax of the CODE2TXT function follows:

CODE2TXT

»»>—CODE2TXT (table,code)

v
A

118 Customization: Using REXX and the NetView Command List Language

Translation

Table 6. Translation Functions (continued)
Function or Variable Description

CODE2TXT (table,code) Where:
(continued)

code
Indicates the code point to translate. This field should be specified as a 1-4
character value representing the hexadecimal code point. The characters can be
uppercase or lowercase. Leading zeros are ignored but are counted as characters
in the four character limit.

Code points in the SNADATA tables are only two characters. To make them the
same length as code points in other tables, CODE2TXT adjusts your code by
concatenating "00" on the end (for example, "DD" becomes "DD00" and "01"

becomes "0100"). Refer to the BNJ82TBL sample and the [livali NetView for z/Od
Customization Guidd for more information.

table
Specifies the name of the table to use in the translation. The following are valid
tables:

Table Description
SNAALERT

Systems Network Architecture (SNA) alert description code point
SNACAUSE

SNA probable cause code point
SNADDATA

SNA detailed data code point from subfield X'82".
SNADDAT5

SNA detailed data code point from subfield X'85'".
SNADDAT6

SNA actual action code point for Resolution Major vector.
SNAFCAUS

SNA failure cause code point
SNAICAUS

SNA install cause code point
SNAREACT

SNA recommended actions code point
SNAUCAUS

SNA user cause code point

An example of using CODE2TXT follows:
CODE2TXT (SNAALERT,362B)

The example will translate code point 362B in the SNAALERT table to
“TRANSMITTER FAILURE”.

Error Processing: Error conditions encountered by this function are handled as follows:

* Non-valid operand: If a non-valid operand (such as a non-valid table name) is
detected, NetView issues message CNM432I (non-valid operand). A REXX syntax
condition flag is raised and the REXX interpreter then generates a message.

* Non-valid code syntax: If a non-valid syntax is detected, NetView issues message
CNM423I (non-valid syntax). A REXX syntax condition flag is raised and the REXX
interpreter generates a message.

* Too many operands: Extraneous operands are ignored.

* Code point not found in table: A null string is returned, but no flag is raised.

Chapter 9. REXX Functions Provided by NetView 119

Translation

Table 6. Translation Functions (continued)

Function or Variable

Description

SUBSYM()

Returns a literal or variable character string (any character string that has multiple
MVS system symbolics or a single MVS system symbolic imbedded in it) with the
MVS system symbolics replaced within that string.

Substitution is always performed on the &DOMAIN symbolic, unless substitution was
disabled when NetView was started. For MVS and user-defined system symbolics,
substitution is not performed if you are not running on an MVS system; you are
running on an MVS system prior to MVS Version 5 Release 2; substitution was
disabled when NetView was started; or you have not defined an MVS system symbolic
on your MVS system.

An example using SUBSYM to find out the name of the &DOMAIN follows:
SUBSYM(' &DOMAIN')

Command List Information

Table 7. Command List Information

Function or Variable

Description

AUTBYPAS

For information on this function, refer to the Civali NetView fnv /QS Securitu Rpfpvarpl

120 Customization: Using REXX and the NetView Command List Language

Command List Information

Table 7. Command List Information (continued)

Function or Variable

Description

AUTHCHK (keyword=value)

This REXX-only function enables you to make a command security check for keywords
and values from a REXX program. This enables you to check the parameters that are
passed to the command list, or any other items you would like to check as keywords
and values related to this command list. The syntax of the AUTHCHK function is as
follows:

»>—AUTHCHK ('—Ekeyword=value) <
keyword4I

Where:

keyword
Specifies the keyword to be authority checked. Each keyword can contain a
maximum of 8 characters. A maximum of twenty keywords with optional values
can be passed to the program. Because variable substitution could yield a null
keyword, AUTHCHK will accept a null keyword. For example, AUTHCHK() is a
valid invocation of the AUTHCHK function. When a null keyword is passed to
the AUTHCHK function, authority is assumed to be granted for that particular
keyword.

value
Specifies a value for the keyword. Each value can contain a maximum of 8
characters. You cannot specify value without keyword=.

Because variable substitution could yield a null value, AUTHCHK will accept a
null value and strip the ‘=" sign to yield a ‘keyword only” security check. For
example, after variable substitution, this is a valid invocation of the AUTHCHK
function: AUTHCHK (keywordl=,keyword2=value2 ,keyword3 ,keyword4=value4)

Keywords and keyword=value combinations must be separated by commas.

Usage notes:

1. If the keyword and value are both null, the null string is returned, which
implies that authority is granted.

2. keyword=value can be any of the following:

* The value of a single variable

* Two variables with ‘=" in between. The = sign must be enclosed in single
quotes.

* Two literal strings with ‘=" in between. The = sign must be enclosed in
single quotes.

* A literal and a variable with ‘=" in between. The = sign must be enclosed in
single quotes.

Chapter 9. REXX Functions Provided by NetView 121

Command List Information

Table 7. Command List Information (continued)

Function or Variable

Description

AUTHCHKU() (continued)

If all keywords or keyword=value combinations in the list pass authority checking,
AUTHCHK returns a null string. Otherwise, the first keyword to fail authority checking
is returned and any remaining keywords are not checked. If a value fails authority
checking, the first keyword=value combination to fail is returned and any remaining
keywords are not checked. If a syntax error occurs, the keyword or the keyword=value
combination containing the syntax error is returned and the remaining keywords are not
checked.

For example, if a REXX program was executed by entering NVRXCMD START, LU=LU200,
authority checking of the keywords START and LU=LU200 can be done by coding the
following in the NVRXCMD program:

/* NVRXCMD:

SAMPLE REXX PROGRAM
*/

PARSE ARG P1','P2',".

RESULT=AUTHCHK (P1,P2)

IF RESULT-="'"' THEN
DO
SAY OPID() 'IS NOT AUTHORIZED TO KEYWORD/VALUE' RESULT
EXIT
END

In this example, if either of the parameters passed in the variables P1 and P2 does not
pass authority checking, a non-null value is returned by AUTHCHK. If a keyword
fails, it is included in a message and the REXX program ends. If a value fails, the
keyword and value are included in a message and the REXX program ends. For
example, if OPER1 enters NVRXCMD START, LU=LU200, but is not authorized to use the
START keyword, OPER1 IS NOT AUTHORIZED TO KEYWORD/VALUE START displays and
NVRXCMD ends. If OPER1 enters NVRXCMD START, LU=LU202, but is not authorized to
use the value LU202, OPERL IS NOT AUTHORIZED TO KEYWORD/VALUE LU=LU202 displays
and NVRXCMD ends.

For information about keyword security, refer to the RACF library and the Tzl
NetView for z/OS Administration Referencd

122 Customization: Using REXX and the NetView Command List Language

Command List Information

Table 7. Command List Information (continued)
Function or Variable Description

AUTHCHKX(command,keyword=value)
This REXX-only function enables you to make a command security check for a

command and it’s associated keywords and values from a REXX program. This
enables you to check a command and any keywords, keywords and values or any
other items you would like to check as keywords and values related to the command.
The syntax of the AUTHCHKX function follows:

1)

»>—AUTHCHKX (command,—[v keyword=value) >
ke ywordé

Where:

command

Specifies the command to be used for the authorization checks. This is a required
parameter. If a null command is passed, a syntax error will occur. Each command
can contain a maximum of 8 characters.

keyword
Specifies the keyword to be authority checked. Each keyword can contain a
maximum of 8 characters. A maximum of nineteen keywords with optional values
can be passed to the program. Because variable substitution could yield a null
keyword, AUTHCHKX will accept a null keyword. For example,
AUTHCHKX (command) is a valid invocation of the AUTHCHKX function. When a null
keyword is passed to the AUTHCHKX function, authority is assumed to be
granted for the command that was passed in the function call.

value
Specifies a value for the keyword. Each value can contain a maximum of 8
characters. You cannot specify value without keyword=.

Because variable substitution could yield a null value, AUTHCHKX will accept a
null value and strip the ‘=" sign to yield a ‘keyword only” security check. For
example, after variable substitution, this is a valid invocation of the AUTHCHKX
function:

AUTHCHKX (command ,keywordl=,keyword2=value2 ,keyword3 ,keyword4=value4)

Keywords and keyword=value combinations must be separated by commas.

Chapter 9. REXX Functions Provided by NetView 123

Command List Information

Table 7. Command List Information (continued)

Function or Variable

Description

AUTHCHKX()(continued)

Usage notes:

1.

This function does not perform any syntax checks of the command, keywords or
values. It can only determine if a combination of command, keyword and/or value
is protected using any NetView security facility.

If the keyword and value are both null, the null string is returned, which implies
that authority is granted.

keyword=value can be any of the following:

* The value of a single variable

* Two variables with ‘=" in between. The = sign must be enclosed in single quotes.

¢ Two literal strings with ‘=" in between. The = sign must be enclosed in single
quotes.

* A literal and a variable with ‘=" in between. The = sign must be enclosed in
single quotes.

If all keywords or keyword=value combinations in the list pass authority checking,
AUTHCHKX returns a null string. Otherwise, the first keyword to fail authority
checking is returned and any remaining keywords are not checked. If a value fails
authority checking, the first keyword=value combination to fail is returned and the
remaining keywords are not checked.

For example, if a NetView command list language program NVCLCMD needed to
perform authority checks on two parameters passed to it, it could call REXX
program NVCHKAUT as: NVCHKAUT NVCLCMD, &P1, &P2. NVCHKAUT can
be coded as follows:

/* NVCHKAUT: SAMPLE REXX PROGRAM */
PARSE ARG P1','P2','P3',".
RESULT=AUTHCHKX (P1,P2,P3)

IF RESULT —-= '' THEN
DO
SAY OPID() ' IS NOT AUTHORIZED TO ISSUE 'P1' WITH 'RESULT
Return_Code = 8

END

Return Return_Code

In this example, if either of the parameters passed in P2 and P3 does not pass
authority checking with the command passed in P1, a non—null value is returned
by AUTHCHKX. If a keyword fails, it is included in a message along with the
command that was passed, the REXX program sets a return code of 8 and returns.
If a value fails, the keyword and value are included in a message along with the
command that was passed, the REXX program sets a return code of 8 and returns.
For example, if OPER1 enters NVCLCMD START, LU=LU200, but is not authorized
to use the START keyword, the message "OPER1 IS NOT AUTHORIZED TO ISSUE
NVCLCMD WITH START" is displayed, NVCHKAUT returns a return code of 8 to
NVCLCMD and NVCLCMD will terminate.

For information about keyword security, refer to the RACEF library and the [Cinod
NetView for z/OS Security Referencd

CMDNAME()

This REXX-only function returns the name by which the program was called. This
name may be the same as the name returned in the third token by the REXX PARSE
SOURCE command. This name is the command as it was entered, which is possibly a
synonym.

For Data REXX, this function returns the member name of the file that is being
processed.

124 Customization: Using REXX and the NetView Command List Language

Command List Information

Table 7. Command List Information (continued)

Function or Variable Description

PARMCNT() Returns the number of parameter variables that are entered when a command list is
initiated. For example, if command list RESC is initiated by entering RESC ACT,LU200,

&PARMCNT then PARMCNT becomes 2. If there are no parameter variables, PARMCNT is zero.

&PARMSTR Returns the string of parameter values used when the command list is initiated.

&PARMSTR does not include the command list name. For example, if command list
RESC is initiated by entering RESC ACT,LU200, then &PARMSTR becomes ACT,LU200.
If there are no parameter variables, &PARMSTR is null. The maximum length of the
string returned by &PARMSTR is 255 characters.

&RETCODE Returns the return code set by either the most recent command procedure or the most
recently activated or nested command list.

&RETCODE is initialized to zero. &RETCODE is set by a command procedure or
nested command list. When you write a command list that is called by another
command list, you can set a return code on the &EXIT statement in the nested
command list. You can use &RETCODE to test this return code in the calling
command list. See L i

On the &EXIT statement, you can set the return code to 0, -1, or a positive integer.

NetView can set the return code to 0, -1, -2, -3 or —5. You cannot code -2 or -3 on
the &EXIT statement, but you can test for them. All other negative return codes are
reserved.

The possible values and meanings of &RETCODE are as follows:

Value Meaning

n A positive integer; you define the meaning. If & CONTROL ERR is in effect,
the command is echoed on the panel.
0 No error.
-1 An error is found. This command list and all nested command lists end.

Message DSI1971 is issued for this command list.

-2 A command in the command list is not correct. The message DSI2091 is
displayed with the incorrect command. The command is ignored, and the
command list continues.

-3 A command in the command list is not authorized for this operator. The
incorrect command list statement is displayed along with message DSI210L
The command is ignored, and the command list continues.

-5 A command list is terminated as the result of a RESET or other failure.

Note: &RETCODE is similar to the REXX-provided RC variable.

Cross-Domain Information Functions

Table 8. Cross-Domain Information Functions

Function or Variable Description

NVCNT() Returns the number of NetView domains with which the operator can establish a

cross-domain session.
&NCCFCNT

Chapter 9. REXX Functions Provided by NetView 125

Cross Domain and Global Variable

Table 8. Cross-Domain Information Functions (continued)

Function or Variable

Description

NVID(®n)

&NCCFID n

Returns the NetView domain identifier of a domain with which you can establish a
cross-domain session. The domains with which you can establish cross-domain
sessions are defined by the DOMAINS statement of your operator profile.

However, if your profile specifies AUTH CTL=GLOBAL, you can establish
cross-domain sessions with the domains specified by the RRD statement in
CNMSTYLE. If neither DOMAINS nor CTL=GLOBAL is specified in your operator
profile, you receive an error message when using this function.

For more information about the DOMAINS and RRD statements, refer to [izoll
WNetView for z/OS Administration Referencd

The value of 7 is either a number or a variable with a numeric value. The maximum
value of 7 is the value of NVCNT.

Notes:

1. If you specify a value that is not valid in n for:
e NVID, a null value is returned
¢ &NCCFID, an error message is returned

2. To obtain the local domain identifier, use the APPLID function. APPLID returns the
local domain ID appended with a 3-character alphanumeric value assigned by the
NetView program.

NVSTAT (name)

&NCCFSTAT name

Indicates whether you have an active session with a domain. The value of name is the
domain identifier of the domain you are querying. If you have an active session with
the domain, NVSTAT (name) or &NCCFSTAT return a value of ACT. If you do not have
an active session with the domain, INACT is returned.

Note: If you specify no name or a name that is not valid for:

¢ NVSTAT, a null is returned.

* &NCCFSTAT, an error message is returned.

Data Set Information Functions

Table 9. Data Set Information Functions

Function or Variable

Description

FNDMBR
(DD_name,member_name)

Tries to find the specified member in the files identified by the DD name. The files
must already be allocated by NetView when FNDMBR is executed. The allocated files
must be a partitioned dataset (PDS). FNDMBR returns two determinant results, and a
variety of indeterminate results which you may use to debug your REXX program.

The arguments of the FNDMBR function are defined as follows:
DD_name

Specifies the DD name by which the allocated PDS file is known to NetView.
member_name

Specifies the name of the member of the allocated PDS file to be located.

126 Customization: Using REXX and the NetView Command List Language

Data Set Information Functions

Table 9. Data Set Information Functions (continued)

Function or Variable

Description

FNDMBR
(DD_name,member_name)
(continued)

The possible results returned by the FNDMBR function are:

Value Meaning

0 The specified member name was found.
4 The specified member name was not found.
100 A system error was encountered while trying to process this request.

F cccccecce rrrrrrrr

Where:
F Indicates that the MVS FIND macro failed.
ccceccee Is the FIND macro return code.
rrrrrrrr Is the FIND macro reason code.
O ccccecee rrrrrrrr

Where:

(0] Indicates that the MVS OPEN macro failed.

ccccccce Is the OPEN macro system ABEND code or zero.

rrrrrrrr Is the OPEN macro return code. If ccecccece is not zero, this
is the same as the return code value in the IECInnl message
associated with the OPEN macro system abend code. If
cccceecc is zero, this is the return code from the OPEN
macro. For example a return code of 8 in this case may
mean that the DD statement is missing or the file is not
allocated.

The following is an example of the FNDMBR function usage:
IF FNDMBR('DSICLD','MYREXX') = 0 THEN

This REXX statement will evaluate as true if MYREXX exists in DSICLD or as false if
MYREXX does not exist in DSICLD.

Notes:

1. Refer to theMVS/DFP library for the OPEN macro return codes. Refer to
theMVS/ESA library for the OPEN macro system abend codes (X'n13” abend
codes) and IECInnl message explanations.

2. If a REXX variable is used to hold the DD name or the member name for the
FNDMBR function, to help insure that the text substituted for the variable does not
exceed 8 characters, strip the leading and trailing blanks from the value before
invoking the FNDMBR function.

3. If the NetView ALLOCATE command was used to allocate the dataset, be sure not
to use the FREE option on the ALLOCATE when using the FNDMBR function
together with another command (for example, EXECIO) to access the allocated file.
The FNDMBR function executes an MVS OPEN and CLOSE which will cause the
allocated file to be deallocated if the FREE option was coded on the allocate
command. This restriction does not apply to files allocated using the DD
statements in the NetView startup procedure.

4. The dataset may be allocated down to the member level. However, it is not
recommended because an IEC1411 message will be issued if the member is not
found.

Chapter 9. REXX Functions Provided by NetView 127

Data Set Information Functions

Global Variable Information Functions

Table 10. Global Variable Information Functions

Function or Variable

Description

CGLOBAL(name)

,_ REXX

Returns the value of the named common global variable if it exists. If no common
global variable with the specified name exists, a null value is returned. If you do not
specify name, or if you specify more than one name, a syntax error occurs.

I_ End of REXX

,_ NetView Command List Language

The NetView command list language control statement &CGLOBAL is operationally
different than the NetView REXX function described here. See E1llsi

”

I_ End of NetView Command List Language

TGLOBAL(name)

,_ REXX

Returns the value of the named task global variable if it exists. If no task global
variable with the specified name exists, a null value is returned. If you do not specify
name or specify more than one name, a syntax error occurs.

l_ End of REXX

,_ NetView Command List Language

The NetView command list language control statement &TGLOBAL is operationally
different than the NetView REXX function described here. See E11si

RCGITORAT” on page 94,

I_ End of NetView Command List Language

Message Processing Information Functions

l]bble_]J_gn_pa.ge_]ﬂ lists functions and variables that, unless otherwise noted, are
available for use on messages generated by all operating system platforms
supported by NetView.

[Lable 12 on page 134 lists only those functions and variables that are available for

use solely for messages originating from MVS systems.

In all cases, the value of the NetView command list language control variable and
REXX function is null unless otherwise stated if no message processing information
is available.

128 Customization: Using REXX and the NetView Command List Language

Message Processing

Table 11. Message Processing Information

Function or Variable

Description

ACTIONDL() Returns the reason for which NetView deleted the associated message. Values are:

&ACTIONDL Value Meaning
(null) The message is not being deleted.

LOCAL
The message was deleted by operator overstrike of the CONSOLE DELETE
stage.

NETVIEW
The message was deleted using the NetView DOM NVDELID or CURMSG
options, or by NetView.

SMSGID
Deletion by MVS DOM using SMSGID.

TOKEN
Deletion by MVS DOM using TOKEN.

TCB Deletion by MVS DOM for task end.

ASID Deletion by MVS DOM for address end space.

INVALID
The DSIIFR has a combination of control flag settings that are not valid.

ACTIONMG() Returns "1” if the message is an action message. Returns ‘0" if otherwise.

&ACTIONMG

ATTNID() Returns the VSE attention identifier ID. A plus sign (+) indicates that a reply is
required for this message immediately. A minus sign (-) indicates that a reply is

&ATTNID required for this message.

This function has a value if the message is from a VSE system, but null for non-VSE

messages.

EVENT() The NetView event that satisfied the WAIT is determined by the value of the REXX
EVENT() function. The REXX command list can use the EVENT() function to set a
variable and take appropriate action based on the set value. The possible returned
values from EVENT() are as follows:

Value Meaning

M The message for which the command list is waiting has arrived. The message
can be read using the MSGREAD instruction.

T The time period for which the command list was waiting has expired, and
processing is resumed.

G You entered the GO command, and processing is resumed.

E You did not code the WAIT or TRAP instructions correctly. For example, you
entered the operands in the incorrect order or issued a WAIT for messages
instruction without a matching TRAP instruction. The command list resumes
processing.

If you do not issue a WAIT instruction in a command list, the value of the EVENT()

function is replaced with a value of null.

HDRMTYPE() Specifies the 1-character NetView buffer type of the received message or MSU. Buffer
types are described in I 1 zation: Llsi

&HDRMTYPE

Chapter 9. REXX Functions Provided by NetView 129

Message Processing

Table 11. Message Processing Information (continued)

Function or Variable

Description

IFRAUGMT()

&IFRAUGMT

Returns the Greenwich mean time when the automation internal function request
(AIFR) was created. IFRAUGMT is returned as an 8-byte hexadecimal value in store
clock format.

IFRAUIND()

&IFRAUIND

Returns two bytes of indicator bits as a series of 16 on (1) and off (0) EBCDIC
characters representing the bits in order. This data is mapped in DSIIFR. The bit
positions are:
1 MVS system information attached (WQE data).
5 Message from NetView PPT.
6 Message received cross-domain.
11 Message was PRI routed by ASSIGN command.
12 Message was SEC routed by ASSIGN command.
13 Message was COPY routed by ASSIGN command.
14 Message was routed to authorized receiver.
15 Message was from down-level domain (no AIFR received).
16 Message was unsolicited.

Notes:

1. Other bits can be tested, but have no recommended use. All the bits are defined in
the DSITFR mapping control blocks. For more information, refer to the

2. Messages with the unsolicited flag on are eligible for ASSIGN PRI and SEC
routing.
3. This field indicates the AIFR indicator fields IFRAUIND and IFRAUIN2.

4. When using extended consoles, only MVS system messages that are received by the
task with load module name CNMCSSIR are considered unsolicited messages.

