
z/VM

Program Management Binder for CMS
Version 6 Release 3

SC24-6211-03

���

Note:
Before using this information and the product it supports, read the information in “Notices” on page 89.

This edition applies to version 6, release 3, modification 0 of IBM z/VM (product number 5741-A07) and to all
subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC24-6211-02.

© Copyright IBM Corporation 2001, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . vii

Tables . ix

About This Document . xi
Intended Audience . xi
Conventions Used in This Document . xi
How to Read Syntax Diagrams . xi

Message and Response Notation . xiv
Where to Find More Information . xiv

Links to Other Documents and Web Sites . xiv

How to Send Your Comments to IBM. xv

Summary of Changes . xvii
SC24-6211-03, z/VM Version 6 Release 3 . xvii
SC24-6211-02, z/VM Version 6 Release 2 . xvii

Chapter 1. Introduction . 1
z/OS MVS Program Management: User's Guide and Reference 1

Summary of Chapters and Appendices . 1
z/OS MVS Program Management: Advanced Facilities . 2

Summary of Chapters and Appendices . 2
Overview . 3

Invoking the Binder from a Program . 4
The Command Interface . 4
The API Front End . 4

Chapter 2. BIND . 7

Chapter 3. Binder Control Statements . 45
Control Statements Syntax . 45
Control Statements Summary . 45

ALIAS . 45
AUTOCALL . 46
CHANGE . 46
ENTRY . 47
EXPAND . 47
IDENTIFY . 47
IMPORT . 47
INCLUDE . 48
INSERT. 50
LIBRARY . 50
MODE . 52
NAME . 53
ORDER. 53
OVERLAY . 53
PAGE . 53
RENAME . 54
REPLACE . 54
SETCODE . 54
SETOPT . 54
SETSSI . 55

© Copyright IBM Corp. 2001, 2013 iii

Chapter 4. The CMS Binder . 57
Binder Input and Output . 57

FILEDEF/PATHDEF - Relationship with DD Statement. 58
Files . 58
Autocall with Archive Libraries. 60
Executable Formats . 61

API Considerations . 62
Version Number . 62
Setting Options With the Binder API . 62
Invoking the Binder API . 69
API Function Calls . 69
C/C++ API . 74

Invoking the Binder from a Program . 76
COMPSWT . 76
Aliases . 76
Primary Input . 76
Setting Options for IEWBLINK . 76
Output Formats . 77

General Environmental Considerations . 78
Concatenating Files . 78

Restrictions . 79
Relocatability . 79
Overlay Structures . 79

Appendix A. Troubleshooting . 81
The BIND Command DEBUG Option . 81
Diagnostic Information . 81

The SYSPRINT File . 82
The IEWDIAG File . 82
The IEWGOFF File . 83
The IEWPARMS File . 83
The IEWTRACE File . 83

Unexpected messages . 84
z/OS MVS Program Management Binder (IEW) Messages 84
Language Environment (CEE) Messages . 84
OpenExtensions Return and Reason Codes . 84

Common Problems . 85
Incorrect SYSLIB. 85
Storage . 85
CMS OpenExtensions Problems. 86

Appendix B. Customization and Set Up. 87
Virtual Storage Requirements . 87
Providing Dataspace Support . 87
Defining Installation Defaults . 88

Notices . 89
Privacy Policy Considerations . 91
Programming Interface Information . 91
Trademarks . 91

Glossary . 93

Bibliography . 95
Where to Get z/VM Information . 95
z/VM Base Library . 95
z/VM Facilities and Features . 96
Prerequisite Products . 97

iv z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Index . 99

Contents v

vi z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Figures

1. High-Level Interfaces to the VM Binder (Overview) . 4
2. External Reference Resolution Process for the BIND Command 37
3. The VM Binders Input and Output. 57
4. The API Perspective on Final Autocall . 71

© Copyright IBM Corp. 2001, 2013 vii

viii z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Tables

1. Message Level Options Passed to the Binder . 20
2. z/OS MVS Program Management Binder to BIND Command Options Cross-reference 25
3. Program Module Output Determination when No SYSLMOD is Predefined 31
4. Program Module Output Determination (SYSLMOD FILEDEF Exists) 33
5. Program Module Output Determination (SYSLMOD PATHDEF Exists). 34
6. File Specification . 59
7. File Types . 60
8. Module Output Formats . 62
9. Setting CMS Options With the Binder API . 66

10. API-Level Module Output Determination . 73
11. IEWBLINK SYSLMOD Output Determination . 77
12. z/OS MVS Program Management Binder Diagnostic Input and Output Files. 81

© Copyright IBM Corp. 2001, 2013 ix

x z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

About This Document

This document provides information about the IBM® z/VM® Program Management
Binder for CMS. Only the differences in usage and behavior from the z/OS MVS
Program Management Binder are included.

Intended Audience
This document is for anyone who needs to generate executable program objects
using the Program Management Binder of the z/VM Conversational Monitor
System (z/VM CMS).

To use this document effectively, you should be familiar with z/OS MVS Program
Management Binder.

Conventions Used in This Document
The following terminology is used in this document:

CMS Binder is used as an abbreviation of Program Management Binder for CMS.

z/OS MVS Program Management Binder is used to specifically reference z/OS V1R12
MVS Program Management Binder when discussing the binder's level of
functionality.

Throughout this document, the term “file name” is used to refer to files in general,
regardless of the specific file system in which they reside. The intended use should
be clear from context, but it is often necessary to make a distinction between files
that reside in the byte file system and files that reside on minidisks or in the
shared file system (but not in the byte file system). For convenience, the byte file
system will be referred to as “BFS files”, and the latter as “CMS files”.

The term “ddname” is used to refer to a data definition name. The relation of a
ddname to one or more CMS files is achieved by using the FILEDEF command or
for a BFS file by using the OPENVM PATHDEF CREATE command.

The term “FILEDEF” is used to refer to the data definition created by the use of
the FILEDEF command.

The term “PATHDEF” is used to refer to the data definition created by the use of
the OPENVM PATHDEF CREATE command.

The term “program module” is defined as the output of the binder; a collective
term for program object and load module.

How to Read Syntax Diagrams
Diagrams (often called railroad tracks) are used to show the syntax of external
interfaces. To read a syntax diagram, follow the path of the line. Read from left to
right and top to bottom.
v The ��─── symbol indicates the beginning of the syntax diagram.

© Copyright IBM Corp. 2001, 2013 xi

v The ───� symbol, at the end of a line, indicates that the syntax diagram is
continued on the next line.

v The �─── symbol, at the beginning of a line, indicates that the syntax diagram is
continued from the previous line.

v The ───�� symbol indicates the end of the syntax diagram.

Examples of the other syntax diagram conventions are shown in the following
table.

Syntax Diagram Convention Example

Keywords and Constants:

A keyword or constant appears in uppercase
letters. In this example, you must specify the
item KEYWORD as shown.