5. For more information about solicited and unsolicited messages, refer to the izl
I]\Tpﬂ/ipmfnr /08 Automation Guidd.

IFRAUIN3()

&IFRAUIN3

Returns 1-byte of indicator bits as a series of eight on (1) and off (0) EBCDIC
characters representing the bits in order. This data is mapped in DSIIFR. The bit
positions and meanings are:
1-2 00 = Default priority
01 = Low priority
10 = High priority
11 = Test the receiver for priority
3 VM PMX

IFRAUI3X()

&IFRAUI3ZX

Returns a 32-byte string of "1” and 0’ values corresponding to control flags in the
IFRAUI3X word of the DSIIFR. The first 8 bits are the same as IFRAUIN3, allowing all
32 bits to be accessed at once.

IFRAUSB2()

&IFRAUSB2

Returns a 2-byte user field in DSIIFR as a string of 2 characters.
Notes:

1. This function is null if the field is all blanks or binary zeros in any combination.

2. IFRAUSB2 and IFRAUSRB refer to the same user field, but return the value in
different formats.

IFRAUSC2()

&IFRAUSC2

Returns a 16-byte user field in DSIIFR as a series of 128 on (1) and off (0) EBCDIC
characters representing the bits in order.

Note: IFRAUSC2 and IFRAUSRC refer to the same user field, but return the value in
different formats.

IFRAUSDR()

&IFRAUSDR

Returns the 1-8 character name of the originating NetView task.

130 Customization: Using REXX and the NetView Command List Language

Message Processing

Table 11. Message Processing Information (continued)

Function or Variable Description

IFRAUSRB() Returns a 2-byte user field in DSIIFR as a series of 16 on (1) and off (0) EBCDIC
characters representing the bits in order.

&IFRAUSRB Note: IFRAUSRB and IFRAUSB?2 refer to the same user field, but return the value in
different formats.

IFRAUSRC() Returns a 16-byte user field in DSIIFR as a string of 16 characters.

&IFRAUSRC Notes:

1. This function is null if the field is all blanks or binary zeros in any combination.

2. IFRAUSRC and IFRAUSC2 refer to the same user field, but return the value in
different formats.

IFRAUTA1() Returns 6-bytes of indicator bits as a series of 48 on (1) and off (0) EBCDIC characters
representing the bits in order. [IFRAUTA1 enables checking of control information. The
&IFRAUTA1 bit positions are:

1, 2,25 HOLD action.
5,6,26 SYSLOG action.
7, 8,27 NETLOG action.

9, 10, 28
HCYLOG action.
11, 12, 29
DISPLAY action.
13, 14, 30
BEEP action.
20 Message from MVS
23 VSE format message.
24 Action message.
47 Automation vector extensions exist.
48 Presentation vectors exist in data buffers.
Notes:

1. Other bits can be tested, but have no recommended use.

2. Refer to the description of DSIIFR fields IFRAUTA1 through IFRAUTAG in [Mizall
INPfVimenr /0S8 Customization: ”qing Assemblelt

IFRAUWF1() Returns 4-byte MVS-specific WTO information as a series of 32 on (1) and off (0)
EBCDIC characters representing the bits in order. Specific bit positions with
&IFRAUWF1 recommended uses are:
Position
Meaning
6 Message is a WTOR.
7 Message is suppressed
8 Broadcast to all.
9 Display JOBNAMES.
10 Display STATUS.
14 DISPLAY SESSION.

Note: Other bits can be tested, but have no recommended use. MLWTO flags in this
area also have no recommended use. MLWTO indicators are moved into the data
buffers.

Chapter 9. REXX Functions Provided by NetView 131

Message Processing

Table 11. Message Processing Information (continued)

Function or Variable Description
LINETYPE(Returns the multiline write-to-operator (MLWTO) line type or MSU data buffer type,
as follows:
&LINETYPE
Type Description
C Message control line
L Message label line
D Message data line
DE Last message data line
E The line is the last message line and contains no data
H The line is the HIER data buffer type
M The line is the MSU data buffer type
blank The message is a single-line message
null There is no message or MSU data buffer associated with this command list
MSGID()
&MSGID ,_ REXX

REXX Function:
Returns the message identifier of the message that drove this command list.
The message identifier is generally the first token of the message (up to 255
characters). If the first token is longer than 255 characters, MSGID returns
only the first 255 characters. If a reply ID is sent with the message, it is not
used as the first token. For a multiline write-to-operator (MLWTO), MSGID
uses the first token of the first line of the message. When an MSU buffer is
being processed, MSGID is equal to null (").

See I/Chapter 7 Automation Resource Management” on page 103 for more

information about NetView automation.

7

See L for

more information about using control variables with &WAIT.

See LINKPD Results” on page 111 for more information about the LINKPD

command.

Note: For messages received over the VM PROP/PMX interface, MSGID may
not be set to the actual message identifier because of information added to the
front of the message.

MSGID() is used in NetView automation, with MSGREAD, and with the
LINKPD command.

Refer to the NetView online help for more information about using functions
with MSGREAD.

I_ End of REXX

,_ NetView Command List Language

NetView Command List Language Control Variable (differences from REXX only):
&MSGID is used in NetView automation, with &WAIT, and with the LINKPD
command.

I_ End of NetView Command List Language

132 Customization: Using REXX and the NetView Command List Language

Message Processing

Table 11. Message Processing Information (continued)

Function or Variable

Description

MSGORIGN()

&MSGORIGIN

I_ REXX

REXX Function:
Returns the domain where the last message read by MSGREAD originated.
MSGORIGN() is used for NetView automation, with MSGREAD, and with the
LINKPD command.

Refer to the NetView online help for more information about using functions
with MSGREAD.

I_ End of REXX

I_ NetView Command List Language

NetView Command List Language Control Variable (differences from REXX only):
Specifies the domain where the message originated. &MSGORIGIN is used in
NetView automation, with &WAIT, and with the LINKPD command.

See EChapter 7_Automation Resource Management” on page 105 for more

information about NetView automation.

’ . . 7

See for

more information about using control variables with &WAIT.

See LINKPD Results” on page 111l for more information about the LINKPD

command.

I_ End of NetView Command List Language

Note: The NetView command list language and REXX versions of this command are
spelled slightly differently; be sure to use the correct spelling when writing your
command list.

Chapter 9. REXX Functions Provided by NetView 133

Message Processing

Table 11. Message Processing Information (continued)

Function or Variable Description
MSGSTRI()

REXX
&MSGSTR ,_

REXX Function:
Returns the message text of the last message read by MSGREAD. MSGSTR()
does not include the message identifier—the token used by the MSGID()
function. For an MLWTO message, MSGSTR() becomes the message text of
the first line of the message. MSGSTR() is used with MSGREAD and with the
LINKPD command.

Refer to the NetView online help for more information about using functions
with MSGREAD.

I_ End of REXX

,_ NetView Command List Language

NetView Command List Language Control Variable (differences from REXX):
Is the message text of the message most recently received by NetView.
&MSGSTR does not include the message identifier (the token used by the
&MSGID control variable). &MSGSTR is used with &WAIT and with the
LINKPD command.

7

See L for

more information about using control variables with &WAIT.

See ELINKPD Results” on page 111 for more information about the LINKPD

command.

I_ End of NetView Command List Language

MSGTSTMP() Returns the message time stamp. The value of this field is the time when the NetView

message buffer was created. The field is a 6-character string in the form of hhmmss,
&MSGTSTMP where:

hh Hours
mm Minutes
ss Seconds

134 Customization: Using REXX and the NetView Command List Language

Message Processing

Table 11. Message Processing Information (continued)

Function or Variable

Description

MSGVAR(n)

Returns the text of a message. NetView changes the values of the MSGVAR(1) through
MSGVAR(31) functions to reflect the text of the message.

Note: MSGVAR(1) through MSGVAR(31) are equivalent to the NetView command list
language variables &1-&31.

Each MSGVAR(n) function is set to a token of the last message read by MSGREAD.
MSGVAR(1) is set to the token following the message identifier—the token used by the
MSGID() function. MSGVAR(2) is set to the next token to the right of MSGVAR(1), and
so on, up to a maximum of 31 variables. MSGVAR(n) is used for NetView automation,
with MSGREAD, and with the LINKPD command.

See EChapter 7 Automation Resource Management” onpage 103 for more information

about NetView automation.

Refer to the NetView online help for more information about using functions with
MSGREAD.

See LLINKPD Results” on page 111l for more information about the LINKPD

command.

The MSGVAR(n) functions can be given values when a command list is invoked in the
same way as are the &1-&31 NetView command list language parameter variables.

MVSRTAIN()

&MVSRTAIN

In the Automation Table, a 3 bit field describing MVS Retain Charateristics of the
message.

Note: The 3 flags correspond to 3 flags defined in the MVS WQE control block when
NetView is using the SSI interface, and corresponds to 3 similar flags in the MDB
when running in Extended Console Mode. The exact meaning and use of the flags is a
property of the operating system.

&MVSRTAIN in NetView command list language, is a 3 bit field describing MVS
Retain characteristics of the message.

NVDELID()

&NVDELID

Returns the 24-character NetView deletion identifier for a message. You can remove
the message from the held queue for all tasks in NetView using the NetView DOM
NVDELID command. This is the NetView equivalent of the MVS DOM function, but is
used for messages that are not MVS WTOs or WTORs.

REPLYID()

&REPLYID

Returns the reply identifier for WTORs. This field has a maximum length of 8
characters.

For messages from VSE systems, the REPLYID is the last three characters of the
6-character message prefix. The three returned characters will be the message reply ID
only if the sending system uses those characters to designate a reply ID for a message.

SESSID()

&SESSID

Returns the 1-8 character ID of the TAF (terminal access facility) session that sent the
message.

See I’Chapter 7_Automation Resource Management” on page 108 for more information

about NetView automation.
Note: If TAF session is started with a SESSID equal to the domain ID, SESSID is set
unpredictably and may give unpredictable results.

MVS-Specific Message Processing Information

This section contains descriptions of message information functions that are
important for NetView message automation. This information is generated by MVS
systems, but can be seen as cross-domain data in VM and VSE systems as well.

Chapter 9. REXX Functions Provided by NetView 135

Message Processing

You can also generate user messages with this data as long as the information is
consistent with the MVS definitions. You can find more information about these

functions in the MVS/ESA

™

library.

Some of these message information functions and control variables return valid
meaningful values only if the message currently being processed was originally a
message data block (MDB). Where applicable, this is noted in

Table 12. MVS-Specific Message Processing Information

Function or Variable

Description

AREAID()

Returns a 1-letter (A-Z) identifier for the area on the multiple console support console
panel that displays the message.

&AREAID
AUTOTOKE() Returns the 1-8 character name of the MVS message processing facility (MPF)
automation token.
&AUTOTOKE Note: If you've specified AUTO(YES) or AUTO(NO) in the MPF table, the values YES and
NO are not automation tokens.
CART() Returns the 8-byte MVS command and response token (CART). The CART might
contain non-displayable characters.
&CART
Notes:
1. This function has a value only if the message currently being processed was
originally a message data block (MDB).
2. CART is available on systems running MVS 4.1 or a later release.
DESC() Returns the MVS DESCriptor codes as a series of 16 on (1) and off (0) EBCDIC
characters representing the bits in order. Refer to the MVS library for information
&DESC about code values.
JOBNAME() Returns the 1-8 character MVS job name identifier. Because the JOBNAME is the name
of the job that originated the message, it might not always be the same as the name of
&JOBNAME the job to which the message is referring. For example, the job names might be
different when MVS issues a message about the NetView job. Also, JOBNAME can
contain the name of an initiator (instead of the actual job name) when a job is started
or terminated. If the message is issued during startup or termination, extract the job
name from the message text rather than using the JOBNAME function.
Note: The same information is available using MSGCOJBN (bn_page 134).
JOBNUM() Returns the 8-character MVS job number identifier.
Note: The MVS job identifier might contain embedded blanks.
&JOBNUM
KEY() Returns the 8-character retrieval key associated with the message.
Note: This function has a value only if the message currently being processed was
&KEY

originally an MDB.

136 Customization: Using REXX and the NetView Command List Language

Message Processing

Table 12. MVS-Specific Message Processing Information (continued)

Function or Variable

Description

MCSFLAG()

&MCSFLAG

Returns the system message flags in a series of eight on (1) and off (0) EBCDIC
characters representing the bits in order. The bit positions and their meanings are:
Send message conditionally to console SYSCONID

Send message unconditionally to console SYSCONID

RESP

REPLY

BRDCST

HRDCPY only

NOTIME

NOCPY

IS UT B WN M=

Notes:
1. This function does not return the same mapping of multiple console support flags
as the automation table compare item.

2. Setting MCSFLAG="00000000" is valid. It overrides MCSFLAG set by an incoming
WTO.

MSGASID()

&MSGASID

Returns the MVS system address space identifier from which the message was issued.
The value of MSGASID is a 1-5 digit decimal number.
Note: This value is null for messages that do not come from an MVS address space.

MSGAUTH()

&MSGAUTH

Returns the 2-character value indicating whether the message was issued from an
authorized program.

Value Meaning

00 WTO message is not from MVS

10 WTO is from an unauthorized program
11 WTO is from an authorized program

MSGCATTR()

&MSGCATTR

Returns the 16-bit MVS message attribute flags as a series of on (1) and off (0) EBCDIC
characters representing the bits in order. Bit positions and their meaning are:

1 Message is suppressed

2 Message is a command response.

3 Message issued by authorized program.

4 Message is to be retained by Automation Message Retention Facility (AMRF).

Notes:

1. This function has a value only if the message currently being processed was
originally an MDB.

2. Other bits can be tested, but have no recommended use.

MSGCMISC()

&MSGCMISC

Returns the 8-bit MVS miscellaneous routing flags as a series of on (1) and off (0)

EBCDIC characters representing the bits in order. Bit positions and their meaning are:

1 Display UD (undeliverable) messages.

2 Display only UD messages.

3 Queue by ID only.

4 Indicates whether the message has been marked in the message processing
facility (MPF) table as eligible for NetView automation.

Notes:

1. This function has a value only if the message currently being processed was
originally an MDB.

2. Other bits can be tested, but have no recommended use.

Chapter 9. REXX Functions Provided by NetView 137

Message Processing

Table 12. MVS-Specific Message Processing Information (continued)

Function or Variable

Description

MSGCMLVL() Returns the 16-bit MVS message level flags as a series of on (1) and off (0) EBCDIC
characters representing the bits in order. Bit positions and their meaning are:
&MSGCMLVL 1 WTOR
2 Immediate action
3 Critical eventual action
4 Eventual action
5 Informational
6 Broadcast
Notes:
1. This function has a value only if the message currently being processed was
originally an MDB.
2. Other bits can be tested, but have no recommended use.
MSGCMSGT() Returns the 16-bit MVS message type flags as a series of on (1) and off (0) EBCDIC
characters representing the bits in order. Bit positions and their meaning are:
&MSGCMSGT 1 Display job names
2 Display status
3 Monitor active
6 Monitor SESS
Notes:
1. This function has a value only if the message currently being processed was
originally an MDB.
2. Other bits can be tested, but have no recommended use.
MSGCNT()
REXX
&MSGCNT I_
REXX Function:
Returns the number of words in the message string of the last message read
by MSGREAD. MSGCNT() is used with MSGREAD and with the LINKPD
command.
Refer to the NetView online help for more information about using functions
with MSGREAD.
See LINKPD Results” an page 111 for more information about the LINKPD
command.
I_ End of REXX
,— NetView Command List Language
NetView Command List Language Control Variable (differences from REXX only):
Returns the number of words in a message string.
&MSGCNT is used with &WAIT and with the LINKPD command.
See [” for
more information about using control variables with &WAIT.
I_ End of NetView Command List Language
MSGCOJBN() Returns the 1-8 character originating job name. (The same information is available
using JOBNAME, bapage13d)
&MSGCOJBN Note: This function has a value only if the message currently being processed was

originally a message data block (MDB).

138 Customization: Using REXX and the NetView Command List Language

Message Processing

Table 12. MVS-Specific Message Processing Information (continued)

Function or Variable

Description

MSGCPROD()

&MSGCPROD

Returns the 16-character MVS product level. The characters are defined as follows:

* The first 4 characters represent an MVS control point object version level.

* The next 4 characters represent the control program name (MVS).

* The last 8 characters represent the function modification identifier (FMID) of the
originating system.

Note: This function has a value only if the message currently being processed was
originally an MDB.

MSGCSPLX()

&MSGCSPLX

Returns the 1-8 character name of the MVS SYSPLEX where the received message
originated. Available when running under MVS/ESA Version 4 Release 3 or above.
Note: This function returns a value only if the message currently being processed was
received from an MVS SYSPLEX, and the message was originally a message data block
(MDB).

MSGCSYID()

&MSGCSYID

Returns the 1-3 digit decimal number system identification for DOM.
Note: This function has a value only if the message currently being processed was
originally an MDB.

MSGDOMEFL()

&MSGDOMFL

Returns the 8-bit MVS DOM flags as a series of on (1) and off (0) EBCDIC characters
representing the bits in order. Bit positions and their meaning are:

1 DOM by message 1D

2 DOM by system ID

3 DOM by ASID

4 DOM by job step TCB

5 DOM by token

Notes:

1. This function has a value only if the message currently being processed was
originally an MDB.

MSGGBGPA()

&MSGGBGPA

Returns the 4-byte hexadecimal background presentation attributes. Bytes and their
descriptions are:

Byte Description

1 Background control field

2 Background color field

3 Background highlighting field
4 Background intensity field.

Use one of the following forms to check for hexadecimal values.

I_ REXX

IF MSGGBGPA() = '12345678'X THEN ...
I_ End of REXX

I_ NetView Command List Language

&IF &MSGGBGPA = X'12345678' &THEN ...

I_ End of NetView Command List Language

Note: This function has a value only if the message currently being processed was
originally an MDB.

Chapter 9. REXX Functions Provided by NetView 139

Message Processing

Table 12. MVS-Specific Message Processing Information (continued)

Function or Variable

Description

MSGGDATE()

&MSGGDATE

Returns the message date in a 7-character format of yyyyddd, where yyyy is the year
and ddd indicates a calendar day.
Notes:

1. This is not necessarily the current date. It may be the date with which MVS
associates the message as having been issued.

2. This function has a value only if the message currently being processed was
originally an MDB.

MSGGFGPA()

&MSGGFGPA

Returns the 4-byte hexadecimal foreground presentation attributes. Bytes and their
meaning are:

Byte Description

1 Foreground control field

2 Foreground color field

3 Foreground highlighting field
4 Foreground intensity field

You can use one of the following forms to check for hexadecimal values.

,_ REXX

IF MSGGFGPA() = '12345678'X THEN ...
I_ End of REXX

,_ NetView Command List Language

&IF &MSGGFGPA = X'12345678' &THEN ...
I_ End of NetView Command List Language

Note: This function has a value only if the message currently being processed was
originally an MDB.

MSGGMFLG()

&MSGGMFLG

Returns the 16-bit MVS general message flags. Bit positions and their meaning are:
1 DOM (delete operator message)

Note: This function has a value only if the message currently being processed was
originally an MDB.

MSGGMID()

&MSGGMID

Returns the 4-character hexadecimal value MVS message identifier field.

Notes:

1. This function has a value only if the message currently being processed was
originally an MDB.

2. MSGGMID represents the same information as SMSGID, except that SMSGID
returns a decimal value instead of a hexadecimal value.

MSGGSEQ()

&MSGGSEQ

Returns the 1- to 8-character numerical decimal sequence number. This function
represents the last three bytes of MSGGMID.

Note: This function has a value only if the message currently being processed was
originally an MDB.

MSGGSYID()

&MSGGSYID

Returns the 1- to 3-character numerical decimal system identification. This is the first
byte of MSGGMID.

Note: This function has a value only if the message currently being processed was
originally an MDB.

140 Customization: Using REXX and the NetView Command List Language

Message Processing

Table 12. MVS-Specific Message Processing Information (continued)

Function or Variable

Description

MSGGTIME()

&MSGGTIME

Returns an 11-character (including periods) time in the form hh.mm.ss.th, where hh is
the hours, mm is the minutes, ss is the seconds, and th is tenths and hundredths of
seconds.

Note: This function has a value only if the message currently being processed was
originally an MDB.

MSGSRCNM()

&MSGSRCNM

Returns the 1- to 17-character source object name. This source name is an identifier
from the source object that was provided by either the DSIMMDBS or CNMPMDB
application programming interface (API) invocation.

For more information about DSIMMDBS, refer to [[inoli NetView for z/OS Customization|
Llsing Assensbled. For more information about CNMPMDB, refer to m

The source name is selected from the source object by the following rules:
* The first nickname, if any

e The first network identifier concatenated to a network addressable unit (NAU)
name, with a period (.) between, if both exist in sequence

¢ The first NAU name, if it exists

* The string “N/A” if none of the other names in this list are specified in the source
object

* Null, if there is no source object

For more information about how the source object is defined, refer to the DSIAIFRO
mapping in Linali NetView for z/QS Customization: 1lsing Assembled,

Note: This function has a value only if the message currently being processed was
originally an MDB with an associated source object.

MSGTOKEN()

&MSGTOKEN

Returns a 1-10 digit decimal number that indicates the token associated with the
message.

Notes:

1. This function has a value only if the message currently being processed was
originally an MDB.

2. You can use a TOKEN value to group WTOs by setting MSGTOKEN prior to
issuing the WTO command. Subsequently, these messages can be deleted using a
single DOM command by specifying the token value in MSGTOKEN.

MSGTYP()

&MSGTYP

Returns the system message type as a series of three on (1) and off (0) EBCDIC
characters representing the bits in order. An on character (1) in one of the positions
corresponds to the following:

Bit Description

1 SESS — Corresponds to IFRAUWF1(14)

2 JOBNAMES — Corresponds to IFRAUWF1(9)
3 STATUS — Corresponds to IFRAUWF1(10)

PRTY()

&PRTY

Returns the priority of the message as set by the originator. This field is a 1-5 digit
decimal number. The NetView program does not use this field when processing the
message.

Note: This function has a value only if the message currently being processed was

originally an MDB.

Chapter 9. REXX Functions Provided by NetView 141

Message Processing

Table 12. MVS-Specific Message Processing Information (continued)

Function or Variable

Description

ROUTCDE()

&ROUTCDE

Returns the MVS routing code or codes assigned to the message. The value of the field
is a series of on (1) and off (0) EBCDIC characters representing the bits in order. The
maximum number of ROUTCDEs assigned to a message is 128.

Notes:

1. After the first 16 bits, the number of characters returned in ROUTCDE will be the
lowest multiple of 8 that contains one or more on (1) characters. Therefore, you
should compare against a specific substring of ROUTCDE rather than against the
entire string.

For example, if only bit 17 is turned on, a string of sixteen zeros, a 1, and seven
more zeros will be returned (000000000000000010000000). One method to test for bit

17 being on is shown in the REXX example in Eigure 28 on page 141.

The functionally equivalent code written in NetView command list language is
shown in Ei

2. Another method to check for a specific bit is to use the REXX environment’s POS
(position) function, as shown in Ei

3. For details on using the REXX POS function, refer to the REXX library.

SMSGID()

&SMSGID

Returns a 1-10 character decimal number that identifies a particular instance of a
message. This function can be used by the DOM command to identify action messages
to be removed from the display. Refer to the NetView online help for more
information about DOM.

This field contains the same information as MSGGMID, except that SMSGID is
returned as a decimal number and MSGGMID is returned as a hexadecimal value.

SYSCONID()

&SYSCONID

Returns the MVS system console name or console ID associated with the message.
System console names are 2-8 characters in length; system console IDs are 2-digit
decimal numbers.

SYSID()

&SYSID

Returns the 1-8 character identifier of the MVS system from which a message arrived.

WTOREPLY

&WTOREPLY

Returns an operator’s reply to a WTOR.

,_ REXX

The REXX version is not a function. It is a local variable and therefore does not have
parentheses on the end.

I_ End of REXX

ROUTCDE Examples

/* STANDARD COMPARE »*/
IF ROUTCDE() = '000000000000000010000000'

THEN SAY 'ROUTCDE BIT 17 IS SET.'

Figure 28. REXX Example to Test for Bit 17

&IF &ROUTCDE = 000000000000000010000000 &THEN
&WRITE ROUTCDE BIT 17 IS SET

Figure 29. NetView Command List Language Example to Test for Bit 17

142 Customization: Using REXX and the NetView Command List Language

Message Processing

/* POS COMPARE (Using the REXX environment function) */
BIT2CHK = 17
IF POS('1',ROUTCDE(),BIT2CHK) = BIT2CHK

THEN SAY 'ROUTCDE BIT 17 IS SET'

Figure 30. Using the REXX POS Function to Test for Bit 17

REXX Management Services Units (MSU) Information Functions

tfablﬂﬁ_on_pa.gﬂﬂ lists REXX functions for MSU processing. MSUs include:
Control point management services units (CP_MSU)

* Multiple domain support message units (MDS_MU)
* Network management vector transports (NMVT)

* Record maintenance statistics (RECMS)

* Record formatted maintenance statistics (RECFMS)

For more information about MSUS, refer to the Linali NetView for z/0S Automatiod
Guidd.

The following terms are used in [ahle 13 on page 144k

Generic MSU
All MSUs that contain subvector 92. Generic MSUs include:
* Alerts that contain subvector 92
* Resolutions, which always contain subvector 92

Statistics-only RECMS
Some RECMS records contain only statistical data. The RECMS’s that
contain only statistical data are those with recording mode (byte 8, 1-offset,
into the RECMS) X'81', X'86', and X'87' (for X'87" that represent temporary
errors, not permanent errors).

Statistics-only RECFMS
Some RECFMS records contain only statistical data. The RECFMS’s that
contain only statistical data are those with RECFMS Type (byte 8, 1-offset,
into the RECFMS) 1, 4, and 5.

Chapter 9. REXX Functions Provided by NetView 143

MSU Information

Table 13. Management Services Units (MSU) Information Functions

Function

Description

HIER (n)

Provides user access to the NetView hardware monitor hierarchy data associated with
an MSU. The n specifies the index number (1-5) of a specific name/type pair.

Notes:

1. HIER() (without the n) returns a resource hierarchy slightly different than that
found in BNJ146I messages. The following are name/type pairs:

aaaaaaaallllbbbbbbbb2222....eeeeeeee5555
The letters represent the resource name and numbers represent the resource type.

The hardware monitor defines from one to five name/type pairs. Each name is
eight characters long and each type is four characters. The names and types are
padded with blanks if necessary.

2. HIER (n) returns the name/type pair aaaaaaaallll that corresponds to n. If there is
no name/type pair that corresponds to 1, then a null value is returned.

3. HIER(n) returns null under the following conditions:
* If the command list is not executed by the automation table
¢ If the automation table was not driven by an MSU
e If the MSU does not have a hardware monitor resource hierarchy

4. Use the HMSECREC function with HIER to determine the resource name of the
hierarchy level where secondary recording is performed. See
for more information about the HMSECREC function.

5. If a complex link exists in a resource hierarchy, there might be resource levels that
do not appear in the information returned by HIER(). You must use a system
schematic to determine the complete hierarchy configuration when a complex link
is present. Use the HMCPLINK function to check whether a complex link exists.
See [[able 13 on page 144 for more information about the HMCPLINK function.

6. Er information about the NetView built-in function &HIER, see K&HIER” an pagd

HMASPRID()

Returns a 1-9 character alert-sender product ID. This value is identical to the prodid
value described for the SRFILTER (SRF) command. The ID can be either a:

* 1-4 character hardware product ID, or

* 1-9 character software product ID

Trailing blanks are removed.

HMASPRID returns null if:
* An MSU is not a generic record.
¢ An MSU is not submitted to automation by the hardware monitor.

The maximum length is 9 characters.

HMASPRID applies to all MSUs submitted to automation by the hardware monitor.

See the examples in HMASPRID” on page 152

144 Customization: Using REXX and the NetView Command List Language

MSU Information

Table 13. Management Services Units (MSU) Information Functions (continued)

Function

Description

HMBLKACT()

Returns a 5-character value consisting of a 3-character block ID and a 2-character
action code. This value is identical to the code value described for the SRFILTER (SRF)
command.

HMBLKACT returns null if an MSU is:

* A generic alert (X'0000')

e A resolution (X'0002")

e A PD statistic (X'0025")

* A link configuration data (X'1332')

* A statistics-only RECMS

* A statistics-only RECFMS

* Not submitted to the automation table by the hardware monitor

Otherwise, a value is returned.

Examples of MSUs that HMBLKACT returns a value for include nongeneric alerts
(X'0000'), RECMSs that are not statistics-only, and RECFMSs that are not statistics-only.

The maximum length is 5 characters.

HMBLKACT applies to all MSUs submitted to automation by the hardware monitor.

See the examples in FHMBLKACT” on page 153.

HMCPLINKO()

Returns a 0, 1, or null to indicate whether a complex link exists, where:
1 A complex link exists.

If a complex link exists, there might be resource levels that do not appear in

the resource hierarchy returned by the HIER function. You must use a system
schematic to determine the complete hierarchy configuration when a complex
link is present. See the description of HIER m for more information.

Hardware monitor panels, such as Most Recent Events, indicate a complex
link exists by placing an asterisk (*) in the pictorial resource hierarchy at the
top of the panel and displaying message BNJ1538I in the message line near
the bottom of the panel.

0 A complex link does not exist.

Null The MSU was not submitted to automation by the hardware monitor.
The maximum length is 1 character.

HMCPLINK applies to all MSUs submitted to automation by the hardware monitor.

See the examples in EFHMCPIINK” on page 153,

Chapter 9. REXX Functions Provided by NetView 145

MSU Information

Table 13. Management Services Units (MSU) Information Functions (continued)
Function Description

HMEPNAU() HMEPNAU returns the nau name of the entry point node where the MSU originated
for alerts forwarded using the NV-UNIQ/LUC alert forwarding protocol.

HMEPNAU returns the local nau (domain) name for local MSUs.

For alerts forwarded using the SNA-MDS/LU 6.2 alert forwarding protocol,
HMEPNAU returns the NAU name of the entry point node that contains the MS
application that first forwarded the alert to the ALERT_NETOP application.
HMEPNAU adds an asterisk (*) to the beginning of the NAU name to indicate that the
name returned may not be the entry point node name. For example, if the node name
is NETV01 and HMEPNAU cannot determine if the node is an intermediate node or
the entry point node, it returns *NETVO01.

Note: Refer to the ivali NetView for /08 Automation Guidd for more information.

The maximum length is 9 characters.

HMEPNAU applies only to MSUs submitted to automation by the hardware monitor.
HMEPNAU returns null for all other MSUs.

See the example in PHMEPNATL, HMEPNET, and HMEWDSNA” on page 153.

HMEPNET() HMEPNET returns the netid name of the entry point where the MSU originated. For
alerts forwarded using the SNA-MDS/LU 6.2 alert forwarding protocol, HMEPNET
returns the netid name of the entry point node that contains the MS application that
first forwarded the alert to the ALERT_NETOP application. HMEPNET adds an
asterisk (*) to the beginning of the netid name to indicate that the name returned may
not be the entry point node name.

HMEPNET returns the local netid name for local MSUs.

If the hardware monitor cannot determine the netid name of the entry point,
HMEPNET returns an asterisk (*).

HMEPNET returns an asterisk (*), indicating that the netid name cannot be determined
by the hardware monitor, for all MSUs forwarded by the NV-UNIQ/LUC alert
forwarding protocol.

Note: Refer to [Finali NetView for z/OS Automation Guidd for more information.

The maximum length is 9 characters.

HMEPNET applies only to MSUs submitted to automation by the hardware monitor.
HMEPNET returns null for all other MSUs.

See the example in FHMEPNATL HMEPNET, and HMEWDSNA” on page 153

146 Customization: Using REXX and the NetView Command List Language

MSU Information

Table 13. Management Services Units (MSU) Information Functions (continued)

Function

Description

HMEPNETV()

Returns a 0, 1, or null to indicate whether the entry point where the MSU originated
was a remote node NetView program. This function applies only to MSUs forwarded
using the SNA-MDS/LU 6.2 alert forwarding protocol.

1 The entry point was a NetView program.
0 The entry point was not a NetView program.

null The MSU was not forwarded using the SNA-MDS/LU 6.2 alert forwarding
protocol.

Notes:

1. Refer to the [Cinoli NetView for z/OS Automation Guidd for more information about
forwarding mechanisms.

2. The maximum length is 1 character.

3. HMEPNETYV applies only to MSUs submitted to automation by the hardware
monitor. HMEPNETYV returns null for all other MSUs.

4. See the example in KHMEPNETV” on page 154,

HMEVTYPE()

Returns the event type of an MSU. Any trailing blanks in the event type are removed.
The event types include:

AVAL BYPS CUST DLRC HMV HELD IMPD IMR
INST INTV NTFY PAFF PERF PERM PROC REDL
RSLV RSNT SCUR SNA TEMP USER UNKN

For a complete description of all event types, refer to the NetView online help

HMEVTYPE returns null if an MSU is:

e A PD statistic (X'0025")

* A link configuration data (X'1332')

* A statistics-only RECMS

* A statistics-only RECEMS

* Not submitted to automation by the hardware monitor

The maximum length is 4 characters.

HMEVTYPE applies to all MSUs submitted to automation by the hardware monitor.

See the examples in HMEVTYPE” an page 154

Chapter 9. REXX Functions Provided by NetView 147

MSU Information

Table 13. Management Services Units (MSU) Information Functions (continued)

Function Description

HMFWDED() Returns a 0, 1, or null to indicate whether an MSU was forwarded from another
NetView node, where:
1 An MSU was forwarded from another NetView through the NV-UNIQ/LUC

alert forwarding protocol.

0 An MSU was not forwarded from another NetView, or was forwarded using
the SNA-MDS/LU 6.2 alert forwarding protocol. Examples of when a 0 would
be returned include:

* Local MSUs received over the CNM interface

* Local MSUs received from the operating system

* MSUs received over the PPI

* MSUs received using the SNA-MDS/LU 6.2 alert forwarding protocol

Null The MSU was not submitted to automation by the hardware monitor

Notes:

1. RECMSs and RECFMSs forwarded from an entry point NetView program to a focal
point NetView program by the LUC forwarding method are not submitted to
automation by the receiving focal point’s hardware monitor. These RECMSs and
RECFMSs can only be automated by the sending entry point NetView program.

2. Refer to the Cinali NetView fnr /QS Automation Guidd for more information about
forwarding mechanisms.

3. The maximum length is 1 character.
4. HMFWDED applies to all MSUs submitted to automation by the hardware

monitor.
5. See the examples in KHMFWDED” on page 154.
HMFWDSNA() Returns a 0 or 1 to indicate if an MSU was forwarded from a remote entry point node

using the SNA-MDS/LU 6.2 alert forwarding protocol.

1 An MSU was forwarded from a remote entry point node using SNA-MDS/LU
6.2 alert forwarding protocol.

0 An MSU was not forwarded from a remote entry point node using
SNA-MDS/LU 6.2 alert forwarding protocol.

null An MSU was not submitted to automation by the hardware monitor.
Note: Refer to the [Cinali T\Tpripmfmf /08 Automation Guidd book for more information
about forwarding mechanisms.

The maximum length is 1 character.

HMFWDSNA applies only to MSUs submitted to automation by the hardware
monitor. HMFWDSNA returns null for all other MSUs.

See the example in FHMEPNATT HMEPNET, and HMEWDSNA” on page 153

148 Customization: Using REXX and the NetView Command List Language

MSU Information

Table 13. Management Services Units (MSU) Information Functions (continued)

Function

Description

HMGENCAU()

Returns the 1-character hexadecimal general cause code of an MSU. The general cause
code indicates both the general classification and exception condition that caused the
MSU to be created. For more details about general cause codes, refer to the
information about Basic Alert (X'91") Alert MS subvectors in the SNA library.

HMGENCAU returns null if an MSU is:

* A generic alert (X'0000")

* A link event (X'0001")

e A resolution (X'0002")

* A PD statistic (X'0025")

* A link configuration data (X'1332')

* A statistics-only RECMS

* A statistics-only RECFMS

* Not submitted to the automation table by the hardware monitor

Otherwise, a general cause code is returned.

Examples of MSUs that HMGENCAU returns a value for include nongeneric alerts
(X'0000"), RECMSs that are not statistics-only, and RECFMSs that are not statistics-only.

The maximum length is 1 hexadecimal character.

HMGENCAU applies to all MSUs submitted to automation by the hardware monitor.

See the examples in EHMGENCAII” on page 154.

HMONMSU()

Returns 0 or 1 to indicate whether an MSU was submitted to automation by the
hardware monitor, where:

1 Indicates that an MSU was submitted to automation by the hardware monitor.

0 Indicates that an MSU was not submitted to automation by the hardware
monitor (for example, it was submitted to automation by the generic receiver
MS application).

The maximum length is 1 character.

HMONMSU applies to all MSUs.

See the examples in FHMONMSIT” on page 155

Chapter 9. REXX Functions Provided by NetView 149

MSU Information

Table 13. Management Services Units (MSU) Information Functions (continued)

Function Description

HMORIGIN(Returns the name of the resource sending the MSU. Any trailing blanks are removed
from the value returned.

The resource name returned by HMORIGIN is the same name displayed on the
hardware monitor Alerts Dynamic, Alerts Static, and Alerts History panels when
ALT ALERT ORIGIN is specified in BNJMBDST. Refer to the [Linoli NetView for z/09

WUdministration Referencd for a reference to the statements used in BNJMBDST.

If a complex link does not exist in a resource hierarchy, the resource name returned
with HMORIGIN matches one of the resource names returned with the HIER function.
If a complex link does exist, the resource name might not be one of the names
returned with HIER. Use the HMCPLINK function to determine whether a complex
link exists. For more information, see the description of HMCPLINK (@) and the
description of HIER (M).

HMORGIN returns null if an MSU is not submitted to automation by the hardware
monitor.

The maximum length is 8 characters.

HMORIGIN applies to all MSUs submitted to automation by the hardware monitor.

See the examples in KEIMORIGIN” on page 153,

HMSECREC() Returns 0, 1, or null to indicate whether the hardware monitor performs secondary
recording for an MSU, where:

1 Secondary recording is performed for an MSU at the resource level returned
by the HIER function. See the description of HIER @) for more information.

0 Secondary recording is not performed for an MSU. HMSECREC always
returns a 0 for PD statistics (X'0025') and frame relays (X'1332') because the
hardware monitor never performs secondary recording for these MSUs.

Null The MSU was not submitted to automation by the hardware monitor.
The maximum length is 1 character.

HMSECREC applies to all MSUs submitted to automation by the hardware monitor.

See the examples in FHMSECREC” on page 159

150 Customization: Using REXX and the NetView Command List Language

MSU Information

Table 13. Management Services Units (MSU) Information Functions (continued)

Function

Description

HMSPECAU()

Returns the 2-character hexadecimal specific component code of an MSU.

The specific component code indicates the generic type of component, subcomponent,
or logical resource that is most closely related to the exception condition that caused
the MSU to be created.For more details about specific component codes, refer to the
information about Basic Alert (X'91') Alert MS subvector in the SNA library. Note that
these codes are valid for RECMSs and RECFMSs.

HMSPECAU returns null if an MSU is:

* A generic alert (X'0000")

e A link event (X'0001")

* A resolution (X'0002")

* A PD statistic (X'0025")

* A link configuration data (X'1332')

* A statistics-only RECMS

* A statistics-only RECFMS

* Not submitted to the automation table by the hardware monitor

Otherwise, a general cause code is returned.

Examples of MSUs that HMSPECAU returns a value for include nongeneric alerts
(X'0000"), RECMSs that are not statistics-only, and RECFMSs that are not statistics-only.

The maximum length is 2 hexadecimal characters.

HMSPECAU applies to all MSUs submitted to automation by the hardware monitor.

See the examples in KEIMSPECAIL” on page 153.

Chapter 9. REXX Functions Provided by NetView 151

MSU Information

Table 13. Management Services Units (MSU) Information Functions (continued)

Function Description

HMUSRDAT() Returns 1 to 5 characters of user-specified data from subvector 33 of an MSU. Trailing
blanks are removed from the value returned. This data can be used with hardware
monitor filtering.

The hardware monitor translates any unprintable data in subvector 33 to underscores
(L) and translates lowercase characters to uppercase. The characters returned with
HMUSRDAT reflect any translation done by the hardware monitor and therefore may
not be the same characters in subvector 33. You can use HMUSRDAT to determine
whether the hardware monitor has translated any data in subvector 33 to underscores
or uppercase. Although translated data and subvector 33 data are often identical,
hardware monitor filtering is performed against the translated data, not against the
subvector 33 data.

You can use MSUSEG to retrieve untranslated user-specified data from subvector 33 in
an MSU.

For more information about subvector 33 data, see the UDAT option of the
GENALERT command and the U option of the SRFILTER command.
HMUSRDAT returns a null if an MSU:

* Does not contain subvector 33. Note that subvector 33 is never present in RECMS or
RECEMS records. According to the SNA architecture, only generic major vectors can
contain subvector 33. However, the hardware monitor accepts and processes
subvector 33 information in any of the major vectors submitted to automation.

¢ Is a frame relay (key X'1332).

* Is not submitted to automation by the hardware monitor.
The maximum length is 5 characters.

HMUSRDAT applies to all MSUs submitted to automation by the hardware monitor.

See the examples in KHMIISRDAT” an page 154,

MSUSEG (operands) Provides the parsing capability needed to extract information from a management
services unit (MSU) or other similarly architected pieces of data. Use this function in a
command list that is invoked by the NetView automation table or an LU6.2
application.

For complete MSUSEG syntax and some examples of usage, see 'MSIISEG Syntax and
[Examples” on page 154.

”

For information about the built-in function &MSUSEG, see !&MSIISEG” on page 7(.

Hardware Monitor (HMxxxxxx) Examples
HMASPRID

/* Example A: The following example checks for a generic */
/* hardware monitor MSU. */
IF HMASPRID() —= '' THEN

Figure 31. HMASPRID Example A

152 Customization: Using REXX and the NetView Command List Language

/* Example B: The following example checks for a generic */
/* MSU from a 3745 device. */
IF HMASPRID() = '3745' THEN

Figure 32. HMASPRID Example B

HMBLKACT

/* Example A: The following example checks for a block id =/
/* and action code that is not null. */
IF HMBLKACT() -~= '' THEN

Figure 33. HMBLKACT Example A

/* Example B: The following example checks for a block id =/
/* of 'FFD' and action code of '03'. */
IF HMBLKACT() = 'FFDO3' THEN

Figure 34. HMBLKACT Example B

/* Example C: The following example checks for a block id =/

/* of '"FFD'. It does not check for a specific action code. =/
IF SUBSTR(HMBLKACT(),1,3) = 'FFD' THEN

Figure 35. HMBLKACT Example C
HMCPLINK

/* Example A: The following example checks for an MSU */
/* with a complex link. */
IF HMCPLINK() = 1 THEN

Figure 36. HMCPLINK Example A

/* Example B: The following example checks for an MSU =/

/* that has no complex Tink. */
IF HMCPLINK() = @ THEN

Figure 37. HMCPLINK Example B

HMEPNAU, HMEPNET, and HMFWDSNA

/* Example A: Was the MSU was forwarded from node NETA.CNMO1
/* over LU 6.2?

IF (HMFWDSNA() = '1') & /* MSU forwarded over LU 6.2?
(HMEPNET() = 'NETA') & , /* From network NETA?

(HMEPNAU() = 'CNMO1') THEN ... /* And nau CNMO1? Then do ...

Figure 38. HMEPNAU, HMEPNET, and HMFWDSNA Example A

Chapter 9. REXX Functions Provided by NetView

MSU Information

*/
*/

:::::*/

*/
*/
*/

153

MSU Information
HMEPNETV

/* Example A: Was the MSU was forwarded from a remote node
/* entry point NetView over LU 6.2?

IF HMEPNETV() = '1' THEN ...