In most cases, you can specify a keyword or
constant in uppercase letters, lowercase
letters, or any combination. However, some
applications might have additional
conventions for using all-uppercase or
all-lowercase.

�� KEYWORD ��

Abbreviations:

Uppercase letters denote the shortest
acceptable abbreviation of an item, and
lowercase letters denote the part that can be
omitted. If an item appears entirely in
uppercase letters, it cannot be abbreviated.

In this example, you can specify KEYWO,
KEYWOR, or KEYWORD.

�� KEYWOrd ��

Symbols:

You must specify these symbols exactly as
they appear in the syntax diagram.

* Asterisk
: Colon
, Comma
= Equal Sign
- Hyphen
() Parentheses
. Period

Variables:

A variable appears in highlighted lowercase,
usually italics.

In this example, var_name represents a
variable that you must specify following
KEYWORD.

�� KEYWOrd var_name ��

xii z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Syntax Diagram Convention Example

Repetitions:

An arrow returning to the left means that
the item can be repeated.

A character within the arrow means that you
must separate each repetition of the item
with that character.

A number (1) by the arrow references a
syntax note at the bottom of the diagram.
The syntax note tells you how many times
the item can be repeated.

Syntax notes might also be used to explain
other special aspects of the syntax.

�� � repeat ��

�� �

,

repeat ��

�� �
(1)

repeat ��

Notes:

1 Specify repeat up to 5 times.

Required Item or Choice:

When an item is on the line, it is required.
In this example, you must specify A.

When two or more items are in a stack and
one of them is on the line, you must specify
one item. In this example, you must choose
A, B, or C.

�� A ��

�� A
B
C

��

Optional Item or Choice:

When an item is below the line, it is
optional. In this example, you can choose A
or nothing at all.

When two or more items are in a stack
below the line, all of them are optional. In
this example, you can choose A, B, C, or
nothing at all.

��
A

��

��
A
B
C

��

Defaults:

When an item is above the line, it is the
default. The system will use the default
unless you override it. You can override the
default by specifying an option from the
stack below the line.

In this example, A is the default. You can
override A by choosing B or C.

��
A

B
C

��

Repeatable Choice:

A stack of items followed by an arrow
returning to the left means that you can
select more than one item or, in some cases,
repeat a single item.

In this example, you can choose any
combination of A, B, or C.

�� � A
B
C

��

About This Document xiii

Syntax Diagram Convention Example

Syntax Fragment:

Some diagrams, because of their length,
must fragment the syntax. The fragment
name appears between vertical bars in the
diagram. The expanded fragment appears in
the diagram after a heading with the same
fragment name.

In this example, the fragment is named “A
Fragment.”

�� A Fragment ��

A Fragment:

A

B
C

Message and Response Notation
This document might include examples of messages or responses. Although most
examples are shown exactly as they would appear, some content may depend on
the specific situation. The following notation is used to show variable, optional, or
alternative content:

xxx Highlighted text (usually italics) indicates a variable that represents the
data that will be displayed.

[] Brackets enclose an optional item that might be displayed.

{ } Braces enclose alternative items, one of which will be displayed.

| The vertical bar separates items within brackets or braces.

... The ellipsis indicates that the preceding item might be repeated. A vertical
ellipsis indicates that the preceding line, or a variation of that line, might
be repeated.

Where to Find More Information
Within the text, references might be made to z/OS MVS System Messages Vol 8 (IEF
- IGD), SA22-7638.

For more information about z/VM functions, see the documents listed in the
“Bibliography” on page 95.

Links to Other Documents and Web Sites
The PDF version of this document contains links to other documents and web
sites. A link from this document to another document works only when both
documents are in the same directory or database, and a link to a web site works
only if you have access to the Internet. A document link is to a specific edition. If a
new edition of a linked document has been published since the publication of this
document, the linked document might not be the latest edition.

xiv z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

How to Send Your Comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or give us any other feedback that
you might have.

Use one of the following methods to send us your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Go to IBM z/VM Reader's Comments (www.ibm.com/systems/z/os/zvm/

zvmforms/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

4. Fax the comments to us as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address
v Your email address
v Your telephone or fax number
v The publication title and order number:

z/VM V6.3 Program Management Binder for CMS
SC24-6211-03

v The topic name or page number related to your comment
v The text of your comment

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

IBM or any other organizations will use the personal information that you supply
only to contact you about the issues that you submit to IBM.

If You Have a Technical Problem

Do not use the feedback methods listed above. Instead, do one of the following:
v Contact your IBM service representative.
v Contact IBM technical support.
v See IBM: z/VM Service Resources (www.ibm.com/vm/service/).
v Go to IBM Support Portal (www.ibm.com/support/entry/portal/Overview/).

© Copyright IBM Corp. 2001, 2013 xv

http://www.ibm.com/systems/z/os/zvm/zvmforms/webqs.html
http://www.ibm.com/vm/service/
http://www.ibm.com/support/entry/portal/Overview/

xvi z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Summary of Changes

This document contains terminology, maintenance, and editorial changes. Technical
changes are indicated by a vertical line to the left of the change. Some product
changes might be provided through service and might be available for some prior
releases.

SC24-6211-03, z/VM Version 6 Release 3
This edition includes changes to support the general availability of z/VM V6.3.

z/VM V6.3 supports Binder z/OS R13 Equivalency.

SC24-6211-02, z/VM Version 6 Release 2
This edition includes changes to support the general availability of z/VM V6.2.

z/VM V6.2 supports Binder z/OS R12 Equivalency:
v The 6.2 version of the CMS Binder is based on the 1.12 version of the z/OS

Binder.
v The COMPAT option of the BIND command now includes a new suboption:

ZOSV1R12. See “CMS BIND Command Options” on page 10 and Table 8 on
page 62.

v The RMODE option of the BIND command now includes new suboptions. See
“CMS BIND Command Options” on page 10.

© Copyright IBM Corp. 2001, 2013 xvii

xviii z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Chapter 1. Introduction

This book provides information about the Program Management Binder for CMS.
Only the differences in usage and behavior from the z/OS MVS Program
Management Binder, as documented in z/OS MVS Program Management: User's
Guide and Reference and z/OS MVS Program Management: Advanced Facilities, are
included here.

In this section, we will briefly review both z/OS MVS Program Management: User's
Guide and Reference and z/OS MVS Program Management: Advanced Facilities and
highlight the Chapters and Appendices of interest to users of the Program
Management Binder for CMS. First, we need to comment on some terms that are
found throughout these books:

PDSE z/OS® DFSMS™ provides this data set organization to support libraries. It
is superior to the original partitioned organization in not requiring
compression and providing some support for long names. It is not
supported on CMS.

PDS CMS OS Simulation does support PDS libraries in a limited way. The
following types of supported libraries are relevant to the operation of the
Program Management Binder for CMS:

LOADLIB
used as the target for both input and output of load modules

TXTLIB
input source of object decks

MACLIB
members may contain binder control statements

Program Object
z/OS MVS Program Management defines this executable format. It has
many advantages over the OS load module format. For a description of
how this format is used in CMS, see “Executable Formats” on page 61.

z/OS MVS Program Management: User's Guide and Reference

Summary of Chapters and Appendices
Chapter 1. Introduction

The only Program Management component that is utilized by Program
Management Binder for CMS is Program Management Binder.