Figure 39. HMEPNETV Example A
HMEVTYPE

/* Example A: The following example checks for hardware x/
/* monitor MSUs with an event type of PERM. */
IF HMEVTYPE() = 'PERM' THEN
Figure 40. HMEVTYPE Example A
/* Example B: The following example checks for hardware */

/* monitor MSUs that do not have an event type of null. =*/
IF HMEVTYPE() —= '' THEN

Figure 41. HMEVTYPE Example B
HMFWDED

/* Example A: The following example checks for hardware */
/* monitor MSUs forwarded from another NetView program x/
/* using the NV-UNIQ/LUC.. */

IF HMFWDED() = 1 THEN

Figure 42. HMFWDED Example A

/* Example B: The following example checks for hardware */
/* monitor MSUs not forwarded from another NetView program =/
/* using the NV-UNIQ/LUC.. */

IF HMFWDED() = © THEN

Figure 43. HMFWDED Example B

HMGENCAU

/* Example A: The following example checks for a general */
/* cause code that is not null. x/
IF HMGENCAU() —= '' THEN

Figure 44. HMGENCAU Example A
/* Example B: The following example checks for a general */

/* cause code of '01'X. */
IF HMGENCAU() = 'O1'X THEN

Figure 45. HMGENCAU Example B

154 Customization: Using REXX and the NetView Command List Language

MSU Information

HMONMSU
Example A shows one way to check for MSUs that have been submitted by the

Hardware Monitor.

/* Example A */
IF HMONMSU() = 1 THEN ...

Figure 46. HMONMSU Example A

Example B shows one way to check for MSUs that have not been submitted by the
Hardware Monitor.

/* Example B */
IF HMONMSU() = O THEN ...

Figure 47. HMONMSU Example B

HMORIGIN
/* Example: The following example checks for hardware */
/* monitor MSUs sent from a resource named GENALERT. */

IF HMORIGIN() = 'GENALERT' THEN

Figure 48. HMORIGIN Example

HMSECREC

/* Example: The following example checks for secondary */
/* recording on an MSU and displays the resource hierarchy. =/
IF HMSECREC() = 1 THEN
DO
SAY 'Secondary recording is being done for an MSU at'
SAY 'resource level: ' HIER()
SAY 'The name and type pair displayed Tast is most Tikely'
SAY 'involved with the error.'
END

Figure 49. HMSECREC Example
HMSPECAU

/* Example A: The following example checks for a specific =/
/* component code that is not null. */
IF HMSPECAU() -= '' THEN

Figure 50. HMSPECAU Example A
/* Example B: The following example checks for a specific =*/

/* component code of '0001'X. */
IF HMSPECAU() = '0001'X THEN

Figure 51. HMSPECAU Example B

Chapter 9. REXX Functions Provided by NetView 155

MSU Information

HMUSRDAT

/* Example: The following example checks for hardware */
/* monitor MSUs with user specified data of MYDAT in */
/* subvector 33. «/

IF HMUSRDAT() = 'MYDAT' THEN

Figure 52. HMUSRDAT Example

MSUSEG Syntax and Examples

Syntax
The MSUSEG(operands) syntax is:

MSUSEG

[
»»—MSUSEG(" Y id |_ _| !

[1
= |—byife—| I—,Zength—| I

Ly

|—(occ)J I—‘ 1 ’J :)

1

Where:

byte

The byte position into the lowest ID specified in id, counting from 1 in
decimal. Position 1 is the first length byte in the header of the lowest ID. The
header is composed of one or two length bytes followed by the 1- or 2-byte ID.
This entry is optional. The default is 1.

Is inserted if the first ID is to be obtained from the next higher level
multiple-domain support message unit (MDS-MU) as opposed to the
NMVT/control point management services unit (CP-MSU) level. You can code
the H in uppercase or lowercase. You can place H inside or outside of the
quotes when quotes are coded.

Is the 2- or 4-character representation of 1- or 2-byte hexadecimal ID of GDS,
major vector (MV), subvector, subfield, or sub-subfield. The hexadecimal
characters (0-9, A-F, a—f) can be mixed case. The first ID is required; additional
IDs are optional.

length

occ

Is the number of bytes in decimal to be returned from the lowest ID specified
in id and starting at the byte position. This entry is optional. The default is
equal to the remainder of the lowest id specified, and starting at the byte
position.

The occurrence number, counting from one (1) in decimal. You can use an
asterisk (*) to specify the first occurrence found. This entry is optional at every
level. The default is 1.

156 Customization: Using REXX and the NetView Command List Language

MSU Information

The single quotes shown in the REXX syntax diagram are only required when
an occ is specified. If you do not explicitly code an occ, the quotes are optional.

The period establishes a hierarchy of IDs. Thus, the vector ID specified on the
right side of the period is contained within the vector specified on the left side.

Notes:

1. With MSUSEG(operands), as with other REXX function operands, if operands
are specified, they must be delimited by commas. Two successive commas
indicate an omitted operand.

2. If the location is not found, or if the command list containing the
MSUSEG(operands) was not executed by an automation table statement due to
an MSU, or if the function was not driven by an MSU, then the value of the
MSUSEG(operands) is null.

3. If you do not specify a byte position, the data returned includes the 1- or 2-byte
length followed by the 1-or 2-byte ID of the lowest ID specified in id.

4. If the byte position is beyond the end of the location, a null value is returned.

5. f the specified length is longer than what remains at the location specified,
whatever remains at the location is returned.

6. Examples of using MSUSEG(operands) are shown in the figures in

7. For more information about the automation table, refer to [Linali NetView fol
&/0S Automation Guidd. For more information about vector definitions, refer to
the SNA library. For more LU6.2 and MSU information, refer to the [Cioil

NetView for z/OS A‘n’nlimfinn Prngmmmpr’q Guidd

8. For information about using the built-in function &MSUSEG in NetView

command list language CLISTs, see I'&MSIISEG” an page 70.

Examples
The following are examples of using the MSUSEG() function:

In Eigure 53, the third byte of subvector A0 within the Alert major vector (9000)
starts with 'OPEN'. The Alert can be in any of the supported envelopes.

IF MSUSEG('0000.A0',3,4) = 'OPEN'

Figure 53. MSUSEG() Example 1

In w, Alert subvector AQ has 'LINE' followed by 'DOWN' anywhere in it.
Literals can be in hex as well as EBCDIC.

INTERPRET 'PARSE VALUE "'MSUSEG('0000.A0')'" WITH 'LINE'X +4
'DOWN'" Y +4 .'
IFX-="'"&Y="" ...

Figure 54. MSUSEG() Example 2

In Eigure 53, Alert subvector A1 has bits '01X01X00XX11XXXX', including
unimportant bits, starting from the first bit of the fourth byte.

IF BITAND(MSUSEG('0000.A1',4,2),'DB30'X) = '4830'X

Figure 55. MSUSEG() Example 3

Chapter 9. REXX Functions Provided by NetView 157

MSU Information

m shows an MDS-MU whose first 1212 (CP-MSU) contains a 1323, the first
of which contains any 1326s, the second of which contains 132Bs, the third of
which contains a subvector 01.

IF MSUSEG('H1212.1323.1326(2).132B(3).01') ~= ''

Figure 56. MSUSEG() Example 4

Operator Information Functions

You can use the following operator information function in REXX command lists
or Data REXX files for NetView.

Table 14. Operator Information Functions

Function or Variable Description

OPID() Returns the operator or task ID the same as OPID ("O’). OPID is a 1-8 character
identifier.

&OPID

OPID('x") Returns the operator or task ID as a 1-8 character identifier where:

(0] Returns the owner’s identity. On a regular OST, it will be the same as OPID(),
but on a VOST, it returns the operator ID of the owning OST.

R Returns the operator ID of a remote task controlling the distributed autotask.
If the task is not a distributed autotask, it returns a null.

S Returns the source ID of the operator that originated the command that is
executing. Special values, other than operator ID might be returned as
follows:

Automation
The command originated in the automation table processing.

(null) The command originated at an optional task or otherwise in
assembler code that specified that the source be ignored.
Note: There is currently no case where NetView invokes REXX in
this way. Customer written code or code from other venders might.
T Returns the target identity, the identity of the task on which the REXX
program is executing.

Session Information Functions

You can use the following session information functions in REXX command lists
and Data REXX files for NetView.

Table 15. Session Information

Function or Variable Description

APPLID() Returns the application program identifier for the task under which the command list
is running. APPLID is the NetView domain ID appended with a 3-character

&APPLID hexadecimal suffix assigned by NetView. For example, if your domain ID is PARIS,
APPLID might be PARIS001. NetView attempts to use an APPLID that is both defined
and available. If successful in this attempt, each APPLID is unique. If no defined
APPLID is available, an APPLID of notInit! is used until a defined APPLID is
available. In this case, the notInit! APPLID is not guaranteed to be unique as
multiple tasks may be in this situation.

ASID() Returns the current NetView address space identifier. The value of ASID is a 1-5 digit
decimal number.

&ASID

158 Customization: Using REXX and the NetView Command List Language

Session Information

Table 15. Session Information (continued)

Function or Variable

Description

ATTENDED() Returns a single-character value of either 1 or 0. The values are defined as:
&ATTENDED 1 Indicates that the task is one of the following:
* An OST with a display
e An NNT with a corresponding OST
* An autotask with an associated MVS console assigned using the
AUTOTASK command
e A distributed autotask

0 Indicates that the task is one of the following:

* An autotask without an associated MVS console assigned using the
AUTOTASK command
* Another type of task, such as a DST or an OPT task

Usage Notes:

1. If the associated operator is an AUTOTASK, the presentation data will not be
eligible for display unless the AUTOTASK is associated with an active MVS
console.

2. ATTENDED can be used with DISTAUTO and AUTOTASK variables to further
determine the characteristics of the task. For example, if ATTENDED is 1,
DISTAUTO is 0, and AUTOTASK is 1, the task is an AUTOTASK with an
associated MVS console.

AUTCONID() Returns the MVS console identifier associated with this autotask. This association was
made using the AUTOTASK command with the CONSOLE keyword. The value of

&AUTCONID AUTCONID is the console name or console ID of the MVS console where NetView
commands can be entered to run under this autotask.

Note: MVS console names are available beginning with MVS 4.1.0.

AUTOTASK() Returns a single-character value of either 1 or 0 indicating whether or not the task is
an autotask. Values are:

&AUTOTASK
1 An autotask
0 Not an autotask

CGI(Returns a single-character value of either 1 or 0. Values are:

1 The procedure was invoked by the NetView Web server.

0 The procedure was not invoked by the NetView Web server.

CURCONID() Returns the MVS console identifier obtained by a NetView task. This console was
obtained with the GETCONID command or by issuing an MVS command. The value

&CURCONID of CURCONID is the console name or console ID of the MVS console that this task
uses to enter MVS commands.

Note: MVS console names are available on systems running MVS 4.1 or later.

CURSYS() Returns the 1-8 character current system name.

&CURSYS

DISC() Returns a single-character value of either 1 or 0 that indicates whether the task is
disconnected. Values are as follows:

&DISC

1 Autotask is disconnected.

0 Autotask is not disconnected.

DISTAUTO() Returns a single-character value of either 1 or 0 that indicates whether a task is a
distributed autotask started with the RMTCMD command. Values are:
&DISTAUTO

1 A distributed autotask

0 Not a distributed autotask
Note: This corresponds to the value of TVBDAUT.

Chapter 9. REXX Functions Provided by NetView 159

Session Information

Table 15. Session Information (continued)

Function or Variable

Description

DOMAIN(

&DOMAIN

Returns the 1- to 5-character name of the current NetView domain.

DOMAIN('X")

Returns the 1- to 5-character name of a NetView domain, where:

R Returns the domain name of a remote task controlling the distributed
autotask. If the task is not a distributed autotask, it returns a null.

ENVDATA('X")

Returns a numeric value or character string, where:

C Returns the screen color count.

D Returns the screen depth (number of rows on the screen).

W Returns the screen width (number of columns on the screen).
G

Returns a list of blank delimited entries representing the REXX, PL/I, and C
procedures in the calling sequence or procedure group which was active
when the ENVDATA was invoked.

Each entry consists of two names seperated by a slash (/), in the format:
command/name. The command is the command verb or synonym used to call
the procedure. The name is one of the following;:

* The module name if the procedure is PL/I or C.
* The member name in DSICLD if the procedure is REXX.

Multiple entries show the calling sequence in reverse order. The command the
operator entered is the last entry listed.

MVSLEVEL()

&MVSLEVEL

Returns the currently running version of MVS. For example, if you are running
MVS/ESA 4.2.2, MVSLEVEL returns SP4.2.2.

NETID()

&NETID

The VTAM network identifier. This field has a maximum length of 8 characters. If
VTAM has never been active when NetView is active, the value of NETID is null.

NETVIEW()

&NETVIEW

Returns the version and release of the currently running NetView program. The value
of NETVIEW is a 4-character string in the form of NVuvr, where:

NV Indicates NetView

v Indicates the version number of NetView

r Indicates the release number of NetView

NETVIEW('x)

Returns a text string, where:

T Returns the text string containing the official NetView name.

OPSYSTEM()

&OPSYSTEM

Returns the type of operating system for which the NetView program was compiled.
OPSYSTEM can contain the following character values:

MVS/ESA

MVS/XA™

VM/ESA®

VSE

PANEL()

Returns a single-character value of either 1 or 0. Values are:
1 Panel commands can be issued

0 Panel commands not allowed

PARTID()

&PARTID

Returns the first two characters of the six-character prefix for VSE messages. The two
returned characters will be the message partition ID only if the sending system uses
those characters to designate a partition ID for a message.

160 Customization: Using REXX and the NetView Command List Language

Session Information

Table 15. Session Information (continued)

Function or Variable

Description

STCKGMT()

&STCKGMT

Returns the current Greenwich mean time in store-clock format. This field is returned
as an 8-byte hexadecimal value.

SUPPCHAR()

&SUPPCHAR

Returns the suppression character for your installation. (The suppression character
prevents NetView from writing the command out to the terminal, hard-copy log, and
network log.)

SUPPCHAR is a single character that you define in the CNMSTYLE member of
DSIPARM. The default suppression character that is shipped with the NetView
product is the question mark (X'6F').

If you do not specify a suppression character in CNMSTYLE, SUPPCHAR defaults to
X'3F'.

Note: The SUPPCHAR default character of X'3F' cannot be typed at the operator’s
console. Therefore, if you do not define a suppression character, the operator is
prevented from using one.

SYSPLEX()

&SYSPLEX

Returns the 1-8 character name of the MVS SYSPLEX where the command list is
executing. Available when running under MVS/ESA Version 4 Release 2.2 or above.

Note: This function returns a value only if the command list is executing on an MVS
SYSPLEX.

TASK()

&TASK

Returns the 3-character string indicating the type of task under which the command
list is running. Possible values are:

PPT Primary POI Task

OST Operator Station Task

NNT NetView-to-NetView Task

For Data REXX, in addition to PPT, OST, and NNT, any the following can can be

returned:

DST Data Services Task

HCT Hardcopy Task

MNT Main Task

OPT Optional Task

UNK Unknown Task
Note: This value indicates that an error has occurred. Contact Tivoli
Customer Support for more information.

TASK enables the same command list to run under any of these tasks because the
command list can test for the task type and process accordingly. For example, there are
some restrictions for command lists running under the PPT. See I'Primary POI Tasl

Rﬂmﬂn&_ﬂw, .

Chapter 9. REXX Functions Provided by NetView 161

Session Information

Table 15. Session Information (continued)

Function or Variable

Description

TOWER(string) Returns either a binary value that indicates whether a tower or subtower is enabled, or
the name of the towers and subtowers that are enabled.
If a string does not end with an asterisk (*), a single-character of either 1 or 0 is
returned. Values are:
1 The tower or subtower is enabled.
0 The tower or subtower is not enabled.
For example, assume that the AON tower and the SNA subtower are enabled, but the
TCP subtower is not, SAY TOWER(AON.SNA) returns 1 and SAY TOWER('aon.TCP')
returns 0.
Strings that end with an asterisk (*) return the names of the towers and subtowers that
are enabled. Note that asterisks can be used either alone, or used together with a
tower name to determine the subtowers that are enabled. For example, assume that the
AON tower and the SNA and TCP subtowers are enabled, SAY TOWER('*") would
return AON SNA TCP and SAY TOWER('aon.*') would return SNA TCP.
Notes:
1. Input strings are not case sensitive and mixed case strings can be returned.
2. Tower and subtower combinations must be concatenated with a period (.).
3. Towers and subtowers are enabled in CNMSTYLE. Refer to the comments in
CNMSTYLE for more information.
TYPE() Returns a 3-character string that indicates the level of NetView that is installed.
Possible values are:
ENT Enterprise option
SYS NetView System Services
VTAM() Returns the version and release of VTAM as a 4-character string in the form of either
VTor or Vorm, where:
&VTAM v is the version number
r is the release number
m is the modification number
Note: The value of VTAM is null if the VTAM program is not active.
VTCOMPID() Returns the 14-character VTAM component identifier. The VTAM component
identifiers are:
&VTCOMPID MVS/ESA
5685-08501-xxx (for VTAM Version 3)
MVS/ESA
5695-11701-xxx (for VTAM Version 4)
MVS/XA
5665-28901-xxx
VSE/ESA™

5666-36301-xxx
VM/SP 5664-28001-xxx
VM/9370

5684-05201-xxx
VM/ESA

5684-09501-xxx

Where: xxx is the release number.

Additional VTAM component identifiers may be added in future updates to VTAM.
Note: The value of VTCOMPID is null if VTAM is not active.

162 Customization: Using REXX and the NetView Command List Language

Session Information

Table 15. Session Information (continued)

Function or Variable

Description

WEEKDAYN()

&WEEKDAYN

Returns a numeric value in the range of 1 to 7 indicating the day of week (from
Monday through Sunday), as shown below:

= Monday

= Tuesday

= Wednesday

= Thursday

= Friday

= Saturday

= Sunday

NS Uk WON =

REXX Environment Information Functions

You can use the following REXX environment functions in REXX command lists
for NetView.

Refer to the Tivoli NetView for z/OS Tuning Guide for the rationale on the use of
these functions.

Note: Refer to the DEFAULTS command and the OVERRIDE command in the

NetView online help for more information about the meaning of the
following REXX values. These functions return a null value for operating
systems other than MVS/XA, MVS/ESA, and VSE/ESA.

Table 16. REXX Environment Information Functions

Function or Variable Description

RXDEFENV() Returns the default number of NetView REXX environments set by the REXXENV
parameter of the DEFAULTS command.

&RXDEFENV

RXDEFSTR() Returns the default NetView REXX environment initial storage size set by the
REXXSTOR parameter of the DEFAULTS command. This value can be -1 if REXXSTOR

&RXDEFSTR was set to the default or was never set.

RXNUMENV() Returns the current number of REXX environments initialized for this task. For
RXNUMENYV(), this number is always at least 1, representing the REXX environment

&RXNUMENV currently executing. For &RXNUMENY, this number can be zero (0).

RXOVRENV() Returns the override number of NetView REXX environments set by the REXXENV
parameter of the OVERRIDE command. If the number of REXX environments has not

&RXOVRENV been overridden or is set to the default value, a null value is returned.

RXOVRSTR() Returns the override NetView REXX environment initial storage size set by the
REXXSTOR parameter of the DEFAULTS command. If the REXX initial storage size has

&RXOVRSTR not been overridden or is set to the default value, a null value is returned.

Terminal Information Functions

You can use the following terminal information functions in command lists for
NetView.

Table 17. Terminal Information Functions

Function or Variable

Description

HCOPY()

&HCOPY

Returns the name of device defined as the hard-copy log printer started by the
operator. If there is no device defined as the hard-copy printer for this operator,
HCOPY is null.

Chapter 9. REXX Functions Provided by NetView 163

REXX Environment and Terminal Information

Table 17. Terminal Information Functions (continued)

Function or Variable

Description

LUO

&LU

Returns the logical unit name for this operator terminal.

Time and Date

Table 18. Date and Time

Function or Variable

You can use the following time and date control variables in the NetView
command list language:

Description

&DATE

Returns the current date in the form of mm/dd/yy, where mm is the month, dd is the
day, and yy is the year.

&TIME

Returns the CPU time in the format hh:mm, where hh is the hour and mm is the
minutes. The time is based on a 24-hour clock, so 3:00 p.m. is shown as 15:00.

Note: Because &TIME and &DATE are separate variables, you may need extra
coding to determine the correctly matched time and date. For example, if
you get &DATE first, midnight can occur before you get &TIME, so you
have the wrong date for the current time. If you get &TIME first, midnight
can occur before you get &DATE, so you would have the wrong time for the
current date.

The following is an example of some NetView command list language code that
can help you determine if you have the correct date and time:

-RETRY
&TDATE = &DATE
&TTIME = &TIME

&IF &TDATE NE &DATE &THEN &GOTO RETRY
&WRITE &TDATE &TTIME

REXX provides equivalent but more comprehensive time and date functions. For
more information, refer to the REXX library.

Nulls and Blanks Stripping

The stripping (removal) of trailing nulls and blanks is automatically performed by
NetView on some of the NetView command list language control variables and
NetView REXX functions that have character values. Notice that some control
variables and REXX functions have different levels of trailing character removal.

164 Customization: Using REXX and the NetView Command List Language

Function or Variable
ACTIONDLY(), &ACTIONDL
ACTIONMG(), &ACTIONMG
APPLID(), &APPLID
AREAID(), &AREAID
AUTCONID(), &AUTCONID
AUTOTOKE(), &AUTOTOKE
CURCONID(), &CURCONID
CURSYS(), &CURSYS

CMDNAME()
DCO(), &DCO

DOMAIN(), &DOMAIN
HCOPY(), &HCOPY

HMASPRID()
HMEVTYPE()
HMORIGIN()
HMUSRDAT()

IFRAUIBX(), &IFRAUI3X
IFRAUSB2(), &IFRAUSB2
IFRAUSDR(), &IFRAUSDR
IFRAUSRC(), &IFRAUSRC
JOBNAME(), &OBNAME
JOBNUMY(), &JOBNUM

LU(), &LU

MSGCOJBN(), &MSGCOJBN
MSGCPROD(), &MSGCPROD
MSGCSPLX(), &MSGCSPLX
MVSLEVEL(), &MVSLEVEL
NVDELID(), &NVDELID

OPID(), &OPID

SESSID(), &SESSID
SYSCONID(), &SYSCONID

SYSID(), &SYSID

SYSPLEX(), &SYSPLEX

Stripping Provided

Nulls and blanks
Nulls and blanks
None

None

Nulls and blanks
Nulls and blanks
Nulls and blanks
Nulls and blanks
Blanks

None

Nulls and blanks
Blanks

Blanks

Blanks

Blanks

Blanks

Nulls and blanks
Nulls and blanks
Nulls and blanks
Nulls and blanks
Blanks

None

Blanks

Nulls and blanks
Nulls and blanks
Nulls and blanks
Nulls and blanks
None

Blanks

Blanks

Nulls and blanks (when the value is a name)

None
Nulls and blanks

Chapter 9. REXX Functions Provided by NetView

Nulls and Blanks Stripping

165

166 Customization: Using REXX and the NetView Command List Language

Part 6. Appendixes

167

168 Customization: Using REXX and the NetView Command List Language

Appendix A. Comparison of REXX and NetView Command List
Language

This appendix provides a brief comparison between REXX and the NetView
command list language.