CMS equivalents of the z/OS DFSMS Utilities:
v IEBCOPY functionality is provided by the CMS LOADLIB command.
v IEHPROGM has no CMS equivalent.
v IEHLIST directory lists can be obtained using the LIST or MAP option of

the relevant LOADLIB, TXTLIB or MACLIB command.

The Service Aid AMBLIST currently has no CMS equivalent. The ZAP CMS
command provides similar functions to AMASPZAP, although it does not
currently support the CMS extended modules or program objects.

© Copyright IBM Corp. 2001, 2013 1

Chapter 2. Creating Programs from Source Modules
This chapter provides a good overview of the bind process.

Chapter 3. Starting the Binder
The only part of this chapter that is relevant to the CMS environment is
“3.3. Invoking the Binder from a Program.”

Chapter 4. Defining Input to the Binder
This chapter is relevant to the CMS environment with the exception of the
following sections:
v 4.1 Defining the Primary Input
v 4.2.3 Including Concatenated Data Sets
v 4.3.5 Searching the Link Pack Area

Chapter 5. Editing Data Within a Program Module
This chapter provides a good description of the editing services of the
binder.

Chapter 6. Binder Options Reference
Reference this chapter in conjunction with “CMS BIND Command
Options” on page 10.

Chapter 7. Binder Control Statement Reference
Read this chapter in conjunction with “Control Statements Summary” on
page 45.

Chapter 8. Interpreting Binder Listings
This chapter describes each section of the listing produced by the binder.

Chapter 9. Binder Serviceability Aids
This chapter explains how to analyze, resolve, and diagnose problems
while using the binder.

Appendix A. Using the Linkage Editor and Batch Loader
This appendix is not relevant to the CMS environment.

Appendix B. Summary of Program Management User Considerations
Only parts of this appendix are of interest to users of Program
Management Binder for CMS.

Appendix C. Binder Return Codes
The applicable sections concern return codes and reason codes issued from
the API.

Appendix D. Designing and Specifying Overlay Programs
None of this material is relevant because “Overlays” are not supported in
the CMS environment.

z/OS MVS Program Management: Advanced Facilities

Summary of Chapters and Appendices
Chapter 1. Using the Binder Application Programming Interface

Read this chapter in conjunction with “API Considerations” on page 62.

Chapter 2. IEWBUFF - Binder API buffers interface assembler macro for
generating and mapping data areas

Read this chapter in conjunction with “API Considerations” on page 62.

Chapter 3. IEWBIND - Binder regular API functions
Read this chapter in conjunction with “API Considerations” on page 62.

2 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Chapter 4. IEWBFDAT - Binder Fast Data Access API functions
This chapter is not relevant because Fast Data Access is not supported in
the CMS environment.

Chapter 5. iewbndd.so - Binder C/C++ API DLL functions
Read this chapter in conjunction with “C/C++ API” on page 74.

Chapter 6. Invoking the binder from another program
Read this chapter in conjunction with “Invoking the Binder from a
Program” on page 4.

Chapter 7. Setting options with the regular binder API
Read this chapter in conjunction with “API Considerations” on page 62.

Chapter 8. User exits
This chapter describes the capabilities of the available user exits.

Appendix A. Object Module Input Conventions and Record Formats
This appendix describes both object and xobject input to the binder.

Appendix B. Load Module Formats
This appendix is not relevant to the CMS environment.

Appendix C. Generalized Object File Format (GOFF)
Generalized Object File Format (GOFF) is a supported input format in the
CMS environment.

Appendix D. Binder API Buffer Formats
This appendix maps the data areas used by the GETC, GETD, GETE,
GETN and PUTD API calls.

Appendix E. Data Areas
Most of this appendix is not relevant to the CMS environment.

Appendix F. Programming Example for the Binder API
This appendix provides a good illustration of how many of the API
facilities might be used.

Appendix G. Using the Transport Utility (IEWTPORT)
None of this material is relevant because the “Transport Utility” is not
supported in the CMS environment.

Overview
The following diagram summarizes the user interfaces to the CMS Binder.

Chapter 1. Introduction 3

Notes on the diagram:

�1� For command line users the BIND command provides bind and store
processing which parallels the z/OS batch interface (IEWBLINK) or the
z/OS TSO interface (LINK command).

�2� IEWBIND in this diagram represents a composite of a binder API front
end. This performs functional and environmental tasks to simplify the
support of the binder operation under VM, the z/OS Binder linked as a
CMS Module, and the CMS binder “cradle” (a collection of extensions to
CMS OS Simulation to support, among other things, the program call (PC)
instruction and the associated linkage stack).

�3� User programs can invoke the binder using LOAD/CALL, LINK, XCTL or
ATTACH macros using the module name IEWBLINK (bind and store).

Invoking the Binder from a Program
The module IEWBLINK may be given control by a program using the LINK, XCTL
or ATTACH macroinstructions or the combination of the LOAD and CALL
macroinstructions. IEWBLINK uses the INCLUDE function of the binder API to
process the files associated with the ddname SYSLIN and attempts to bind and
save any resulting program object to the target identified by the ddname
SYSLMOD. Support for the alternate entry points IEWBLOAD, IEWBLODI, and
IEWBLDGO is not provided by the CMS binder.

The Command Interface
The primary interface to the CMS Binder is the CMS BIND command. The BIND
command exploits the binder's application programming interface (API) to request
binder functions from the z/OS MVS Program Management Binder.

Control statements read by the BIND command are preprocessed so that NAME
statements can be detected to control the bind process.

The API Front End
The CMS Binder API Front End previews all binder API calls (whether from the
command interface or a user program) before any call is made to the z/VM binder
code.

CMS Command Line User

User Program with
LOAD/CALL, LINK, XCTL
or ATTACH macros

User Program using API

BIND
command

IEWBLINK
module

IEWBIND
API Calls

API Calls

API Calls

1

3

2

Figure 1. High-Level Interfaces to the VM Binder (Overview)

4 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Preprocessing is performed according to the requested binder function code to set
up an environment that allows the binder to operate as if it were running under
z/VM, and thus process the requested function correctly.

The front end also preparses the options string for options that affect its
processing.

Chapter 1. Introduction 5

6 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Chapter 2. BIND

�� BIND

� filename

(1)
options ��

options:

(

�
(2)

CMS_option

(3)
/

(4)
binder_options_string

)

Notes:

1 Options can be presented to the command interface using either a CMS or MVS style syntax.

2 CMS options may be entered in any order.

3 The “slash” delimiter is like any other token in this syntax: it must be preceded and followed by at
least one blank to be recognized.

4 The internal syntax of binder_options_string is as described for the PARM field of a JCL EXEC
statement in z/OS MVS Program Management: User's Guide and Reference.