Comparison of REXX Instructions and NetView Command List
Language Control Statements

[Cable 1d shows each control statement used in the NetView command list language
and provides the equivalent REXX instruction. The table is in alphabetical sequence
based on the name of the NetView command list language control statement.

The last column of the table indicates whether the corresponding REXX instruction
is a standard instruction provided by REXX or an instruction provided by the
NetView program.

Instructions provided by the NetView program can be used only in conjunction
with NetView. These instructions are not supported by the REXX interpreter and
cannot be used in REXX EXECs executed in a non-NetView environment.

Table 19. Comparison of REXX Instructions and NetView Command List Language Control

Statements
REXX Described NetView Control Described REXX
Instruction on Statement on Instruction
Provided By
None N/A &BEGWRITE Bd N/A
CGLOBAL(narme) 2 &CGLOBAL b2 NetView
TRACE % &CONTROL REXX
EXIT kd &EXIT fd REXX
SIGNAL B3 &GOTO kd REXX
IF 7 &IF 2 REXX
PARSE EXTERNAL bd &PAUSE Bl REXX
PARSE PULL bd &PAUSE k1l REXX
TGLOBAL(name) DX &TGLOBAL NetView
TRAP * &WAIT kil NetView
WAIT * &WAIT k1l NetView
MSGREAD * &WAIT kil NetView
FLUSHQ * &WAIT k1l NetView
SAY bd &WRITE T REXX

*. Refer to the [Dinali NetView for z/QS Command Rpfprpnrd,

169

REXX/NetView Command List Language Comparison

Comparison of REXX Functions and NetView Command List Language
Control Variables and Functions

Cable 2d shows the various control variables and functions used in the NetView
command list language and the equivalent REXX functions.

If the function is provided by the NetView program, it can be used only in
conjunction with NetView and is not supported by SAA® REXX.

Table 20. Comparison of REXX Functions and NetView Command List Language Control
Variables and Functions

REXX Described NetView REXX Function
Function on Control Variable Provided By
ACTIONDL() f2d &ACTIONDL NetView
ACTIONMG() f2d &ACTIONMG NetView
APPLID() b=d &APPLID NetView
AREAID() lad &AREAID NetView
ASID() k=4 &ASID NetView
ATTENDED() f=d &ATTENDED NetView
ATTNID() f2d &ATTNID NetView
AUTCONID() b=d &AUTCONID NetView
AUTHCHK(...) 21 None NetView
AUTHCHKX(...) k24 None NetView
AUTOTASK() f=d &AUTOTASK NetView
AUTOTOKE() f2d &AUTOTOKE NetView
BITANDX...) k4 &BITAND REXX
BITOR(...) k4 &BITOR REXX
BITXOR(...) B3 &BITXOR REXX
CART() f3d &CART NetView
CGI() fsd None NetView
CGLOBAL(narme) 2d, b2 &CGLOBAL NetView
CMDNAME() PY| None NetView
CODE2TXT(...) f1d None NetView
I k4 &CONCAT REXX
CURCONID() fizd &CURCONID NetView
CURSYS() f5d &CURSYS NetView
DATE() fed &DATE REXX
DESC() 3d &DESC NetView
DISC() f5d &DISC NetView
DISTAUTO() fizd &DISTAUTO NetView
DOMAIN() fied &DOMAIN NetView
DOMAIN('X) bed None NetView
ENVDATA('X") bed None NetView
EVENT() f2d None NetView

170 Customization: Using REXX and the NetView Command List Language

REXX/NetView Command List Language Comparison

Table 20. Comparison of REXX Functions and NetView Command List Language Control
Variables and Functions (continued)

REXX Described NetView REXX Function
Function on Control Variable Provided By
FNDMBRK(...) f2d None NetView
HCOPY() T | &HCOPY NetView
HDRMTYPE() 29 &HDRMTYPE NetView
HIER(n) fa4, k4 &HIER NetView
HMASPRID() 24 None NetView
HMBLKACT() 43 None NetView
HMCPLINK() 43 None NetView
HMEPNAU() fad None NetView
HMEPNET() fad None NetView
HMEPNETV() fad None NetView
HMEVTYPE() fad None NetView
HMFWDED() fad None NetView
HMFWDSNA() frad None NetView
HMGENCAU() fad None NetView
HMONMSU() frad None NetView
HMORIGIN() f=d None NetView
HMSECREC() bsd None NetView
HMSPECAU() 51 None NetView
HMUSRDAT/() 52 None NetView
IFRAUGMT() fad &IFRAUGMT NetView
IFRAUIND() fad &IFRAUIND NetView
IFRAUIN3() fad &IFRAUIN3 NetView
IFRAUI3X() fad &IFRAUI3X NetView
IFRAUSDR() fzd &IFRAUSDR NetView
IFRAUSRB() fz1 &IFRAUSRB NetView
IFRAUSB2() fzd &IFRAUSB2 NetView
IFRAUSRC() fz1 &IFRAUSRC NetView
IFRAUSC2() fzd &IFRAUSC2 NetView
IFRAUTA1() =1 &IFRAUTA1 NetView
IFRAUWF1() =1 &IFRAUWF1 NetView
JOBNAME() 24 &JOBNAME NetView
JOBNUM() 24 &JOBNUM NetView
KEY() 24 &KEY NetView
LENGTH(...) kd &LENGTH REXX
LINETYPE() 33 &LINETYPE NetView
LU() fied &LU NetView
MCSFLAG() ba2 &MCSFLAG NetView
MSGASID() a2 &MSGASID NetView

Appendix A. Comparison of REXX and NetView Command List Language 171

REXX/NetView Command List Language Comparison

Table 20. Comparison of REXX Functions and NetView Command List Language Control
Variables and Functions (continued)

REXX Described NetView REXX Function
Function on Control Variable Provided By
MSGAUTHY() fz2 &MSGAUTH NetView
MSGCATTR() Y| &MSGCATTR NetView
MSGCMISC() fz2 &MSGCMISC NetView
MSGCMLVL() 24 &MSGCMLVL NetView
MSGCMSGT() fzd &MSGCMSGT NetView
MSGCNT() TeY:| &MSGCNT NetView
MSGCOJBN() fzd &MSGCOJBN NetView
MSGCPROD() fad &MSGCPROD NetView
MSGCSPLX() frad &MSGCSPLX NetView
MSGCSYID() fad &MSGCSYID NetView
MSGDOMEFL() fad &MSGDOMFL NetView
MSGGBGPA() bad &MSGGBGPA NetView
MSGGDATE() ftad &MSGGDATE NetView
MSGGFGPA() bad &MSGGFGPA NetView
MSGGMFLG() fad &MSGGMFLG NetView
MSGGMID() frad &MSGGMID NetView
MSGGSEQ() bad &MSGGSEQ NetView
MSGGSYID() lad &MSGGSYID NetView
MSGGTIME() b2t &MSGGTIME NetView
MSGID() 33 &MSGID NetView
MSGORIGN() fz3 &MSGORIGIN NetView
MSGSRCNM() fradl &MSGSRCNM NetView
MSGSTR() 34 &MSGSTR NetView
MSGTOKEN() fadl &MSGTOKEN NetView
MSGTSTMP() f4 &MSGTSTMP NetView
MSGTYP() fadl &MSGTYP NetView
MSGVAR() 33 None NetView
MSGVAR (number) 23 &1 - &31 NetView
MSUSEG(...) f57, £ &MSUSEG NetView
MVSLEVEL() fed &MVSLEVEL NetView
NVCNT() 1% &NCCFCNT NetView
NVDELID() =3 &NVDELID NetView
NVID(1) 24 &NCCFID NetView
NVSTAT (name) 24 &NCCFSTAT NetView
NETID() fed &NETID NetView
NETVIEW() fed &NETVIEW NetView
NETVIEW('x') bed None NetView
OPID() k=4 &OPID NetView

172 Customization: Using REXX and the NetView Command List Language

REXX/NetView Command List Language Comparison

Table 20. Comparison of REXX Functions and NetView Command List Language Control
Variables and Functions (continued)

REXX Described NetView REXX Function
Function on Control Variable Provided By
OPID('x") 54 None NetView
OPSYSTEM() fad &OPSYSTEM NetView
PANEL() fad None NetView
PARMCNTY() 5| &PARMCNT NetView
ARG(1) 25 &PARMSTR REXX
PARTID() &PARTID NetView
PRTY() 41 &PRTY NetView
REPLYID() T &REPLYID NetView
RC 23 &RETCODE REXX
ROUTCDE() fad &ROUTCDE NetView
RXDEFENV/() fed &RXDEFENV NetView
RXDEFSTR() fed &RXDEFSTR NetView
RXNUMENV() fed &RXNUMENV NetView
RXOVRENV() fed &RXOVRENV NetView
RXOVRSTR() fed &RXOVRSTR NetView
SESSID() [EE| &SESSID NetView
SMSGID() 22 &SMSGID NetView
STCKGMT() a1 &STCKGMT NetView
SUBSTR(...)] &SUBSTR REXX
SUBSYM(...) f2d None NetView
SUPPCHAR() fel &SUPPCHAR NetView
SYSCONID() fad &SYSCONID NetView
SYSID() %] &SYSID NetView
SYSPLEX() fad &SYSPLEX NetView
TASK() et &TASK NetView
TGLOBAL (narme) f2d, B4 &TGLOBAL NetView
TIME() | &TIME REXX
TOWERC(...) T3] None NetView
TYPE() T None NetView
VTAM() fied &VTAM NetView
VTCOMPID() T3 &VTCOMPID NetView
WEEKDAYN() fed &WEEKDAYN NetView
WTOREPLY 23 &WTOREPLY NetView

Commands Used in Command Lists

The following is a list of NetView commands in the [Linoli NetView for z/OS

that are for use in command lists. With the exception of

FLUSHQ, MSGREAD, TRAP, and WAIT, you can use these commands in
command lists written in REXX or in the NetView command list language.

Appendix A. Comparison of REXX and NetView Command List Language 173

Command List Commands

« DOM

+ FLUSHQ

* GETMPRES
* GETMSIZE
* GETMTFLG
* GETMTYPE
* GLOBALV
* MSGREAD
+ MSGROUTE
* PARSEL2R
¢ SDOMAIN (with QUIET option)
+ TRAP

« WAIT

« WTO

« WTOR

Note: FLUSHQ, MSGREAD, TRAP, and WAIT can be used only in REXX
command lists.

When using the commands in a REXX command list, enclose in single quotes the

parts of the command on which you do not want variable substitution to take
place.

174 Customization: Using REXX and the NetView Command List Language

Appendix B. Command List Examples Index

This appendix contains reference tables for the REXX and NetView command list

examples contained in this book. Entries in the tables are listed in alphabetical
order.

The tables show the name of the command list example, a brief description of its

function, and where to find the example in this book.

REXX Command List Examples

[Cable 21 lists the REXX command list examples shown in this book.

Table 21. REXX Command List Examples Reference

Command List Description Location
Example
ACTAPPLS This command list displays active applications. %
ACTLU Use this command list to activate a VTAM node. %
CHKOPNUM This command list shows how basic REXX functions and NetView-specific

functions can be used in command lists. CHKOPNUM illustrates the use of such

things as the REXX PARSE instruction, and the NetView MSGTRAP, WAIT,

MSGREAD, and GLOBALV commands.
CHKRSTAT This command list shows how more complex REXX functions and

NetView-specific functions can be used in command lists. CHKRSTAT illustrates

the use of the REXX INTERPRET instruction, and the NetView WAIT and

GETMLINE commands.
DSPRSTAT This command list can be used by an operator station task (OST) operator to

display the results of several executions of the CHKRSTAT command list for a

specific resource. Use DSPRSTAT as an aid when you need to determine how

often a resource is active, based on the intervals in which it was checked by the

CHKRSTAT command list.
GETCG The GETCG command list gets the value of a common global variable and

displays it to the requesting task.
GREETING This command list shows an example of waiting and trapping using the DATE

command.
LISTVAR Refer to the NetView online help for a functional description of this command

list.
PRINT This command list prints members of a data set to a system print file. %
TYPE This command list displays members of a data set one line at a time at the

invoking user’s terminal.
TYPEIT This command list displays members of a data set one line at a time at the

invoking user’s terminal.

NetView Command List Language Examples

[able 22 on page 174 lists the NetView command list language command list

examples shown in this book.

175

NetView Command List Language Examples Index

Table 22. NetView Command List Examples Reference

UPDT1 show how to define, reference, and update a task global variable.

Command List Description Location
Example
ACTONE This command list issues a VTAM command to activate a logical unit (LU). The
ACTONE command list shows the use of &WAIT to wait for one message.
CLIST1 The CLIST1 command list contains the nested command list UPDT1. CLIST1 and
UPDT1 show how to define, reference, and update a task global variable.
GLOBVARI1 The GLOBVAR1 command list illustrates the scope of user variables, task global
variables, and common global variables within individual command lists.
PATH This command list uses the &WRITE control statement and a VTAM command. &WRITH
Cantrol
Btatement” od
UPDT1 The CLIST1 command list contains the nested command list UPDT1. CLIST1 and

176 Customization: Using REXX and the NetView Command List Language

Appendix C. Examples of REXX Command Lists for NetView

This section contains examples of REXX command lists written for the NetView
program. These examples show how you can use the instructions and functions
provided by NetView and the standard REXX instructions and functions together
in REXX command lists executing in a NetView environment.

ACTAPPLS Example

/* ***/

/* */
/* ACTAPPLS - REXX VERSION */
/* */
/* DISPLAY ONLY THE ACTIVE APPLS */
/* */
/* ***/
TRACE E

SAY 'ACTIVE APPLICATIONS:' /* Write the header */
SAY 's===================='

'TRAP SUPPRESS MESSAGES IST350I ISTO97I' /+ Wait on the display =/
'D NET,APPLS'
'"WAIT 60 SECONDS FOR MESSAGES'

DO WHILE EVENT() = 'M'
SELECT /* SELECT on all events */
WHEN EVENT() = 'M' THEN
DO
'"MSGREAD'
SELECT /* SELECT on message */
WHEN MSGID()='IST350I' THEN
CALL FIRST
OTHERWISE
CALL ALLELSE
END /* END - SELECT */
"WAIT CONTINUE'
END /* EVENT() = M do loop */
OTHERWISE
DO
'"TRAP NO MESSAGES'
'FLUSHQ"
END
END /* END - SELECT */
END /* END - DO WHILE */
/* */
/* ALL NON-INFORMATIONAL MESSAGES GO HERE */
/* */
ALLELSE:
RETURN
/* */
/* THE MULTILINE WTO WITH THE APPL INFORMATION COMES HERE */
/* */

Figure 57. ACTAPPLS Example (Part 1 of 2)

177

REXX Command Lists

FIRST:

'GETMSIZE NUMLINES'
I=0

TOTALACT = 0

DO WHILE NUMLINES -=1

NUMACT = 0

I=1+1
"GETMLINE LINE' VALUE(I)

/*
/*
/*
/*

/*

/*
/*

Determine the number of Tines */
Initialize Tine number counterx/
Initialize total active appls */

DO for all Tlines */
Number of active appls found

on this line */
Bump the line counter */

How many lines in the MLWT0? =/

/* PARSE OUT THE LINE, Al A2 A3 ARE APPL NAMES, S1 S2 S3 ARE STATUS =/
PARSE VAR LINE MSG A.1 S.1 A.2 S.2 A.3 S.3 .

DO CURR =1 T0 3

IF S.CURR == "' THEN /* Do we have a status? x/
DO
IF S.CURR = 'ACTIV' THEN /* Is the current APPL active? */
NUMACT = NUMACT + 1 /* Bump the number active count %/
ELSE
DO
S.CURR = "' /* APPL not active, so blank out =/
A.CURR = '
END
END
ELSE
A.CURR = "' /* Not an APPL */
END /* END - DO CURR x/
IF NUMACT -= 0 & (A.1-="'" | A.2 -="'" | A.3 = "'") THEN
SAY STRIP(A.1 A.2 A.3,'L")

TOTALACT = TOTALACT + NUMACT /* Bump the total active counter */
END /* END - DO WHILE */
SAY ' ! /* Blank Tine */
SAY 'NUMBER OF APPLICATIONS ACTIVE: 'TOTALACT

EXIT

Figure 57. ACTAPPLS Example (Part 2 of 2)

178 Customization: Using REXX and the NetView Command List Language

REXX Command Lists

ACTLU Example

/* ACTLU COMMAND LIST - REXX VERSION */
/* FUNCTION : TO ACTIVATE A VTAM NODE. */
/* INPUT : 1 PARAMETER, THE NAME OF THE NODE. */
/**/
IF MSGVAR(1) = '' THEN /* NO FIRST PARAMETER ? */

DO /* THEN ISSUE REQUEST */

SAY 'PLEASE ENTER "GO NODENAME"',/* REQUEST NODENAME FROM USER */
'OR "GO STOP" TO CONTINUE' /* OR, ALLOW USER TO STOP CLIST =/

PARSE PULL NODE /* NODE = NODENAME OR STOP */
END /* THEN ISSUE REQUEST */
ELSE /* FIRST PARAMETER EXISTS */
NODE = MSGVAR(1) /* ASSUME IT IS A NODE NAME */
/* IF NODE='STOP' CLIST ENDS */
IF NODE-='STOP' THEN /* DID USER CHOOSE TO STOP ? */
DO /* PROCESS NODENAME */
'"TRAP AND SUPPRESS ONLY MESSAGES IST= ' /x TRAP ALL VTAM MSGS */
'V NET,ACT,ID="NODE /* ISSUE VTAM ACTIVATE FOR NODE =/
IF RC=0 THEN /* VALID NODE NAME ? */
DO /* YES, RETURN CODE = 0 */
"WAIT 30 SECONDS FOR MESSAGES' ~ /* WAIT FOR 30 SECONDS */
IF EVENT()='M' THEN /* OUT OF WAIT - IS THERE A MSG? =*/
DO /* PROCESS TRAPPED MESSAGE */
'"MSGREAD' /* READ IN 1ST MESSAGE */
DO WHILE (RC=0) /* IF RC-=0 THEN NO MORE MSGS */
SELECT /* DETERMINE WHICH MESSAGE HIT =/
WHEN (MSGID() = 'ISTO61I'") /* NODE NOT FOUND =*/
THEN SAY '==> LU UNKNOWN ', /* INFORM USER */

'TO YOUR VTAM <=='
WHEN (MSGID() = 'ISTO93I') /* NODE NOW ACTIVE =*/
THEN SAY '==> TERMINAL ', /* INFORM USER */

MSGVAR(1)"' NOW ',
MSGVAR(2) ‘'<=='

OTHERWISE /* IGNORE THE VTAM MESSAGE */

'"WAIT CONTINUE' /* CONTINUE WAITING */

END /* OF SELECT FOR ISTO61I/IST093I =*/

'MSGREAD' /* READ IN THE NEXT MESSAGE */

END /* DO WHILE RC=0, LOOP BACK */

END /* PROCESS TRAPPED MESSAGE DO */
/* OUT OF DO WHILE, CHECK FOR

ERROR OR TIME-OUT EVENTS */

SELECT /* CHECK RESULT OF THE WAIT */

WHEN (EVENT()="E') THEN /* ERROR ENCOUNTERED ? */

SAY '"ERROR PROCESSING ', /* INFORM USER */

"ACTIVATE COMMAND'
WHEN (EVENT()='T') THEN /* WAIT TIME-OUT ENCOUNTERED? */

SAY 'NO RESPONSE TO ', /* INFORM USER */
"ACTLU CLIST FOR 'NODE
OTHERWISE /* NO-OP */
END /* OF SELECT FOR ERROR/TIME-OUT =/
END /* IF RC=0 (VALID NODENAME) */
END /* IF NODE-~='STOP' PROCESSING */

EXIT

Figure 58. ACTLU Example

CHKOPNUM Example
Eigure 59 an page 180 is an example of a command list that uses the PARSE

instruction.

Appendix C. Examples of REXX Command Lists for NetView 179

REXX Command Lists

/**/

/* */
/* THE FOLLOWING REXX COMMAND LIST IS A FAIRLY SIMPLE EXAMPLE */
/* OF HOW SOME OF THE BASIC REXX FUNCTIONS AND NETVIEW-SPECIFIC */
/* FUNCTIONS CAN BE USED IN A COMMAND LIST. IT ILLUSTRATES THE USAGE=*/
/* OF SUCH THINGS AS THE REXX 'PARSE' INSTRUCTION, AND THE NETVIEW */
/* SUPPLIED 'MSGTRAP', 'WAIT', 'MSGREAD', AND 'GLOBALV' COMMANDS. */
/* */
R R R R R R R R R R s R A e 22 2Ty
/* */
/* COMMAND LIST NAME: CHKOPNUM */
/* */
/* THIS COMMAND LIST CAN BE USED PERIODICALLY TO CHECK THE */
/* NUMBER OF OPERATORS CURRENTLY LOGGED ON, AND WILL KEEP THE */
/* INFORMATION IN COMMON GLOBAL VARIABLES. THE INFORMATION */
/* COLLECTED CAN LATER BE RETRIEVED BY USING THE 'DISPLAY' */
/* OPTION. */
/* */
/* INPUT: */
/* ' - WILL CHECK THE NUMBER OF OPERATORS LOGGED ON */
/* AND UPDATE APPROPRIATE COMMON GLOBAL VARIABLES */
/* '"DISPLAY' - WILL ANALYZE THE VALUE IN THE COMMON GLOBAL */
/* VARIABLES AND DISPLAY THE RESULTS */
/* ANY OTHER */
/* INPUT - WILL DEFAULT TO "' */
/* */
/% USAGE EXAMPLE: «/
/* 1. EXECUTE THE FOLLOWING TO CAUSE THE NUMBER OF */
/* OPERATORS TO BE CHECKED AT A CERTAIN TIME (COULD BE */
/* ANY TIME PERIOD); */
/* -> 'AT 08:00:00,CHKOPNUM' */

/* 2. AT ANY TIME, EXECUTE THE FOLLOWING COMMAND TO DISPLAY */
/* THE RESULTS OF THE PREVIOUS EXECUTIONS: */
/* -> 'CHKOPNUM DISPLAY' x/

/* RESULTS WILL BE DISPLAYED ON YOUR TERMINAL */
/* */
/* CHANGE CODE DATE DESCRIPTION */
Ty S S S S SRS S */
I+ */

/**/

Figure 59. CHKOPNUM Example (Part 1 of 2)

180 Customization: Using REXX and the NetView Command List Language

REXX Command Lists

SIGNAL ON ERROR

PARSE ARG OPTION

'GLOBALV GETC CHKOPTIMES, CHKOPNUM, CHKOPMAX'
IF OPTION = 'DISPLAY' THEN DO;

IF CHKOPTIMES = '' THEN
SAY 'NUMBER OF OPERATORS HAS NEVER BEEN CHECKED'
ELSE DO;

SAY 'NUMBER OF OPERATORS HAS BEEN CHECKED 'CHKOPTIMES' TIMES'
SAY 'AVERAGE NUMBER OF OPERATORS LOGGED ON
IS: 'CHKOPNUM/CHKOPTIMES
SAY 'MAXIMUM NUMBER OF OPERATORS LOGGED ON IS: 'CHKOPMAX
END;
EXIT 0;
END;
CUROPNUM = 0
'"TRAP AND SUPPRESS MESSAGES OPERATOR:,END'
"LIST STATUS=0PS'
DO UNTIL MSGID()='END'
"WAIT FOR MESSAGES'

'"MSGREAD'
IF MSGID() = 'OPERATOR:' THEN CUROPNUM = CUROPNUM +1
ELSE NOP

END

IF CHKOPTIMES = '' THEN CHKOPTIMES = 1

ELSE CHKOPTIMES = CHKOPTIMES + 1

IF CHKOPNUM = '' THEN CHKOPNUM = CUROPNUM

ELSE CHKOPNUM = CHKOPNUM + CUROPNUM

IF CHKOPMAX = '' THEN CHKOPMAX = CUROPNUM

ELSE IF CHKOPMAX < CUROPNUM THEN CHKOPMAX = CUROPNUM
'GLOBALV PUTC CHKOPTIMES, CHKOPNUM, CHKOPMAX'

EXIT 0;

ERROR: SAY 'ERROR OCCURRED. RETURN CODE = ' RC
EXIT -1;

Figure 59. CHKOPNUM Example (Part 2 of 2)

CHKRSTAT Example

Eigure 60 on page 187 is an example of a command list that uses the INTERPRET
instruction.

Appendix C. Examples of REXX Command Lists for NetView 181

REXX Command Lists

/**/

/*

/* THE FOLLOWING REXX COMMAND LIST IS MORE COMPLEX THAN CHKOPNUM.
/* IT ILLUSTRATES USAGE OF SUCH THINGS AS THE REXX 'INTERPRET'

/* INSTRUCTION, AND THE NETVIEW 'WAIT' (FOR MESSAGES AND TIME),
/* AND THE 'GETMLINE' COMMAND (FOR MULTILINE MESSAGES)

/*

*/
*/
*/
*/
*/
*/

/**/

/*

/* COMMAND LIST NAME: CHKRSTAT

/*

/* THIS COMMAND LIST CHECKS WHETHER A SPECIFIED RESOURCE
/* IS ACTIVE, AND INCREMENTS A COMMON GLOBAL VARIABLE THAT
/* REFLECTS THE NUMBER OF TIMES IT WAS IN THAT STATE. THIS
/* COMMAND LIST SHOULD BE SCHEDULED TO RUN UNDER AN AUTOTASK
/* AT REGULAR INTERVALS.

/*

/* INPUT PARAMETERS:

/* RESNAME - NAME OF RESOURCE TO CHECK STATUS OF

/*

/* CHANGE CODE DATE DESCRIPTION

2y

/*

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**/

SIGNAL ON ERROR /* SIGNAL IF ERROR OCCURS
PARSE UPPER ARG RESNAME /* GET INPUT, IF ANY

/* IF NO RESOURCE NAME GIVEN, DISPLAY ERROR MESSAGE AND EXIT

IF RESNAME = '' THEN DO;
SAY 'RESOURCE NAME MUST BE PROVIDED'
EXIT 99
END

/* SET UP TRAP FOR POSSIBLE RESPONSES TO 'D NET,ID=' COMMAND, ISSUE

/* COMMAND, AND WAIT FOR MESSAGE TO ARRIVE

'"TRAP AND SUPPRESS MESSAGES IST097I ISTO75I IST453T'
'D NET,ID="'RESNAME

'"WAIT 60 SECONDS FOR MESSAGES'

/* IF MESSAGE DID NOT ARRIVE, THEN GIVE ERROR MESSAGE AND EXIT
IF EVENT() -= 'M' THEN DO
SAY ' NO RESPONSE FROM VTAM - RESOURCE COUNT NOT UPDATED '
EXIT 99
END
/* READ MESSAGE. IF IT IS IST097I, ISSUE WAIT AGAIN, AND THE NEXT
/* MESSAGE READ SHOULD BE ISTO75I, WHICH HAS THE STATUS INFO

Figure 60. CHKRSTAT Example (Part 1 of 2)

182 Customization: Using REXX and the NetView Command List Language

*/
*/

*/

*/
*/

*/
*/

'M
IF

EN

/*
/*
/*
/*
/*
/*
/*
IF

EN
/*
/*
/*
/*
/*
/*
/*
EL

REXX Command Lists

SGREAD'
MSGID() = 'ISTO97I' THEN DO;

'"WAIT CONTINUE'

'"MSGREAD'
/* IF THE MESSAGE IS NOT IST@75I, DO NOTHING, AND THE STATUS WILL
/% DEFAULT TO INACTIVE. IF IT IS ISTO75I, GET THE 2ND LINE OF THE
/* MULTI-LINE MESSAGE AND GET THE CURRENT STATE FROM THAT LINE

IF MSGID() = 'ISTO75I' THEN DO

'"GETMLINE STATLINE ' 2

/* IF STRING CONTAINS IST486I THEN PARSE OUT RESOURCE STATUS

IF INDEX(STATLINE,'IST4861') >0 THEN

PARSE VALUE STATLINE WITH MSGTXT1 'STATUS=' RESSTATE .

END
D

IF THE CURRENT STATE IS ACTIVE OR ACTIVE W/SESSION, THEN GET
INCREMENT AND UPDATE THE COMMON GLOBAL VARIABLE WITH THE NAME
'"RESOURCE NAME' CONCATENATED WITH '@A'. NOTE THAT SINCE THE
GLOBALV COMMAND REQUIRES THE VARIABLE NAME, A VARIABLE HAS
TO BE SET TO THE VARIABLE NAME, SINCE IT IS DYNAMICALLY
CONSTRUCTED. THE REXX INTERPRET INSTRUCTION MUST ALSO BE USED
TO PERFORM OPERATIONS ON THE DYNAMICALLY CONSTRUCTED VARIABLE
RESSTATE = 'ACTIV' | RESSTATE = 'ACT/S' THEN DO
VARNAME = RESNAME|'@A"
'GLOBALV GETC 'VARNAME
INTERPRET 'ACT# ='VARNAME
IF DATATYPE(ACT#) -= 'NUM' THEN
ACT# = 1 /* TF NONNUMERIC
ELSE
ACT# = ACT# + 1
INTERPRET VARNAME'=ACT#'
"GLOBALV PUTC 'VARNAME
D
IF THE CURRENT STATE IS NOT ACTIVE OR ACTIVE W/SESSION, THEN GET
INCREMENT AND UPDATE THE COMMON GLOBAL VARIABLE WITH THE NAME
'"RESOURCE NAME' CONCATENATED WITH '@NA'. NOTE THAT SINCE THE
GLOBALV COMMAND REQUIRES THE VARIABLE NAME, A VARIABLE HAS
TO BE SET TO THE VARIABLE NAME, SINCE IT IS DYNAMICALLY
CONSTRUCTED. THE REXX INTERPRET INSTRUCTION MUST ALSO BE USED
TO PERFORM OPERATIONS ON THE DYNAMICALLY CONSTRUCTED VARIABLE
SE DO
VARNAME = RESNAME]||'@NA'
'GLOBALV GETC 'VARNAME
INTERPRET 'NACT# ='VARNAME
IF DATATYPE(NACT#) -= 'NUM' THEN

NACT# =1 /* IF NONNUMERIC

ELSE

NACT# = NACT# + 1
INTERPRET VARNAME'=NACT#'
'GLOBALV PUTC 'VARNAME

END

EXIT 0;

ERROR: SAY 'ERROR OCCURRED. RETURN CODE IS ' RC

EXIT -1; /* END COMMAND LIST FOR ERROR

Figure 60. CHKRSTAT Example (Part 2 of 2)

*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*

/

*/

DSPRSTAT Example

Ei.gJ.l.l:P_ExJ_nn_pa.ge_].SA is an example of a command list that uses the same type of

function as [Ei

Appendix C. Examples of REXX Command Lists for NetView

183

REXX Command List

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
PA

/*
IF

v
VA
'G
'G
IN
IN

/*
IF

/*
EL

EN
EX

S

Fokkk ok kkkkk ok ok ko k ko k ok ko ko k ok ko kR ok ok ok ok ok ko k ko k ko ko ko ko kkkkkkkkkkkkkkkk
*/
THE FOLLOWING REXX COMMAND LIST GOES ALONG WITH THE PREVIOUS */
EXAMPLE (CHKRSTAT), AND SHOWS MANY OF THE SAME TYPE OF FUNCTIONS =/
AS THE PREVIOUS EXAMPLE. */
*/
THIS COMMAND LIST COULD BE USED BY ANY OST OPERATOR TO DISPLAY */
THE RESULTS OF SEVERAL EXECUTIONS OF THE CHKRSTAT COMMAND LIST */
FOR A SPECIFIC RESOURCE. IT COULD BE USED AS AN AID IN */
DETERMINING HOW OFTEN A RESOURCE IS ACTIVE, BASED ON THE INTERVALSx/
IN WHICH IT WAS CHECKED BY THE CHKRSTAT COMMAND LIST */
*/
Fokkk kR kkk ok ok ko k ok k ok ko ko kR ko k Rk ok ok ok ok ko k ok ko k ok ko ko ko k ok kkkkkkkkkkkkkk
*/
COMMAND LIST NAME: DSPRSTAT */
*/
THIS COMMAND LIST CAN BE USED TO DISPLAY HOW OFTEN A RESOURCE =/
WAS ACTIVE VS. NOT ACTIVE, AS RECORDED BY THE CHKRSTAT COMMAND =/
LIST */
*/
INPUT PARAMETERS: NONE */
*/
CHANGE CODE DATE DESCRIPTION */
___ */
*/
deok ok kok ok ok ok ok ok ok ok ok k ok dok ke ok ok k ok ok k ok kk ok ok ok ok ok ok ok k ko k ko ko k ok ok k ok kk ok ok ok ok ok ko k ke kkk
RSE UPPER ARG RESNAME /* GET INPUT, IF ANY =*/
IF NO RESOURCE NAME GIVEN, DISPLAY ERROR MESSAGE AND EXIT */
RESNAME = '' THEN DO;
SAY 'RESOURCE NAME MUST BE PROVIDED'
EXIT 99
END
ARNAMEA = RESNAME||'@A" /* SET THE VAR NAME ACT =/
RNAMENA = RESNAME||'@NA' /* SET THE VAR NAME NACT =/
LOBALV GETC 'VARNAMEA /% GET THE ACTIVE INFO =/
LOBALV GETC 'VARNAMENA /* GET THE INACTIVE INFO =*/
TERPRET 'RACT = 'VARNAMEA /* PUT ACTIVE # IN VAR =/
TERPRET 'RINACT = 'VARNAMENA /% PUT INACTIVE # IN VAR =*/
DISPLAY THE STATISTICS FOF THE RESOURCE SPECIFIED */
RACT = '' & RINACT = '' THEN
SAY 'NO STATISTICS HAVE BEEN COLLECTED FOR RESOURCE: 'RESNAME
DISPLAY THE STATISTICS FOR THE RESOURCE SPECIFIED */
SE DO
IF DATATYPE(RACT) -= 'NUM' THEN RACT = 0 /* IF NOT NUMERIC =/
IF DATATYPE(RINACT) —= 'NUM' THEN RINACT = 0 /* TF NOT NUMERIC*/

SAY 'RESOURCE 'RESNAME' STATISTICS:'
SAY ' NUMBER OF TIMES RESOURCE WAS ACTIVE : 'RACT
SAY ' NUMBER OF TIMES RESOURCE WAS INACTIVE: 'RINACT

PERCENTACT = RACT/(RACT+RINACT)=*100]'%" /* DETERMINE PERCENT =*/
SAY ' PERCENTAGE OF TIMES RESOURCE WAS ACTIVE: 'PERCENTACT

D

ITO

Figure 61. DSPRSTAT Example

GETCG Example

184 Customization: Using REXX and the NetView Command List Language

REXX Command Lists

/**/

/* GETCG COMMAND LIST - REXX VERSION */
/* */
/* GETCG COMMAND LIST GETS THE VALUE OF A COMMON GLOBAL */
/* VARIABLE AND DISPLAYS IT TO THE REQUESTING TASK */
[ok ko ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ok ok ek ok ok ok Kk *kkkkkk [
TRACE E

'GLOBALV GETC' MSGVAR(1)

"MESSAGE 3091 GETCG COMMON GLOBAL VARIABLE' MSGVAR(1) ,
"HAS VALUE ' VALUE(MSGVAR(1))

EXIT

Figure 62. GETCG Example

GREETING Example

/**/

/* */
/* GREETING - SHOW SIMPLE EXAMPLE OF WAITING AND TRAPPING */
/* USING THE DATE COMMAND */
/* */
/* NOTE: WHEN DATE IS ENTERED, THE FOLLOWING IS RETURNED: */
/* */
/* CNM3591 DATE : TIME = HH:MM DATE = MM/DD/YY */
/**/
"TRAP AND SUPPRESS ONLY MESSAGES CNM359I ' /* TRAP DATE MESSAGE */
'DATE' /* ISSUE COMMAND */
"WAIT 10 SECONDS FOR MESSAGES' /* WAIT FOR ANSWER */
SELECT /* RESULT IS BACK, PROCESS IT... =/
WHEN (EVENT()='M"') THEN /* DID WE GET A MESSAGE? */
DO /* YES... */
'MSGREAD' /* ... READ IT IN */
HOUR=SUBSTR(MSGVAR(5),1,2) /* ... PARSE OUT THE HOUR */
SELECT /* GIVE APPROPRIATE GREETING... */
WHEN (HOUR<12) THEN /* ...BEFORE NOON? */
SAY 'GOOD MORNING'
WHEN (HOUR<18) THEN /* ...BEFORE SIX? */
SAY 'GOOD AFTERNOON'
OTHERWISE /* ...MUST BE NIGHT */
SAY 'GOOD EVENING'
END /* OF SELECT */
END /* OF DO */
WHEN (EVENT()='E') THEN /* DID WE GET AN ERROR? */
SAY "ERROR OCCURRED WAITING FOR DATE COMMAND RESPONSE'
WHEN (EVENT()='T') THEN /* DID WE GET A TIME-OUT? */
SAY 'NO MESSAGE RETURNED FROM DATE COMMAND'
OTHERWISE
END /* OF SELECT */
EXIT

Figure 63. GREETING Example

Appendix C. Examples of REXX Command Lists for NetView 185

REXX Command Lists

LISTVAR Example

/**/

/% %/
/* THE LISTVAR COMMAND LIST WRITTEN IN REXX %/
/% %/
/**/
SELECT
WHEN MSGVAR(1)='?' THEN /* HELP REQUESTED ? x/
"HELP LISTVAR' /* GO GET HELP */
WHEN MSGVAR(1)-='" THEN /* ANY PARMS SPECIFIED ? */
'MESSAGE 306E,LISTVAR' MSGVAR(1) /+ NO PARMS ALLOWED x/
OTHERWISE /* ALL OK, LIST OUT VARIABLES«*/
DO

MYSYS = SUBSTR(OPSYSTEM(),1,3)
SAY "CNM353I LISTVAR : 'OPSYSTEM'
IF MYSYS = 'VSE' THEN

SAY "CNM353I LISTVAR : 'CURPART' = "CURPART()
IF MYSYS = 'MVS' THEN

"OPSYSTEM()

SAY "CNM3531 LISTVAR : 'MVSLEVEL' = "MVSLEVEL()
IF MYSYS = 'MVS' THEN

SAY "CNM3531 LISTVAR : 'CURSYS' = "CURSYS()
SAY "CNM3531 LISTVAR : 'VTAMLVL' = "VTAM()

SAY "CNM3531 LISTVAR : 'VTCOMPID' = "VTCOMPID()

TEMP = NETVIEW()
IF TEMP = 'NV33' THEN TEMP = 'Tivoli VIR3'

SAY "CNM3531 LISTVAR : 'NETVIEW' = "TEMP

SAY "CNM3531 LISTVAR : 'NETVIEW' = "NETVIEW()
SAY "CNM353I LISTVAR : 'NETID' = "NETID()
SAY "CNM3531 LISTVAR : 'DOMAIN' = "DOMAIN()
SAY "CNM353I LISTVAR : 'APPLID' = "APPLID()
SAY "CNM353I LISTVAR : 'OPID' = "OPID()
SAY "CNM353I LISTVAR : 'LU' = "LU()

SAY "CNM353I LISTVAR : 'TASK' = "TASK()
SAY "CNM353I LISTVAR : 'NVCNT' = "NVCNT()
SAY "CNM353I LISTVAR : 'HCOPY' = "HCOPY ()

IF MYSYS = 'MVS' THEN

SAY "CNM3531 LISTVAR : 'CURCONID' = "CURCONID()
IF MYSYS = 'MVS' &AUTOTASK() = '1' THEN

SAY "CNM3531 LISTVAR : 'AUTCONID' = "AUTCONID()

IF VTAM() = '' THEN /* IS VTAM ACTIVE ? */
SAY 'CNM386I LISTVAR : VTAM IS NOT ACTIVE AT THIS TIME'
END /* OF THE LIST VARIABLES */
END /* OF SELECT */
RETURN /* RETURN TO CALLER */

EXIT

Figure 64. LISTVAR Example

PRINT Example
Eigure 65 on page 187 is an example of a command list used for printing a data set.

186 Customization: Using REXX and the NetView Command List Language

/* PRINT
[* —-mm-
/*

COMMAND LIST

REXX Command Lists

/**/

/* FUNCTION: THIS COMMAND LIST PRINTS MEMBERS OF A DATA SET TO A
SYSTEM PRINT FILE.

/*
/*

/* INPUT PARMS: DATASETNAME = FULLY QUALIFIED DATA SET NAME
(INCLUDING MEMBER NAME) TO DISPLAY AT THE TERMINAL.

/*
/*

/* OUTPUT: A SYSTEM PRINT FILE.

/**/

SIGNAL IF ERROR OCCURS*/

SIGNAL ON ERROR /*

ARG DATASETNAME /*

IF DATASETNAME='"' | PARMCNT() > 1 THEN /*

DO /*

SAY 'INCORRECT SYNTAX USED.' /*

SAY 'CORRECT SYNTAX IS : ' /*

SAY ! PRINT DATASET.NAME(MEMBER) ' /=

RC=24 /*

END /*

ELSE /*

DO /*

"TRAP DISPLAY ONLY MESSAGES *' /*

"ALLOCATE SYSOUT(A) FREE RECFM(FB) ', /*
"LRECL(80) BLKSIZE(4000)" /% ...

'"WAIT FOR MESSAGES' /*

"MSGREAD' /*

IF (MSGID()=='CNM2721I') THEN

DO /*

SAY MSGID() MSGSTR() /*

END /*

ELSE /*

DO /*

DDNAMEQ = MSGVAR(1) /*

EN
END

RETURN

'"TRAP AND DISPLAY ONLY MESSAGES *' /*
"ALLOCATE DA('DATASETNAME') SHR FREE'/*

'"WAIT FOR MESSAGES' /*
'"MSGREAD' /*
'"TRAP NO MESSAGES' /*
IF (MSGID()—='CNM2721') THEN /*
DO /*
SAY MSGID() MSGSTR() /*

END /*
ELSE /*
DO /*
DDNAMEI = MSGVAR(1) /*

PARSE CLIST INPUT

NO CLIST INPUT ?
NAME NOT SPECIFIED
ISSUE ERROR MSG
ISSUE HELP MSG

ISSUE HELP MSG

SET RETURN CODE

NAME NOT SPECIFIED
CORRECT NAME/SYNTAX
NAME WAS SPECIFIED
TRAP/SUPPRESS MSGS
ALLOC/CONNECT SYSTEM
PRINTER FOR USAGE
WAIT FOR RESULTS
READ A MESSAGE IN

/* IS MSG CNM2721 ?

- CNM2721 MSG
DISPLAY MESSAGE

-~ CNM2721 MSG

MSG IS CNM2721I
PROCESS 1ST CNM2721
SAVE OUTPUT DDNAME
TRAP/SUPPRESS MSGS
ALLOC/CONNECT FILE
WAIT FOR MESSAGES
READ A MESSAGE IN
DISABLE TRAP MSGS
IS MSG CNM2721 ?