Authorization

General User

Purpose

Use the BIND command to invoke the services of the CMS Binder to generate
executable program objects. Input to the binder may consist of CMS or BFS files
containing relocatable object code, binder control statements, or program objects
previously generated by the binder. The binder can store a program object in either
a CMS module file or a BFS file. An executable file that is produced by the binder
may be used on a CMS system containing the program object loader in the same
way as a conventional module file created by the GENMOD command.

Operands

filename
A list of file names can be specified to define the primary input to the binder.
If primary input is to be specified in a load list file, then only one CMS record
file system file name may be specified and the FILETYPE option must be used
with a value of EXEC. The load list file must be a fixed record length of 80,
have a file type of EXEC, and the input must consist of valid EXEC control
words (that are ignored) and names of input text files in the following form:
&1 &2 filename [filetype]

© Copyright IBM Corp. 2001, 2013 7

The file name and file type (if specified) must not be more than eight
characters in length. If no file names are specified then the BIND command
checks for the presence of active FILEDEFs or PATHDEFs using the ddname
SYSLIN. Refer to Usage Note 5 on page 29 for more information on using the
SYSLIN ddname.

The file names in the list are separated by blanks. When the blanks are
embedded within a quoted string, they are not treated as delimiters. Each file
name is examined by the BIND command to see if it should be interpreted as
representing a CMS record file system file (minidisk file or shared file system
file, referred to as a “CMS file”), or a byte file system file (referred to as a “BFS
file”).

To be interpreted as representing a BFS file, a file name must either be
completely enclosed in single or double quotation marks, or commence with a
dot (.) or a forward slash (/). Otherwise the file name is interpreted as
representing a CMS file, for which it may or may not be valid.

The following example shows how a list of files is interpreted when entering
the BIND command:
v

bind file1 ./file2 /u/user1/file3 ’file 4’ "*file5" *file6

Where:
file1 is interpreted as a CMS file.
./file2 is interpreted as a BFS file.
/u/user1/file3 would be interpreted as a BFS file.
’file 4’ would be interpreted as a BFS file.
"*file5" would be interpreted as a BFS file.
*file6 would be interpreted as a CMS file and subsequently found to be
incorrect.

Each file name in the list is validated by the BIND command before any
attempt to process it as primary input.

For CMS files, the file name must be no more than eight characters long, and
must consist only of alphanumeric characters (A-Z, a-z, 0-9), national
characters ($, #, @), as well as the plus (+), hyphen (-), underscore (_) and
colon (:) characters. If valid, the file name is assumed to represent a CMS file
with the file type ID resolved to one of the following:
v as specified on the FILETYPE option, if present.
v SYSLIN
v List of file types defined in a CNTRL file; see the CTL option.
v TEXT
v MODULE
v as a member in the GLOBAL TXTLIB concatenation, unless the NOLIBE

option is specified.

Note: The SYSLIN file type is intended to allow control statements for a
program suite to be gathered into a single file that might share its name with
one of the program TEXT files. Do not confuse this file type usage with the
SYSLIN ddname described in 5 on page 29.

For BFS file names, the file name represents a BFS path, and is limited to 1023
characters. BFS paths are interpreted according to standard OpenExtensions
rules, so that ./file2 and ’file 4’ are both relative paths referring to files in
the current working directory, but /u/user1/file3 is an absolute path.

8 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Options

Options can be presented to the command interface using either a CMS style
syntax, or as a string of options using the syntax described for the PARM field of a
JCL EXEC statement in z/OS MVS Program Management: User's Guide and Reference
(“MVS™ binder style”). In general, options specified in CMS style are converted to
MVS binder style before being passed to the binder. Options specified in MVS
binder style are not preprocessed in any way by the BIND command, but are
simply passed to the binder appended to the converted CMS style options. For
most options the effect is the same regardless of how the option is specified. The
following is an example of the CMS style:

bind file1 (amode 24

It has the same effect as the following MVS binder style:
bind file1 (/ amode=24

Options specified in CMS style come in three flavors:
v Options that only affect the operation of the BIND command itself and are not

converted or passed on to the binder in any way. The only options of this kind
are CTL, FILETYPE, LIBE, and OUTPUT, and they are described completely in
“CMS BIND Command Options” on page 10.

v Options that affect the operation of the BIND command itself and also cause
related options to be generated and passed on to the binder. These options are
DISK/PRINT, MSGLEVEL, SNAME, and TERM/TYPE, and they are described
in detail in “CMS BIND Command Options” on page 10. They should not be
specified in MVS binder style because the appropriate command level actions
will not be taken and output could be processed incorrectly. Further information
about the PRINT and TERM options that are generated in MVS binder style
from these options can be found in z/OS MVS Program Management: User's Guide
and Reference.

v Options that have no direct affect on the operation of the BIND command itself.
These options are converted to MVS binder style format and are passed to the
binder. These options are summarized in “CMS BIND Command Options” on
page 10 and described further as noted in that table.

Notes:

1. Not all of the options available for the z/OS MVS Program Management
Binder have CMS style BIND command equivalents. In general, those options
that are not applicable to the CMS environment do not have equivalents. Refer
to Table 2 on page 25 for a cross-reference of z/OS MVS Program Management
Binder options to CMS style BIND command options.

2. In general, options cannot be abbreviated when specified on the BIND
command. Exceptions to this rule are shown explicitly in the table.

3. The short forms of the options that start with the characters CMS are intended
as a convenience for terminal entry. They should be avoided when coding execs
or programs that invoke the BIND command in case some future change in
z/OS MVS Program Management Binder options conflicts with the short form
of the option.

4. Rudimentary syntax verification and validity checking of options specified in
CMS style are performed by the command interface. If an invalid option
specification is encountered, an error message is issued and the command
terminates without the binder being invoked. The BIND command cannot,
however, filter out all possible erroneous option specifications. So in some

Chapter 2. BIND 9

situations, option strings may be generated and passed to the binder that cause
the binder's option processor to issue an error message.

5. The default values for only six options are provided for the following in “CMS
BIND Command Options”:CTL, DISK/PRINT, FILETYPE, LIBE, MSGLEVEL,
and OUTPUT. The effective default for all other options not specified on the
command will be the product default, unless overridden by an installation or
user default specified in the IEWBODEF module. For product defaults, see
Table 9 on page 66 and Table 35. Setting Options With the Binder API in z/OS
MVS Program Management: Advanced Facilities.

CMS BIND Command Options

Except for those options that are not documented elsewhere, the information about
the CMS style option syntax provided here is intended only as a summarized
reference. Definitive information should be obtained from the source referred to in
individual option descriptions.

ALIGN2

��
YES

ALIGN2
NO

NOALIGN2

��

ALIGN2 controls the page alignment (2 KB or 4 KB) of sections of text
produced by the binder.

NOALIGN2 is equivalent to ALIGN2 NO.