- CNM2721 MSG*/
DISPLAY MESSAGE

- CNM2721 MSG*/

MSG IS CNM2721
PROCESS 2ND CNM2721
SAVE INPUT DDNAME

ADDRESS MVS 'EXECIO 1 DISKR 'DDNAMEI /* READ 1ST LINE

DO WHILE RC=0

/*

WHILE RC = 0

ADDRESS MVS 'EXECIO 1 DISKW 'DDNAMEO /* WRITE LINE OUT
ADDRESS MVS 'EXECIO 1 DISKR 'DDNAMEI /% READ NEXT LINE

END

/*
/*

WHILE RC = 0
PUT OUT COMPLETE MSG

'"MESSAGE 3091 PRINT CLIST IS NOW FINISHED'

END
D

ERROR: SAY 'ERROR OCCURRED.

EXIT -1;

Figure 65. PRINT Example

/*
/*
/*

/*
RETURN CODE IS

PROCESS 2ND CNM2721
PROCESS 1ST CNM2721
NAME WAS SPECIFIED

RETURN TO CALLER/EXIT

" RC

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/

*

/* END COMMAND LIST FOR ERROR=*/

Appendix C. Examples of REXX Command Lists for NetView

187

REXX Command Lists

TYPE Example

Figure 6d is an example of a command list used to display the members of a data
set.

/**/

/* TYPE COMMAND LIST */
[* mmmmm oo */
/* */
/* FUNCTION: THIS COMMAND LIST DISPLAYS MEMBERS OF A DATA SET AT THE =/
/* (INVOKING) USER'S NETVIEW TERMINAL ONE LINE AT A TIME. */
/* */
/* INPUT PARMS: DATASETNAME = FULLY QUALIFIED DATA SET NAME */
/* (INCLUDING MEMBER NAME) TO DISPLAY AT THE TERMINAL. */
/* */

/* OUTPUT: LINE = EACH LINE WITHIN THE MEMBER SPECIFIED BY THE USER. =/

/**/

SIGNAL ON ERROR /* SIGNAL IF ERROR OCCURS*/
ARG DATASETNAME /* PARSE CLIST INPUT %/
IF DATASETNAME='' | PARMCNT() > 1 THEN /* NO CLIST INPUT ? */
DO /* NAME NOT SPECIFIED +/
SAY 'INCORRECT SYNTAX USED.' /* ISSUE ERROR MSG */

SAY 'CORRECT SYNTAX IS : /* ISSUE HELP MSG */

SAY TYPE DATASET.NAME (MEMBER) ' /# ISSUE HELP MSG */
RC=24 /* SET RETURN CODE */

END /* NAME NOT SPECIFIED =/
ELSE /* CORRECT NAME/SYNTAX =/
DO /* NAME WAS SPECIFIED +/
'TRAP AND SUPPRESS ONLY MESSAGES ' /% TRAP/SUPPRESS MSGS */
'"ALLOCATE DA('DATASETNAME') SHR FREE' /* ALLOC/CONNECT FILE =/
'"WAIT FOR MESSAGES' /* WAIT FOR MESSAGES */
'"MSGREAD' /* READ A MESSAGE IN */
'TRAP NO MESSAGES' /* DISABLE TRAP MSGS */

IF (MSGID()-='CNM2721') THEN /* IS MSG CNM2721 ? */

DO /* - CNM2721 MSG */

SAY MSGID() MSGSTR() /* DISPLAY MESSAGE */

END /* = CNM2721 MSG */

ELSE /* MSG IS CNM272I */

DO /* PROCESS CNM2721 MSG */
DDNAME = MSGVAR(1) /* SAVE DYNAMIC DDNAME +/

ADDRESS MVS 'EXECIO 1 DISKR 'DDNAME /% PUT 1ST LINE ON STACK */

DO WHILE RC=0 /* WHILE RC = 0 */

PULL RECORD /* PULL LINE FROM STACK =/

SAY SUBSTR(RECORD,1,68) /* DISPLAY LINE TO USER =/

/* PUT NEXT LINE ON STACK=*/
ADDRESS MVS 'EXECIO 1 DISKR 'DDNAME
END /* WHILE RC = 0 */
/* PUT OUT COMPLETE MSG */
'"MESSAGE 3091 TYPE CLIST IS NOW FINISHED'

END /* PROCESS CNM272I MSG =*/

END /* NAME WAS SPECIFIED */

RETURN /* RETURN TO CALLER/EXIT */
ERROR: SAY 'ERROR OCCURRED. RETURN CODE IS ' RC

EXIT -1; /* END COMMAND LIST FOR ERROR*/

Figure 66. TYPE Example

TYPEIT Example
Eigure 67 on page 189 is an examEIe of a command list that does essentially the

same thing as the example in , but closes the data set in case of error.

188 Customization: Using REXX and the NetView Command List Language

/**/

/* TYPE COMMAND LIST */
[* mmmmmmm oo */
/* */
/* FUNCTION: THIS COMMAND LIST DISPLAYS MEMBERS OF A DATA SET AT THE =/
/* (INVOKING) USER'S NETVIEW TERMINAL ONE LINE AT A TIME. */
/* */
/* INPUT PARMS: DATASETNAME = FULLY QUALIFIED DATA SET NAME */
/* (INCLUDING MEMBER NAME) TO DISPLAY AT THE TERMINAL. */
/* */

/* OUTPUT: LINE = EACH LINE WITHIN THE MEMBER SPECIFIED BY THE USER. */

/**/
signal on error

rc =0

parse arg datasetname '(' member ')' extra

if datasetname = '' | parmcnt() > 1 | member = '' | extra == '' then
do

say 'Incorrect syntax used.'
say 'Correct syntax is : '
say ' TYPE dataset.name(member)
rc = 24
end
else
do
"trap and suppress only messages CNM2721'
signal on halt
'allocate da('datasetname'('member')) shr'
'wait 5 seconds for messages'
'msgread’
if msgid() = 'CNM272I' then
do
ddname = msgvar(1)
if fndmbr(ddname,member) -= 0 then

do
say 'Member' member 'does not exist.'
rc = 4
end
else
do

address mvs 'execio * diskr' ddname '(finis'
do while queued() == 0
pull record
say substr(record,1,68)
end
signal off halt
'free file('ddname')'
"trap no messages'
'message 3091 ''TYPEIT'',''clist is now finished.'"'

end
end
end
return rc
halt:

'free file('ddname')"
"trap no messages'

return -5
error: say 'Error occurred. Return code is' rc
return -1

Figure 67. TYPEIT Example

Appendix C. Examples of REXX Command Lists for NetView 189

190 Customization: Using REXX and the NetView Command List Language

Index

Special Characters

/*%DATA directive 21

/*%LOGIC directive 22

&1 - &31 parameter variables 87
&ACTIONDL control variable 129
&ACTIONMG control variable 129
&APPLID control variable 158
&AREAID control variable 136
&ASID control variable 158
&ATTENDED control variable 159
&ATTNID control variable 129
&AUTCONID control variable 159
&AUTOTASK control variable 159
&AUTOTOKE control variable 136
&BEGWRITE control statement 59
&BITAND built-in function 64
&BITOR built-in function 64
&BITXOR built-in function 65
&CART control variable 136
&CGLOBAL control statement 97
&CONCAT built-in function 66
&CONTROL control statement 56
&CURCONID control variable 159
&CURSYS control variable 159
&DATE control variable 164
&DESC control variable 136
&DISC control variable 159
&DISTAUTO control variable 159
&DOMAIN control variable 160
&EXIT control statement 79
&GOTO control statement 79
&HCOPY control variable 163
&HDRMTYPE control variable 129
&IF control statement 77
&IFRAUGMT control variable 130
&IFRAUI3X control variable 130
&IFRAUINS control variable 130
&IFRAUIND control variable 130
&IFRAUSB2 control variable 130
&IFRAUSC2 control variable 130
&IFRAUSDR control variable 130
&IFRAUSRB control variable 131
&IFRAUSRC control variable 131
&IFRAUTAL1 control variable 131
&IFRAUWF1 control variable 131
&JOBNAME control variable 136
&JOBNUM control variable 136
&KEY control variable 136
&LENGTH built-in function 69
&LINETYPE control variable 132
&LU control variable 164
&MCSFLAG control variable 137
&MSGASID control variable 137
&MSGAUTH control variable 137
&MSGCATTR control variable 137
&MSGCMISC control variable 137
&MSGCMLVL control variable 138
&MSGCMSGT control variable 138
&MSGCNT control variable 138
&MSGCQOJBN control variable 138
&MSGCPROD control variable 139

&MSGCSPLX control variable 139
&MSGCSYID control variable 139
&MSGDOMEFL control variable 139
&MSGGBGPA control variable 139
&MSGGDATE control variable 140
&MSGGFGPA control variable 140
&MSGGMFLG control variable 140
&MSGGMID control variable 140
&MSGGSEQ control variable 140
&MSGGSYID control variable 140
&MSGGTIME control variable 141
&MSGID control variable 132
&MSGORIGIN control variable 133
&MSGSRCNM control variable 141
&MSGSTR control variable 134
&MSGTOKEN control variable 141
&MSGTSTMP control variable 134
&MSGTYP control variable 141
&MSUSEG built-in function 70
&MVSLEVEL control variable 160
&MVSRTAIN variable 135
&NCCFCNT control variable 125
&NCCFID built-in function 71, 126
&NCCFSTAT built-in function 72, 126
&NETVIEW control variable 160
&NVDELID control variable 135
&OPID control variable 158
&OPSYSTEM control variable 160
&PARMCNT control variable 125
&PARMSTR control variable 125
&PARTID control variable 160
&PAUSE control statement 61
&PRTY control variable 141
&REPLYID control variable 135
&RETCODE control variable 125
&RXDEFENYV control variable 163
&RXDEFSTR control variable 163
&RXNUMENYV control variable 163
&RXOVRENYV control variable 163
&RXOVRSTR control variable 163
&SESSID control variable 135
&SMSGID control variable 142
&STCKGMT control variable 161
&SUBSTR built-in function 73
&SUPPCHAR control variable 161
&SYSCONID control variable 142
&SYSID control variable 142
&SYSPLEX control variable 161
&TASK control variable 161
&TGLOBAL control statement 96
&THEN clause, &IF control
statement 78
&TIME control variable 164
&VTAM control variable 162
&VTCOMPID control variable 162
&WAIT control statement 81
&WEEKDAYN control variable 163
&WRITE control statement 58
&WTOREPLY control variable 142

A

accessibility information ix
ACTAPPLS example
REXX 177
ACTIONDL
NetView command list language
control variable 129
REXX function 129
ACTIONMG
NetView command list language
control variable 129
REXX function 129
activating command lists 4
ACTLU example
REXX 179
ADDRESS instruction 28
AFTER command, scheduling command
lists 9
ALL, &CONTROL operand 57
ALLOCATE, NetView command 30
allocating data sets, NetView 30
APPLID
NetView command list language
control variable 158
REXX function 158
AREAID
NetView command list language
control variable 136
REXX function 136
WTO command 136
arithmetic operations, assignment
statements 55
ASID
NetView command list language
control variable 158
REXX function 158
Assembler command processors, nesting
REXX command lists 32
assignment
clauses, REXX 19
statements, NetView command list
language 54
AT command, scheduling command
lists 9
ATTENDED
NetView command list language
control variable 159
REXX function 159
ATTNID
NetView command list language
control variable 129
REXX function 129
AUTBYPAS
REXX function 120
AUTCONID
NetView command list language
control variable 159
REXX function 159
AUTHCHK
REXX function 121

191

AUTHCHKX
REXX function 123
AUTODROP command, REXX 7
automation, message 105
automation task 16
AUTOTASK
NetView command list language
control variable 159
OST restrictions 16
REXX function 159
AUTOTBL command 105
AUTOTOKE
NetView command list language
control variable 136
REXX function 136
AUTOWRAP setting 14

BEGWRITE control statement 59
BGNSESS command 12
blanks stripping 164
books
feedback viii
online viii
ordering viii
built-in function
NetView command list language
assignment statement 56
built-in function, &HIER 66
built-in functions
NetView command list language
&BITAND 64
&BITOR 64
&BITXOR 65
&CONCAT 66
&HIER 66
&LENGTH 69
&MSUSEG 70
&NCCFID 71, 126
&NCCFSTAT 72, 126
&SUBSTR 73
definition 63
REXX 19

C

C command procedures, nesting REXX

command lists 32
CALL instruction, using 27
calling another command list 10
CART
NetView command list language
control variable 136
REXX function 136
WTO, WTOR commands 136
CGI
REXX function 159
CGLOBAL
control statement 97
REXX function 128
CHKOPNUM, example command
list 179
CHKRSTAT, example command list

CHRON command, scheduling command

lists 9

clauses, REXX 19
CLEAR command 59
CMD
&CONTROL operand 57
command 13
CMDNAME
REXX function 124
CMDSYN statement 5
code points, translating 118
coding conventions
NetView command list language
continuation statements 44
double-byte character text 45
suppression character
conventions 46
syntax 43
REXX
coding non-REXX commands,
REXX command list 23
record size 23
suppressing display, non-REXX
command 25
syntax 23
command list information
NetView command list language
control variables 120
REXX functions 120
command list language, NetView 3
command lists
activating 4
commands used in 173
compiling command lists 20
creating 5
creating data sets, MVS 5
definition 3
display, controlling during
execution 16
loading, main storage 7

long-running commands, using 12

message driven 105
naming 5
nested 10
network commands, using 11
Network Control Program,
activating 4
overview 3
restarting 9
restrictions under PPT 15
routing messages 105
running 8
SHOWCODE 14
startup, examples 4
stopping 9
suspending 9
system commands, using 12
updating 5
using 3

commands
AFTER 9
ALLOCATE 30
AT 9
AUTODROP 7
AUTOTBL 105
BGNSESS 12
CHRON 9
CMD 13

192 Customization: Using REXX and the NetView Command List Language

commands (continued)
common operations services
LINKDATA 110
LINKPD 111
LINKTEST 110
RUNCMD 112
DEFAULTS 8
EVERY 9
EXECIO 29
FREE 30
full-screen 14
GO 9,86
hardware monitor, using command
lists 12
long-running
major 12
minor 13
MSGROUTE 105
network 11
operator
AFTER 9
AT 9
CHRON 9
EVERY 9
running command lists 9
OVERRIDE 8
RESET 9, 86
RETURN 12
session monitor, using command
lists 12
STACK 9, 86
status monitor, using command
lists 12
system 12
TRACE END (TE) 33
TRACE START (TS) 32
UNIQUE 13, 14
UNSTACK 9, 86
UPPER 14
VIEW 14
VIAM 11
comments
NetView command list language 54
REXX 19
common global variables
NetView command list language 97
common operations services (COS)
commands 109
comparing NetView command list
language, REXX 169
CONCAT built-in function 66
constants, assignment statements 54
continuation statements 44
CONTINUE, &WAIT operand 90
CONTROL control statement 56
control statements, NetView command
list language
&BEGWRITE 59
&CGLOBAL 97
&CONTROL 56
&EXIT 79
&GOTO 79
&IF 77
&PAUSE 61
&TGLOBAL 96
&WAIT 81
&WRITE 58

control statements, NetView command
list language (continued)
comparison, REXX instructions 169
definition 56
control variables, NetView command list
language
&1 - &31 87
&ACTIONDL 129
&ACTIONMG 129
&APPLID 158
&AREAID 136
&ASID 158
&ATTENDED 159
&ATTNID 129
&AUTCONID 159
&AUTOTASK 159
&AUTOTOKE 136
&CART 136
&CURCONID 159
&CURSYS 159
&DATE 164
&DESC 136
&DISC 159
&DISTAUTO 159
&DOMAIN 160
&HCOPY 163
&HDRMTYPE 129
&IFRAUGMT 130
&IFRAUI3X 130
&IFRAUIN3 130
&IFRAUIND 130
&IFRAUSB2 130
&IFRAUSC2 130
&IFRAUSDR 130
&IFRAUSRB 131
&IFRAUSRC 131
&IFRAUTA1 131
&IFRAUWF1 131
&JOBNAME 136
&JOBNUM 136
&KEY 136
&LINETYPE 132
&LU 164
&MCSFLAG 137
&MSGASID 137
&MSGAUTH 137
&MSGCATTR 137
&MSGCMISC 137
&MSGCMLVL 138
&MSGCMSGT 138
&MSGCNT 138
&MSGCOJBN 138
&MSGCPROD 139
&MSGCSPLX 139
&MSGCSYID 139
&MSGDOMFL 139
&MSGGBGPA 139
&MSGGDATE 140
&MSGGFGPA 140
&MSGGMFLG 140
&MSGGMID 140
&MSGGSEQ 140
&MSGGSYID 140
&MSGGTIME 141
&MSGID 132
&MSGORIGIN 133
&MSGSRCNM 141

control variables, NetView command list
language (continued)
&MSGSTR 134
&MSGTOKEN 141
&MSGTSTMP 134
&MSGTYP 141
&MVSLEVEL 160
&MVSRTAIN 135
&NCCFCNT 125
&NETID 160
&NETVIEW 160
&NVDELID 135
&OPID 158
&OPSYSTEM 160
&PARMCNT 125
&PARMSTR 125
&PARTID 160
&PRTY 141
&REPLYID 135
&RETCODE 125
&RXDEFENV 163
&RXDEFSTR 163
&RXNUMENV 163
&RXOVRENV 163
&RXOVRSTR 163
&SESSID 135
&SMSGID 142
&STCKGMT 161
&SUPPCHAR 161
&SYSCONID 142
&SYSID 142
&SYSPLEX 161
&TASK 161
&TIME 164
&VTAM 162
&VTCOMPID 162
&WAIT, using 87
&WEEKDAYN 163
&WTOREPLY 142
comparing REXX functions 170
definition 52
CONTWAIT, &WAIT operand 89
COS return codes 110
creating command lists 5
CURCONID
NetView command list language
control variable 159
REXX function 159
CURSYS
NetView command list language
control variable 159
REXX function 159
Customer Support ix

D

DATA (%DATA) directive 21
Data REXX 20
/*%DATA directive 21
/*%LOGIC directive 22
host command environment 29
data set, information functions 126
data set, MVS 5
data set information functions 126
DATE control variable 164
DBCS 45
deallocating data sets, NetView 30

DEFAULTS command 8
DESC
NetView command list language
control variable 136
REXX function 136
WTO, WTOR commands 136
disability information ix
DISC
NetView command list language
control variable 159
REXX function 159
DISPLAY
&WAIT operand 89
display, controlling 16
displaying panels 14
DISTAUTO
NetView command list language
control variable 159
REXX function 159
DOMAIN
NetView command list language
control variable 160
REXX function 160
domain information, REXX
functions 125
double-byte character set characters
(DBCS)
&CONCAT, using 66
&SUBSTR, using 74
coding conventions, NetView
command list language 45
PPT, command list 16
DOUBLESUPP character 46
DSIPUSH macro 13
DSPRSTAT, example command list 183

E

e-mail contact ix
editing facilities, updating command
lists 5
ENDWAIT, &WAIT operand 85, 89
ENVDATA
REXX function 160
environment addressed by REXX,
changing 28
ERR, &CONTROL operand 57
ERROR, &WAIT operand 85
errors, handling
NetView command list language 86
REXX 34
EVENT
REXX function 129
event=-label pairs, &WAIT control
statement 82, 86
EVERY command, scheduling command
lists 9

examples
ACTAPPLS
REXX 177
ACTLU
REXX 179
command list using
&WAIT 92

command lists
reference, define, update task
global variables 98

Index 193

examples (continued)
GETCG
REXX 184
GLOBVAR1 100
GREETING
REXX 185
LISTVAR
REXX 186
MSUSEG 157
REXX command lists, NetView
CHKOPNUM 179
CHKRSTAT 181
DSPRSTAT 183
PRINT 186
TYPE 188
TYPEIT 188
startup command lists 4
EXECIO command, REXX command
list 29
EXIT control statement 79
expressions
NetView command list language 54
REXX 19

F

feedback about publications ix

FNDMBR, REXX function 126

FREE, NetView command 30

full-screen commands, using 14

function packages, REXX, writing 28

functions

built-in
NetView command list
language 63
REXX 19
REXX

ACTIONDL() 129
ACTIONMG() 129
APPLID() 158
AREAID() 136
ASID() 158
ATTENDED() 159
ATTNID() 129
AUTBYPAS 120
AUTCONID() 159
AUTHCHK() 121
AUTHCHKX() 123
AUTOTASK() 159
AUTOTOKE() 136
CART() 136
CGI() 159
CGLOBAL() 128
CMDNAME() 124
CODE2TXT() 118
comparison, NetView command
list language control
variables 170
CURCONID() 159
CURSYS() 159
DESC() 136
DISC() 159
DISTAUTO() 159
DOMAIN() 160
ENVDATA() 160
EVENT() 129
FNDMBR() 126

194 Customization: Using REXX and the NetView Command List Language

functions (continued)
REXX (continued)

HCOPY() 163
HDRMTYPE() 129
HIER(n) 144
HMEPNAU 146
HMEPNET 146
HMEPNETV 147
HMFWDSNA 148
IFRAUGMT() 130
IFRAUIBX() 130
IFRAUIN3() 130
IFRAUIND() 130
IFRAUSB2() 130
IFRAUSC2() 130
IFRAUSDR() 130
IFRAUSRB() 131
IFRAUSRC() 131
IFRAUTA1L() 131
IFRAUWF1() 131
JOBNAME() 136
JOBNUM() 136
KEY() 136
LINESIZE() 28
LINETYPE() 132
LU 164
MCSFLAG() 137
MSGASID() 137
MSGAUTH() 137
MSGCATTR() 137
MSGCMISC() 137
MSGCMLVL() 138
MSGCMSGT() 138
MSGCNT() 138
MSGCOJBN() 138
MSGCPROD() 139
MSGCSPLX() 139
MSGCSYID() 139
MSGDOMFL() 139
MSGGBGPA() 139
MSGGDATE() 140
MSGGFGPA() 140
MSGGMFLG() 140
MSGGMID() 140
MSGGSEQ() 140
MSGGSYID() 140
MSGGTIME() 141
MSGID() 132
MSGORIGN() 133
MSGREAD 39
MSGSRCNM() 141
MSGSTR() 134
MSGTOKEN() 141
MSGTSTMP() 134
MSGTYP() 141
MSGVAR(M) 135
MSUSEG() 152
MVSLEVEL 160
MVSRTAIN() 135
NETID() 160
NETVIEW() 160
NVCNT() 125
NVDELID() 135
NVID(n) 126
NVSTAT() 126
OPID() 158
OPSYSTEM() 160

functions (continued)
REXX (continued)