For more information, refer to the description of the ALIGN2 option in
z/OS MVS Program Management: User's Guide and Reference.

AMODE

�� AMODE 24
31
64
ANY
MIN

��

AMODE sets the addressing mode of the saved program module.

For more information, refer to the description of the AMODE option in
z/OS MVS Program Management: User's Guide and Reference.

Note: AMODE 64, although supported by the binder, is not currently
supported by the CMS loader.

AUTO
See CMSAUTO.

CALL

��
YES

CALL
NO

NOCALL
NCAL

��

10 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

CALL controls an automatic library call.

NOCALL and NCAL are equivalent to CALL NO.

For more information, refer to the description of the CALL option in z/OS
MVS Program Management: User's Guide and Reference.

CASE

�� CASE MIXED
UPPER

MIXED
UPPER

��

CASE controls case sensitivity for symbols.

MIXED is equivalent to CASE MIXED. UPPER is equivalent to CASE
UPPER.

For more information, refer to the description of the CASE option in z/OS
MVS Program Management: User's Guide and Reference.

CLEAN
See CMSCLEAN.

CMSAUTO

��
YES

CMSAUTO
AUTO NO

NOCMSAUTO
NOAUTO

��

CMSAUTO controls use of TEXT files to resolve external references during
a final automatic library call.

AUTO is equivalent to CMSAUTO. NOAUTO and NOCMSAUTO are
equivalent to CMSAUTO NO.

For more information, refer to the description of the CMSAUTO option in
“Setting Options With the Binder API” on page 62

CMSCLEAN

��
YES

CMSCLEAN
CLEAN NO

NOCMSCLEAN
NOCLEAN

��

CMSCLEAN determines the setting of an attribute that controls the
removal of the program module from storage at the end of execution.

CLEAN is equivalent to CMSCLEAN. NOCLEAN and NOCMSCLEAN are
equivalent to CMSCLEAN NO.

For more information, refer to the description of the CMSCLEAN option in
“Setting Options With the Binder API” on page 62

CMSINCL

Chapter 2. BIND 11

��
YES

CMSINCL
INCL NO

NOCMSINCL
NOINCL

��

CMSINCL controls the use of TEXT, extended format MODULE and
TXTLIB files for input when no FILEDEF or PATHDEF matches the
ddname.

INCL is equivalent to CMSINCL. NOINCL and NOCMSINCL are
equivalent to CMSINCL NO.

For more information, refer to the description of the CMSINCL option in
“Setting Options With the Binder API” on page 62

CMSMACRO

�� CMSMACRO
MACRO

OS
DOS
ALL

��

CMSMACRO determines the setting of an attribute that indicates whether
the program contains OS or DOS macros.

MACRO is equivalent to CMSMACRO.

For more information, refer to the description of the CMSMACRO option
in “Setting Options With the Binder API” on page 62

CMSSTR

��
YES

CMSSTR
STR NO

NOCMSSTR
NOSTR

��

CMSSTR determines the setting of an attribute that controls deletion of
previously loaded OS programs.

STR is equivalent to CMSSTR. NOCMSSTR and NOSTR are equivalent to
CMSSTR NO.

For more information, refer to the description of the CMSSTR option in
“Setting Options With the Binder API” on page 62

CMSSYSTEM

��
YES

CMSSYSTEM
SYSTEM NO

NOCMSSYSTEM
NOSYSTEM

��

CMSSYSTEM determines the setting of an attribute that controls the
storage protect key set at load time.

SYSTEM is equivalent to CMSSYSTEM. NOCMSSYSTEM and NOSYSTEM
are equivalent to CMSSYSTEM NO.

12 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

For more information, refer to the description of the CMSSYSTEM option
in “Setting Options With the Binder API” on page 62

CMSXC

��
YES

CMSXC
XC NO

NOCMSXC
NOXC

��

CMSXC determines the setting of an attribute that indicates the program
module can execute only in XC virtual machines.

XC is equivalent to CMSXC. NOCMSXC and NOXC are equivalent to
CMSXC NO.

For more information, refer to the description of the CMSXC option in
“Setting Options With the Binder API” on page 62

COMPAT

�� COMPAT
MIN
CURR | CURRENT
LKED
PM1
PM2
PM3
PM4 | ZOSV1R3 | ZOSV1R4
ZOSV1R5 | ZOSV1R6
ZOSV1R7
PM5 | ZOSV1R8 | ZOSV1R9
ZOSV1R10 | ZOSV1R11 | ZOSV1R12
ZOSV1R13

��

COMPAT controls binder compatibility level.

COMPAT CURR is equivalent to COMPAT CURRENT.

COMPAT PM4, COMPAT ZOSV1R3, and COMPAT ZOSV1R4 are all
equivalent.

COMPAT ZOSV1R5 is equivalent to COMPAT ZOSV1R6.

COMPAT PM5, COMPAT ZOSV1R8, and COMPAT ZOSV1R9 are all
equivalent.

COMPAT ZOSV1R10, COMPAT ZOSV1R11, and COMPAT ZOSV1R12 are
all equivalent.

For more information, refer to Table 8 on page 62 and to the description of
the COMPAT option in z/OS MVS Program Management: User's Guide and
Reference.

Notes: Unless SYSLMOD specifies a LOADLIB, both LKED and PM1 will
result in the generation of a standard format CMS module. They differ in
that LKED specifies that certain binder processing options are to work in a
manner compatible with the linkage editor:
1. Where conflicts exist between the AMODE or RMODE of individual

entry points or sections and the value specified in the AMODE or
RMODE option, the option specification will prevail.

Chapter 2. BIND 13

|

2. If a section is encountered in a module with a lower reusability than
that specified on the REUS option, the reusability of the module is
automatically downgraded. An information message is issued and the
return code remains unchanged.

COMPRESS

��

COMPRESS AUTO
YES

COMPRESS
AUTO
NO

��

Use this option to compress additional data that the binder stores with the
executable program. This has no effect on the program size during
execution, but can reduce the disk storage required to hold it. This option
allows you to control whether the binder will attempt compression. You
might want to prohibit compress in some cases.

For more information, refer to the description of the COMPRESS option in
z/OS MVS Program Management: User's Guide and Reference.

CTL

�� CTL filename ��

CTL specifies a control file which may be used to define the following to
the BIND command:
v Additional primary input file types of the form TXTxxxxx; these are

inserted between SYSLIN and TEXT in the standard hierarchy.
v One or more TXTLIBs which will temporarily replace the global TXTLIB

concatenation for the duration of the BIND command; these TXTLIBs are
specified as parameters on one or more cards that start *BIND TXTS.

v Additional CMS style binder options which are inserted into the
command line options at the point of the CTL option; these options are
specified on one or more cards that start *BIND OPTS. The CTL option
cannot be specified on a *BIND OPTS card.

Note: The file type of the control file must be CNTRL.

The CMS commands that use control files (UPDATE, VMFLOAD,
PRELOAD, and XEDIT) ignore binder specific commands that appear as
comments. For example, the lines beginning with *BIND in the sample
DMSVM CNTRL file below would be ignored:
TEXT MACS DMSGPI DMSOM IXXOM OSMACRO OSPSI HCPGPI HCPOM1 OSVSAM
TEXT MACS OSMACRO1
PAT AUXPAT TX$ * LOCAL PATCHES
LCIXX AUXLIXX TXC * REXX AUX File and VVTLIXX Level for Local Mods
LCL AUXLCL * CMS AUX File and VVTLCL Level for Local Mods
CMS AUXIXX TXC * REXX AUX FILE and VVTIXX Level for PTF service
TEXT AUXVM * CMS AUX FILE and VVTVM Level for PTF service
*BIND TXTS txtlib1 txtlib2 ...
*BIND OPTS option1 option2 ...

DISK

14 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

��
YES

DISK
NO
YES

PRINT
NO

NOPRINT
NODISK

��

DISK directs binder SYSPRINT output to a disk file. If OUTPUT CMS is in
effect, then output is directed to fn SYSPRINT fm, where fn and fm are the
default file name and file mode respectively. If OUTPUT BFS is in effect,
then output is directed to ./fn.i, where fn is the default file name.

PRINT directs binder SYSPRINT output to the virtual printer (the
command interface issues FILEDEF SYSPRINT PRINTER).

NOPRINT suppresses binder SYSPRINT output.

DISK NO, NODISK, and NOPRINT are all equivalent to PRINT NO.

For more information, refer to the description of the PRINT option in z/OS
MVS Program Management: User's Guide and Reference.

Notes:

1. If none of these options are specified, then the default is DISK YES.
2. If a valid FILEDEF or PATHDEF for SYSPRINT already exists when the

BIND command is invoked, then PRINT and DISK are ignored and
SYSPRINT is directed to the FILEDEF/PATHDEF destination.

3. Refer to the OUTPUT option for a discussion of OUTPUT CMS and
OUTPUT BFS.

4. Refer to Usage Note 3 on page 28 for a discussion of default file names
and file modes.

DLL See DYNAM.

DYNAM

�� DYNAM DLL
NO

YES
DLL

NO
NODLL

��

DYNAM controls whether a module being bound is to be enabled for
dynamic linking.

DLL YES is equivalent to DYNAM DLL. DLL NO and NODLL are
equivalent to DYNAM NO.

For more information, refer to the description of the DYNAM option in
z/OS MVS Program Management: User's Guide and Reference.

EDIT

Chapter 2. BIND 15

��
YES

EDIT
NO

NOEDIT
NE

��

EDIT controls retention of external symbol data, which is required for
program modules to be editable.

NOEDIT and NE are equivalent to EDIT NO.

For more information, refer to the description of the EDIT option in z/OS
MVS Program Management: User's Guide and Reference.

EPNAME

�� EPNAME symbol
EPOFFSET offset

��

EPNAME specifies the program entry point as a symbol of up to 1024
characters, and an optional entry point offset as a decimal value. Enclose
symbol in quotation marks if it contains blanks.

For more information, refer to the description of the EP option in z/OS
MVS Program Management: User's Guide and Reference.

Note: EPOFFSET is only valid immediately after the EPNAME symbol.

FILETYPE

�� FILETYPE
FT

filetype ��

FILETYPE defines a file type for primary input processing. The specified
file type is added to the top of the file type resolution hierarchy for CMS
primary input files. There is no default value for FILETYPE.

For example, suppose that you had files called PROG1 TEXT and PROG1
GOFF containing text and goff data respectively for PROG1, and no other
files with the file name PROG1. Entering bind prog1 would cause PROG1
TEXT to be read as primary input and processed by the binder. To process
PROG1 GOFF instead, you could enter bind prog1 (ft goff.

If primary input is to be specified in a load list file, then only one CMS
record file system file name may be specified and the FILETYPE option
must be used with a value of EXEC. Refer to the description of the filename
parameter of more information.

FILL

�� FILL byte ��

FILL specifies a hex value defining a byte to be used to fill uninitialized
areas of the program object.

For more information, refer to the description of the FILL option in z/OS
MVS Program Management: User's Guide and Reference.

GID

16 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

�� GID value ��

GID specifies the Group ID attribute to be set for program objects and
sidedecks when they are written to the BFS. To set Group ID attributes,
you must have superuser authority or be the owner of the file or directory.

For more information, refer to the description of the GID option in z/OS
MVS Program Management: User's Guide and Reference.

HOBSET

��
YES

HOBSET
NO

NOHOBSET

��

HOBSET controls whether the high-order bit in each V-type address
constant is to be set according to the AMODE of the target symbol.

NOHOBSET is equivalent to HOBSET NO.

For more information, refer to the description of the HOBSET option in
z/OS MVS Program Management: User's Guide and Reference.

INCL See CMSINCL.

INFO

��

NOINFO
YES

INFO
NO

��

When the INFO option is specified, the binder produces a report listing the
PTF level for all binder sections to which maintenance has been applied.
This report appears at the end of the binder SYSPRINT or SYSLOUT data
set, prior to the message summary report.

For more information, refer to the description of the INFO option in z/OS
MVS Program Management: User's Guide and Reference.

INTFEXIT

�� INTFEXIT module_name
VAR option_string

��

INFEXIT specifies an interface validation exit, and optionally an option
string to pass to it. The exit routine must exist as a module file on an
accessed disk or directory.

For each adjacent series of EXITS options (INTFEXIT, MSGEXIT, and
SAVEXIT), including any associated VAR options (for INTFEXIT and
MSGEXIT), a single binder EXITS option is passed to the binder.

For more information, refer to the description of the EXITS option for the
interface validation exit in z/OS MVS Program Management: User's Guide and
Reference.

Note: VAR is only valid immediately after INTFEXIT (or MSGEXIT).

Chapter 2. BIND 17

LET

��
8

LET
0
4
12
YES
NO

NOLET

��

LET controls the severity level for the acceptability of errors.

LET YES and LET are equivalent to LET 8. LET NO and NOLET are
equivalent to LET 4.

For more information, refer to the description of the LET option in z/OS
MVS Program Management: User's Guide and Reference.

LIBE

��
YES

LIBE
NO

NOLIBE

��

LIBE controls whether the BIND command searches the text libraries
defined by a previously issued GLOBAL TXTLIB command for unresolved
references. The default is LIBE.

NOLIBE is equivalent to LIBE NO.

LINECT

�� LINECT lines ��

LINECT specifies the number of lines per page of the binder output
listings.

For more information, refer to the description of the LINECT option in
z/OS MVS Program Management: User's Guide and Reference.

LIST

��
SUMMARY

LIST
OFF
NO
STMT
NOIMPORT
NOIMP
YES
ALL

NOLIST

��

LIST controls the contents of the output listings.

18 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

LIST YES and LIST are equivalent to LIST SUMMARY. LIST NO and
NOLIST are equivalent to LIST OFF. LIST NOIMP is equivalent to LIST
NOIMPORT.