PANEL() 160
PARMCNT() 125
PARTID() 160
PRTY() 141
REPLYID() 135
restrictions 27
ROUTCDE() 142
RXDEFENV() 163
RXDEFSTR() 163
RXNUMENV() 163
RXOVRENV() 163
RXOVRSTR() 163
SESSID() 135
SMSGID() 142
STCKGMT() 161
STORAGE() 28
SUBSYM() 120
SUPPCHAR() 161
SYSCONID() 142
SYSID() 142
SYSPLEX() 161
TASK() 161
TGLOBAL() 128
TOWER() 162
TYPE() 162
VTAM() 162
VTCOMPID() 162
WEEKDAYN() 163
WTOREPLY 142

functions, data set information 126

G

GETCG example
REXX 184
global variable information
functions 128
global variables
common
NetView command list
language 97
task
NetView command list
language 96
GLOBALV
instruction
NetView command list
language 102
GLOBVARI example 100
GO command 9, 86
GOTO control statement 79
GREETING example
REXX 185

H

hardware monitor commands, using 12

HCOPY
NetView command list language
control variable 163
REXX function 163
HDRMTYPE
NetView command list language
control variable 129

HDRMTYPE (continued)
REXX function 129
hexadecimal notation (NetView command
list language) 53
HIER function
NetView command list language 66
REXX 144
HMEPNAU function 146
HMEPNET function 146
HMEPNETV function 147
HMFWDSNA function 148

IF control statement 77
IFRAUGMT
NetView command list language
control variable 130
REXX function 130
IFRAUI3X
NetView command list language
control variable 130
REXX function 130
IFRAUIN3
NetView command list language
control variable 130
REXX function 130
IFRAUIND
NetView command list language
control variable 130
REXX function 130
IFRAUSB2
NetView command list language
control variable 130
REXX function 130
IFRAUSC2
NetView command list language
control variable 130
REXX function 130
IFRAUSDR
NetView command list language
control variable 130
REXX function 130
IFRAUSRB
NetView command list language
control variable 131
REXX function 131
IFRAUSRC
NetView command list language
control variable 131
REXX function 131
IFRAUTA1
NetView command list language
control variable 131
REXX function 131
IFRAUWF1
NetView command list language
control variable 131
REXX function 131
information, accessibility ix
information, disability ix
information function, MSU 143
initialization, running command lists 8
instructions, REXX
ADDRESS 28
CALL 27

instructions, REXX (continued)

comparison, NetView command list
language control statements 169

definition 19

PARSE 26

restrictions 26

SAY 23,26

SIGNAL 34

TRACE END 32

TRACE START 32

J

JOBNAME
NetView command list language
control variable 136
REXX function 136
JOBNUM
NetView command list language
control variable 136
REXX function 136

K

KEY
NetView command list language
control variable 136
REXX function 136
keyboard, shortcut keys ix

L

labels

NetView command list language 46

REXX 19
LENGTH built-in function 69
LINESIZE function 28
LINETYPE

NetView command list language

control variable 132

REXX function 132
LINKDATA command 110
LINKPD command 111
LINKTEST command 110
LISTVAR example

REXX 186
loading command lists, storage 7
LOGIC (%LOGIC) directive 22
logon, operator, automatically running

command lists 8

long-running commands

major 12

minor 13

queuing 13
LU

NetView command list language

control variable 164
REXX function 164

M

major long-running commands 12
management services unit (MSU)
functions
&HIER 66

management services unit (MSU)
functions (continued)
&MSUSEG 70
HIER() 144
MSUSEG() 152
NetView command list language 63,
66, 70
REXX 66, 69, 70
management services units information
function 143
manuals
feedback viii
online viii
ordering viii
MCSFLAG
NetView command list language
control variable 137
REXX function 137
message
=-label pairs, coding 82, 86
automating responses 105
multiline, working 84
processing information
REXX functions 128
routing, command list 105
sending, operators 57
waiting, command lists
NetView command list
language 89
message automation
command lists
defining 105
error handling 107
running 9
testing 106
implementing 105
midnight 164
minor long-running commands 13
MSGASID
NetView command list language
control variable 137
REXX function 137
MSGAUTH
NetView command list language
control variable 137
REXX function 137
MSGCATTR
NetView command list language
control variable 137
REXX function 137
MSGCMISC
NetView command list language
control variable 137
REXX function 137
MSGCMLVL
NetView command list language
control variable 138
REXX function 138
MSGCMSGT
NetView command list language
control variable 138
REXX function 138
MSGCNT
NetView command list language
control statement 132, 138
REXX function 138

195

Index

MSGCOJBN
NetView command list language
control variable 138
REXX function 138
MSGCPROD
NetView command list language
control variable 139
REXX function 139
MSGCSPLX
NetView command list language
control variable 139
REXX function 139
MSGCSYID
NetView command list language
control variable 139
REXX function 139
MSGDOMFL
NetView command list language
control variable 139
REXX function 139
MSGGBGPA
NetView command list language
control variable 139
REXX function 139
MSGGDATE
NetView command list language
control variable 140
REXX function 140
MSGGFGPA
NetView command list language
control variable 140
REXX function 140
MSGGMFLG
NetView command list language
control variable 140
REXX function 140
MSGGMID
NetView command list language
control variable 140
REXX function 140
MSGGSEQ
NetView command list language
control variable 140
REXX function 140
MSGGSYID
NetView command list language
control variable 140
REXX function 140
MSGGTIME
NetView command list language
control variable 141
REXX function 141
MSGID
REXX function 132
MSGORIGIN, NetView command list
language control variable 133
MSGORIGN, REXX function 133
MSGREAD
setting functions 39
MSGROUTE command 105
MSGSRCNM
NetView command list language
control variable 141
REXX function 141
MSGSTR
NetView command list language
control variable 134

MSGSTR (continued)
REXX function 134
MSGTOKEN
NetView command list language
control variable 141
REXX function 141
MSGTSTMP
NetView command list language
control variable 134
REXX function 134
MSGTYP
NetView command list language
control variable 141
REXX function 141
MSGVAR, REXX function 135
MSU (management services unit)
functions
NetView command list language
(built-in functions) 63
REXX 69
MSU information function 143
MSUSEG function 70, 152
REXX usage examples 156
multiline messages, using 84
MVS
command 12
creating data sets 5

message processing information 135

MVSLEVEL
NetView command list language
control variable 160
REXX function 160
MVSRTAIN
NetView command list language
control variable 135
REXX function 135

N

NCCFCNT NetView command list
language control variable 125
NCCFID
built-in function 71, 126
NCCFSTAT built-in function 72, 126
nested command lists
definition 10
NetView command list language,
using &WAIT 88
REXX
Assembler, C, PL/I command
procedures 32
using MSGREAD 39
using TRAP 38
using WAIT 38
testing 11
NETVIEW
NetView command list language
control variable 160
REXX function 160
NetView command list language
coding conventions 43
comments 54
comparison, REXX 169
features 43
functions, built-in 56
labels 46
null statements 54

196 Customization: Using REXX and the NetView Command List Language

NetView command list language
(continued)
variables 47
NetView commands
using &PAUSE 62
using &WAIT 86
network commands, using 11
network control program, activating,
command lists 4
NOINPUT, &PAUSE operand 61
NOSUB, &BEGWRITE operand 60
null statements 54
nulls stripping 164
NVCNT function 125
NVDELID
NetView command list language
control variable 135
REXX function 135
NVID function 126
NVSTAT function 126

(o)

online publications viii
operands
ALL, &CONTROL control
statement 57
CMD, &CONTROL control
statement 57
CONTINUE, &WAIT control
statement 90
CONTWAIT, &WAIT control
statement 89
DISPLAY
&WAIT control statement 89
ENDWAIT, &WAIT control
statement 85, 89
ERR, &CONTROL control
statement 57

ERROR, &WAIT control statement 85

NOINPUT, &PAUSE control
statement 61

NOSUB, &BEGWRITE control
statement 60

STRING, &PAUSE control
statement 61

SUB, &BEGWRITE control
statement 60

SUPPCHAR 161

SUPPCHAR, in CNMSTYLEt 46

SUPPRESS

&WAIT control statement 89

VARS, &PAUSE control statement 62

operator

command, running command lists 9

information

NetView command list language

control variables 158
REXX functions 158
input, REXX command list 26
logon, command list 8
sending messages 57
OPID
NetView command list language
control variable 158
REXX function 158

OPSYSTEM
NetView command list language
control variable 160
REXX function 160
ordering publications viii
OST, autotask, restrictions 16
OVERRIDE command 8

P

PANEL
REXX function 160
panels, displaying 14
parameter variables, NetView command
list language
&WAIT, using 87
characteristics 48
nested command lists, using 50
null 51
passing, command list 49
quoted strings, using 51
special characters, using 51
PARMCNT
NetView command list language
control variable 125
REXX function 125
PARMSTR control variable 125
PARSE instruction 26
parsing
REXX command lists 32
PARTID
NetView command list language
control variable 160
REXX function 160
PAUSE control statement, using NetView
commands 61, 62
pausing, REXX command list 26
PL/I command procedures, nesting REXX
commands 32
PPT restrictions 15
PRINT, example command list 186
PROFILE statement 8
PRTY
NetView command list language
control variable 141
REXX function 141
publications
feedback viii
online viii
ordering viii

Q

queuing long-running commands 13
quotes, REXX command lists or Data
REXX files 23

R

record size
NetView command list language 44
REXX 23
REPLYID
NetView command list language
control variable 135
REXX function 135

RESET command 9, 86
Restructured Extended Executor (REXX)
language
command lists
coding non-REXX commands 25
compiling 19
environment, changing 28
environment functions 163
errors, recovering 34
examples 177
EXECIO command, using 29
nesting assembler, C, PL/I
command procedures 32
operator input, pausing 26
parsing 32
restrictions 26
SAY instruction, using 23
suppressing non-REXX
commands 25
tracing 32
TSO/E environments 31
command lists and data REXX files
SAY instruction, using 26
command lists and Data REXX files
coding conventions 23
return codes 33
command lists or Data REXX files
CALL instruction, using 27
LINESIZE function, using 28
record size 23
restrictions 27
STORAGE function, using 28
trailing blanks 23
comparison, NetView command list
language 169
function packages, writing 28
introduction 19
RETCODE control variable 125
return codes
COSs 110
NetView command list language 125
REXX 33
RETURN command, REXX
restrictions 12
ROUTCDE
NetView command list language
control variable 142
REXX function 142
RUNCMD command 112
running command lists
another command list 10
NetView is started 8
NetView receives messages 9
operator command 9
operator logon 8
specified time 9
user-written command procedure 11
RXDEFENV
NetView command list language
control variable 163
REXX function 163
RXDEFSTR
NetView command list language
control variable 163
REXX function 163

RXNUMENV
NetView command list language
control variable 163
REXX function 163
RXOVRENV
NetView command list language
control variable 163
REXX function 163
RXOVRSTR
NetView command list language
control variable 163
REXX function 163

S

SAY instruction, using 23, 26
scope checking
variables, NetView command list
language 99
SECURITY
controlling access, command lists 6
running command lists when NetView
is started 8
using network commands in
command lists 11
SESSID
NetView command list language
control variable 135
REXX function 135
session
information
NetView command list language
control variables 158
REXX functions 158
monitor commands, command list 12
TAF example 4
shortcut keys, keyboard ix
SHOWCODE command list 14
SIGNAL instruction 34
SMSGID
NetView command list language
control variable 142
REXX function 142
STACK command 9, 86
status monitor commands, command
list 12
STCKGMT
NetView command list language
control variable 161
REXX function 161
STIMER, MVS and VM GCS macro 16
STORAGE function 28
STRING, &PAUSE operand 61
stripping, nulls and blanks 164
SUB, &BEGWRITE operand 60
SUBSTR built-in function 73
SUBSYM, REXX function 120
SUPPCHAR 46, 161
SUPPCHAR control variable 161
SUPPRESS
&WAIT operand 89
suppressing
messages 106
non-REXX commands, REXX
command lists 25
suppression characters 46

197

Index

SYSCONID
NetView command list language
control variable 142
REXX function 142
SYSID
NetView command list language
control variable 142
REXX function 142
SYSPLEX
NetView command list language
control variable 161
REXX function 161
system commands, using 12

-

TAF
command output 13
session example 4
TASK
NetView command list language
control variable 161
REXX function 161
task global variables
command list examples, reference,
define, update 98
NetView command list language 96
TE command 33
terminal information
NetView command list language
control variables 163
REXX functions 163
TGLOBAL
control statement 96
REXX function 128
THEN clause, &IF control statement 78
TIME control variable 164
time intervals, running command lists 9
Tivoli Customer Support ix
tokens, message
NetView command list language 83
TOWER
REXX function 162
TRACE END command 33
TRACE START command 32
tracing, REXX command lists 32
translating code points 118
translation functions
code-to-text function
(CODE2TXT) 118
translation tables, code-to-text 118
TRAP
REXX command list 38
TS command 32
TSO/E environment 31
TSO/E EXECIO command 29
TYPE
REXX function 162
TYPE, command list example 188
TYPEIT, command list example 188

U

UNIQUE command 13, 14
UNSTACK command 9, 86
UPPER command 14

user variables 52
user-written command procedure,
activating command lists 11

\'

variables
command list information
NetView command list
language 120
REXX 120
operator information
NetView command list
language 158
REXX 158
session information
NetView command list
language 158
REXX 158
substitution order 47
terminal information
REXX 163
user 52
VARS, &PAUSE operand 62
VIEW command 14
VIEWAID control variable 14
VIEWCURCOL control variable 14
VIEWCURROW control variable 14
VIEWICCOL control variable 14
VIEWICROW control variable 14
VTAM
commands 11
NetView command list language
control variable 162
REXX function 162
VTCOMPID
NetView command list language
control variable 162
REXX function 162

W

WAIT
NetView command list language
control statement
coding suggestions 91
control and parameter
variables 87
customizing 89
ending 86, 91
general 81
nested command lists, using 88
NetView commands, using 86
sample using 92
REXX instruction
nested REXX command lists,
using 38
WEEKDAYN
NetView command list language
control variable 163
REXX function 163
WRITE control statement 58
WTOREPLY 142

198 Customization: Using REXX and the NetView Command List Language

File Number: S370/4300/30XX-50
Program Number: 5697—-ENV

) Printed in the United States of America
& on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8862-00

	Contents
	Preface
	Who Should Read This Document
	What This Document Contains
	Publications
	Prerequisite and Related Documents
	Accessing Publications Online
	Ordering Publications
	Providing Feedback about Publications

	Contacting Customer Support
	Accessibility Information
	Keyboard Access

	Conventions Used in This Document
	Platform-specific Information
	Terminology
	Reading Syntax Diagrams
	Required Syntax
	Optional Keywords and Variables
	Default Values
	Long Syntax Diagrams
	Syntax Fragments
	Commas and Parentheses
	Highlighting, Brackets, and Braces
	Abbreviations

	Part 1. Basic Command List Topics
	Chapter 1. Getting Started
	The Benefits of Using Command Lists
	Examples of Common Startup Command Lists
	Examples of Activating a Network Control Program

	Creating Command Lists
	Controlling Access to Command Lists
	Loading Command Lists into Storage
	Running Command Lists
	Running Command Lists When NetView Is Started
	Running Command Lists When Logging On
	Running Command Lists after Receiving a Message or MSU
	Running Command Lists from a Terminal
	Running Command Lists at a Specified Time or Time Interval
	Running Command Lists from Another Command List
	Passing Information from One Command List to Another
	Error Handling

	Running Command Lists from a User-Written Command Processor

	Using Network Commands in Command Lists
	Using System Commands
	Using Long-Running Commands
	Using Major Long-Running Commands
	Using Minor Long-Running Commands
	Queuing Long-Running Commands

	Using NetView Pipelines
	Using the VIEW Command
	Using Full-Screen Commands
	Primary POI Task Restrictions
	AUTOTASK OST Restrictions

	Controlling Command List Output

	Part 2. Writing Command Lists in REXX Language
	Chapter 2. REXX Language Overview
	Introduction to the REXX Language
	Compiling and Executing REXX Command Lists
	Using Data REXX
	/*%DATA
	/*%LOGIC

	Coding Conventions for REXX Command Lists and Data REXX Files
	Record Size
	Using Quotation Marks
	Suppressing Display of Non-REXX Commands

	NetView Restrictions on REXX Instructions
	Pausing for Operator Input
	Using the SAY Instruction
	Using the CALL Instruction

	NetView Restrictions on REXX Functions
	Writing REXX Function Packages
	Changing the Environment Addressed by REXX Command Lists
	Data REXX Host Command Environment
	Using the EXECIO Command
	Using MVS and VTAM Commands
	Using the NetView ALLOCATE and FREE Commands
	Using REXX Command Lists
	Nesting REXX Command Lists from Assembler, C, or PL/I
	Parsing in REXX Command Lists
	Tracing REXX Command Lists
	Return Codes in REXX Command Lists
	Recovering from Errors in REXX Command Lists

	Chapter 3. REXX Instructions Provided by NetView
	Using TRAP in Nested REXX Command Lists
	Using WAIT in Nested Command Lists
	Using MSGREAD in Nested Command Lists
	Functions Set by MSGREAD

	Part 3. Writing Command Lists in the NetView Command List Language
	Chapter 4. Writing Simple Command Lists in the NetView Command List Language
	What the NetView Command List Language Includes
	Coding Conventions for NetView Command List Language Statements
	Conventions for General Coding
	Conventions for Continuing a Statement
	Conventions for Double-Byte Character Set Text
	Conventions for Suppression Characters

	Labels
	Variables
	Variable Substitution Order
	Parameter Variables
	Passing Parameter Variable Information to a Command List
	Using Parameter Variables in a Command List
	Passing Parameter Variables to a Nested Command List
	Using Quoted Strings or Special Characters in Parameter Variables
	Null Parameter Values
	Control Variables
	User Variables

	Hexadecimal Notation
	Comments
	Null Statements
	Assignment Statements
	Control Statements
	&CONTROL Statement
	Writing to the Operator
	&WRITE Control Statement
	&BEGWRITE Control Statement
	&PAUSE Control Statement

	Using NetView Commands with &PAUSE
	An Example Using &PAUSE

	NetView Built-in Functions
	&BITAND
	&BITOR
	&BITXOR
	&CONCAT
	&HIER
	&LENGTH
	&MSUSEG
	&NCCFID
	&NCCFSTAT
	&SUBSTR
	Using &SUBSTR with DBCS Characters

	Chapter 5. NetView Command List Language Branching
	&IF Control Statement
	&GOTO Control Statement
	&EXIT Control Statement
	&WAIT Control Statement
	Coding an &WAIT Control Statement
	The Event=-Label Pair
	Error Conditions
	Coding Message=-Label Pairs
	Ending an &WAIT

	Using NetView Commands with &WAIT
	Control and Parameter Variables Used with &WAIT
	Using &WAIT in Nested Command Lists
	Customizing the &WAIT Statement
	Ending &WAIT If CONTWAIT Is in Effect

	Suggestions for Coding &WAIT
	Sample Using &WAIT

	Chapter 6. NetView Command List Language Global Variables
	Using &TGLOBAL and &CGLOBAL
	&TGLOBAL
	&CGLOBAL

	Updating Task Global Variables Using &TGLOBAL
	Extent of Variables When Using &TGLOBAL and &CGLOBAL
	GLOBVAR1 Example

	GLOBALV Command

	Part 4. Advanced Command List Topics
	Chapter 7. Automation Resource Management
	Defining NetView Automation Table Command Lists
	Routing Messages from Automation-Table-Driven Command Lists
	Implementing NetView Automation
	Suppressing Messages
	Determining What Task Controls a Command List
	Testing Automation Command Lists
	Verifying NetView Automation Table Entries
	Keeping a Record of Automation Command Lists Executed
	Testing Automation Command List Execution

	Recovering from Looping Command Lists
	Considering Operator Interaction
	Common Automation Problems

	Chapter 8. Common Operations Services Commands
	Common Operations Service
	Common Operations Services Return Codes
	LINKDATA and LINKTEST Results
	LINKDATA and LINKTEST Variables
	LINKTEST Additional Variables

	LINKPD Results
	RUNCMD Results
	Using RUNCMD in a Pipeline

	Part 5. Commands, Functions, and Variables
	Chapter 9. REXX Functions Provided by NetView
	Translation Functions
	Command List Information
	Cross-Domain Information Functions
	Data Set Information Functions
	Global Variable Information Functions
	Message Processing Information Functions
	MVS-Specific Message Processing Information
	ROUTCDE Examples

	REXX Management Services Units (MSU) Information Functions
	Hardware Monitor (HMxxxxxx) Examples
	HMASPRID
	HMBLKACT
	HMCPLINK
	HMEPNAU, HMEPNET, and HMFWDSNA
	HMEPNETV
	HMEVTYPE
	HMFWDED
	HMGENCAU
	HMONMSU
	HMORIGIN
	HMSECREC
	HMSPECAU
	HMUSRDAT

	MSUSEG Syntax and Examples
	Syntax
	Examples

	Operator Information Functions
	Session Information Functions
	REXX Environment Information Functions
	Terminal Information Functions
	Time and Date
	Nulls and Blanks Stripping

	Part 6. Appendixes
	Appendix A. Comparison of REXX and NetView Command List Language
	Comparison of REXX Instructions and NetView Command List Language Control Statements
	Comparison of REXX Functions and NetView Command List Language Control Variables and Functions
	Commands Used in Command Lists

	Appendix B. Command List Examples Index
	REXX Command List Examples
	NetView Command List Language Examples

	Appendix C. Examples of REXX Command Lists for NetView
	ACTAPPLS Example
	ACTLU Example
	CHKOPNUM Example
	CHKRSTAT Example
	DSPRSTAT Example
	GETCG Example
	GREETING Example
	LISTVAR Example
	PRINT Example
	TYPE Example
	TYPEIT Example

	Index