For more information, refer to the description of the LIST option, and
“Chapter 8. Interpreting Binder Listings” in z/OS MVS Program
Management: User's Guide and Reference.

LISTPRIV

��
NO

LISTPRIV
YES

��

LISTPRIV obtains a list of unnamed (private code) sections. Unnamed
sections are sections that were input to the binder with no name (the name
consists of blanks).

For more information, refer to the description of the LISTPRIV option in
z/OS MVS Program Management: User's Guide and Reference.

MACRO
See CMSMACRO

MAP

��
YES

MAP
NO

NOMAP

��

MAP controls whether or not a module map is produced.

NOMAP is equivalent to MAP NO.

For more information, refer to the description of the MAP option in z/OS
MVS Program Management: User's Guide and Reference.

MIXED
See CASE.

MODMAP

��
NO

MODMAP LOAD
NOLOAD

��

You can build a map of the module contents in a separate section as part
of the module being bound by coding the MODMAP option.

For more information, refer to the description of the MODMAP option in
z/OS MVS Program Management: User's Guide and Reference.

MSGEXIT

�� MSGEXIT module_name VAR severity ��

MSGEXIT specifies a message processing exit and the minimum severity of
messages to be passed to the exit. The exit routine must exist as a module
file on an accessed disk or directory.

Chapter 2. BIND 19

For each adjacent series of EXITS options (INTFEXIT, MSGEXIT, and
SAVEXIT), including any associated VAR options (for INTFEXIT and
MSGEXIT), a single binder EXITS option is passed to the binder.

For more information, refer to the description of the EXITS option for the
message exit in z/OS MVS Program Management: User's Guide and Reference.

Note: VAR is only valid immediately after MSGEXIT (or INTFEXIT).

MSGLEVEL

�� MSGLEVEL CONCISE
QUIET
VERBOSE
0
4
8
12

CONCISE
QUIET
VERBOSE

��

MSGLEVEL specifies the minimum severity level of messages to be issued.

BIND command level message suppression can be in one of two modes
(VERBOSE or QUIET) which control whether informational command
interface messages are issued. The command options CONCISE, VERBOSE
and QUIET may be specified either as a keyword or as a value on the
MSGLEVEL option, and they relate to the command mode and to the
binder MSGLEVEL option as summarized in Table 1:
v

Table 1. Message Level Options Passed to the Binder

Specified Cmd Level Bind Level

— QUIET —

CONCISE QUIET —

QUIET QUIET 4

VERBOSE VERBOSE 0

0 VERBOSE 0

4 QUIET 4

8 QUIET 8

12 QUIET 12

Notes:
1. The “Specified” column shows what is specified as a value for the

MSGLEVEL option in CMS style.
2. The “Cmd Level” column shows the resulting message suppression

mode setting.
3. The “Bind Level” column shows the MSGLEVEL option value passed

to the binder (where a dash means nothing is passed).

The severity level of messages is summarized as follows:

0 Informational

4 Warning

20 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

8 Error

12 Severe

For more information, refer to the description of the MSGLEVEL option in
z/OS MVS Program Management: User's Guide and Reference.

OL

��
YES

OL
NO

NOOL

��

OL determines the setting of an attribute that controls how the program
can be brought into virtual storage.

NOOL is equivalent to OL NO.

For more information, refer to the description of the OL option in z/OS
MVS Program Management: User's Guide and Reference.

OPTIONS

�� OPTIONS ddname ��

OPTIONS specifies the ddname for a data set containing binder options to
be used during current processing.

For more information, refer to the description of the OPTIONS option in
z/OS MVS Program Management: User's Guide and Reference.

OUTPUT

�� OUTPUT BFS
CMS

��

OUTPUT controls the file system target for output files.

If OUTPUT CMS is specified or the OUTPUT option is omitted and the
first primary input file is a CMS file, then output files are written as CMS
files.

If OUTPUT BFS is specified or the OUTPUT option is omitted and the first
primary input file is a BFS file, then output files are written as BFS files.
There is no default value for OUTPUT.

Note: The actual output files produced are also affected by:
v The use of the DISK and PRINT options
v Any pre-existing FILEDEFs or PATHDEFs for ddnames used by the

binder; refer to Usage Note 5 on page 29 for more information.
v The use of the DYNAM option and whether or not its use causes a side

file to be generated by the binder
v The presence of NAME statements in the primary input

Refer to Usage Note 3 on page 28 for a discussion of default file names
and file modes.

PATHMODE

Chapter 2. BIND 21

�� PATHMODE oct1
, oct2

, oct3
, oct4

��

PATHMODE is used to set OpenExtensions file attributes for program
objects and sidedecks by specifying a string of 4 digits in the range 0-7.

If fewer than four digits are specified, the string is padded to the right
with zeros. If more than four digits are specified, the excess digits are
discarded.

For more information, refer to the description of the PATHMODE option in
z/OS MVS Program Management: User's Guide and Reference.

PRINT
See DISK.

REUS

��
SERIAL

REUS
NONE
RENT
REFR
YES
NO

SERIAL
RENT
REFR
NOREUS

��

REUS specifies the reusability characteristics of the program module.

REUS YES and SERIAL are equivalent to REUS SERIAL. REUS NO and
NOREUS are equivalent to REUS NONE.

For more information, refer to the description of the REUS option in z/OS
MVS Program Management: User's Guide and Reference.

Note: Additional negative alternative forms (such as NORENT and
NOREFR, which are supported by the z/OS MVS Program Management
Binder) are not supported by the BIND command because they create an
ambiguous syntax.

RMODE

�� RMODE
MIN,COMPAT
MIN | MIN,INITIAL
24 | 24,INITIAL
24,COMPAT
ANY | 31 | ANY,INITIAL | 31,INITIAL
ANY,COMPAT | 31,COMPAT

��

RMODE sets the residence mode.

For more information, refer to the description of the RMODE option in
z/OS MVS Program Management: User's Guide and Reference.

SAVEXIT

22 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

�� SAVEXIT module_name ��

SAVEXIT specifies a save exit. The exit routine must exist as a module file
on an accessed disk or directory.

For each adjacent series of EXITS options (INTFEXIT, MSGEXIT, and
SAVEXIT), including any associated VAR options (for INTFEXIT and
MSGEXIT), a single binder EXITS option is passed to the binder.

For more information, refer to the description of the EXITS option save exit
in z/OS MVS Program Management: User's Guide and Reference.

SNAME

�� SNAME name ��

SNAME specifies a name of 1 to 1024 characters in length for saving the
program module. Enclose name in quotation marks if it contains blanks.

For more information, refer to the description of the SNAME option in
z/OS MVS Program Management: User's Guide and Reference.

STORENX

��

NOSTORENX
YES

STORENX
NEVER
NOREPLACE | NO

��

The STORENX option specifies the conditions under which the binder is to
store a nonexecutable program module.

For more information, refer to the description of the STORENX option in
z/OS MVS Program Management: User's Guide and Reference.

STR See CMSSTR.

STRIPCL

��

STRIPCL NO
YES

STRIPCL
NO

��

The STRIPCL option allows you to remove unneeded classes from a
program object or load module. For a class to be eligible for removal, in
addition to having the removable attribute:
v It must not be a binder-owned class (a class whose name starts with a

B_).
v It must not contain any RLD entries.

For more information, refer to the description of the STRIPCL option in
z/OS MVS Program Management: User's Guide and Reference.

STRIPSEC

Chapter 2. BIND 23

��

STRIPSEC NO
YES

STRIPSEC
PRIV
NO

��

The STRIPSEC option allows you to remove unneeded sections from a
program object or load module.

For more information, refer to the description of the STRIPCL option in
z/OS MVS Program Management: User's Guide and Reference.

SYSTEM
See CMSSYSTEM.

TERM

��
YES

TERM
TYPE NO

NOTERM
NOTYPE

��

TERM directs binder SYSTERM output to the console (the command
interface issues FILEDEF SYSTERM TERMINAL).

NOTERM causes binder SYSTERM output to be suppressed.

TYPE is equivalent to TERM. TYPE NO, NOTYPE, and NOTERM are all
equivalent to TERM NO.

For more information, refer to the description of the TERM option in z/OS
MVS Program Management: User's Guide and Reference.

Note: If there is a valid pre-existing FILEDEF or PATHDEF for SYSTERM
when the BIND command is invoked, then TERM is ignored and
SYSTERM is directed to the FILEDEF/PATHDEF destination.

TYPE See TERM.

UID

�� UID value ��

UID specifies the User ID attribute to be set for program objects and
sidedecks when they are written to the BFS. To set User ID attributes, you
must have superuser authority.

For more information, refer to the description of the UID option in z/OS
MVS Program Management: User's Guide and Reference.

UPCASE

��
YES

UPCASE
NO

NOUPCASE

��

24 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

|

UPCASE determines if unresolved function references that are marked as
renameable and that are not imported are set to uppercase if they are eight
characters or less in length. This occurs during the final automatic library
call.

NOUPCASE is equivalent to UPCASE NO.

For more information, refer to the description of the UPCASE option in
z/OS MVS Program Management: User's Guide and Reference.

UPPER
See CASE.

VAR See INTFEXIT, MSGEXIT, and SAVEXIT.

WKSABOVE

�� WKSABOVE value ��

WKSABOVE specifies in units of 1 KB the amount of space available for
binder processing above the 16 MB line (minimum 1024 KB).

For more information, refer to the description of the WKSPACE option in
z/OS MVS Program Management: User's Guide and Reference. The
WKSABOVE specification corresponds to the WKSPACE value2
specification.

WKSBELOW

�� WKSBELOW value ��

WKSBELOW specifies in units of 1 KB the amount of space available for
binder processing below the 16 MB line (minimum 96 KB).

For more information, refer to the description of the WKSPACE option in
z/OS MVS Program Management: User's Guide and Reference. The
WKSBELOW specification corresponds to the WKSPACE value1
specification.

XC See CMSXC.

XREF

��
YES

XREF
NO

NOXREF

��

XREF controls printing of a cross-reference table.

NOXREF is equivalent to XREF NO.

For more information, refer to the description of the XREF option in z/OS
MVS Program Management: User's Guide and Reference.

Table 2. z/OS MVS Program Management Binder to BIND Command Options
Cross-reference

z/OS MVS Program Management
Binder option

BIND command option

AC not available

Chapter 2. BIND 25

Table 2. z/OS MVS Program Management Binder to BIND Command Options
Cross-reference (continued)

z/OS MVS Program Management
Binder option

BIND command option

ALIASES not available

ALIGN2 ALIGN2

AMODE AMODE

CALL CALL

CALLIB not available
Note: CALLIB has no effect if specified in MVS
binder style, but may be specified as a parameter on
the SETOPT control statement.

CALLERID not available

CASE CASE, UPPER, MIXED

COMPAT COMPAT

COMPRESS COMPRESS

DC not available

DCBS not available

DYNAM DYNAM, DLL

EDIT EDIT

EP EPNAME, EPOFFSET

EXITS INTFEXIT, MSGEXIT, SAVEXIT, VAR

EXTATTR not available

FETCHOPT not available

FILL FILL

GID GID

HOBSET HOBSET

INFO INFO

LET LET

LINECT LINECT

LIST LIST

LISTPRIV LISTPRIV

LNAME not available

MAP MAP

MAXBLK not available

MODLIB not available
Note: MODLIB has no effect if specified in MVS
binder style, but may be specified as a parameter on
the SETOPT control statement.

MODMAP MODMAP

MSGLEVEL MSGLEVEL

NAME not available

OL OL

OPTIONS OPTIONS

26 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Table 2. z/OS MVS Program Management Binder to BIND Command Options
Cross-reference (continued)

z/OS MVS Program Management
Binder option

BIND command option

OVLY not available

PATHMODE PATHMODE

PRINT PRINT, DISK

RES not available

REUS REUS, RENT, REFR

RMODE RMODE

SCTR not available

SNAME SNAME

SIZE not available

SSI not available

STORENX STORENX

STRIPCL STRIPCL

STRIPSEC STRIPSEC

TERM TERM

TEST not available

TRAP not available

UID UID

UPCASE UPCASE

WKSPACE WKSBELOW, WKSABOVE

XCAL not available

XREF XREF

Usage Notes
1. The OpenExtensions c89 command can also be used to invoke the BIND

command. Refer to z/VM: OpenExtensions Commands Reference for more
information.

2. Primary Input Processing

Primary input processing by the BIND command proceeds according to the
following rules:
v Each primary input file is processed separately and in the order specified on

the BIND command.
v CMS files are processed according to their file type and their record format

and length:
– Files that are fixed format with a record length of 80 can contain control

statements, ordinary object code (OBJ), extended object code (XOBJ, as
processed by the C prelinker), or generalized object code (GOFF). These
files are preprocessed to check for the presence of NAME statements and
buffered in a work file.

– Files that are fixed format with a record length other than 80 are rejected
with message DMSBCO1609E.

– Files that are variable format are passed to the binder by issuing a
FILEDEF command and generating an INCLUDE statement in the work

Chapter 2. BIND 27

file that refers to the ddname used on the FILEDEF. The ddnames used
are generated by the BIND command and are of the form INCLnnnn,
where nnnn is a numeric character sequence that increments from 0000 for
each required FILEDEF. The only valid variable format input is either
GOFF or an extended format MODULE.

v BFS files are processed according to whether or not they contain a program
object:
– Files containing program objects are passed to the binder as is by

generating an INCLUDE statement in the work file referring to the path
for the file.

– All other files are assumed to contain control statements, ordinary object
code (OBJ), extended object code (XOBJ, as processed by the C prelinker),
or generalized object code (GOFF) in simulated card image format. They
are read 80 bytes at a time, preprocessed to check for the presence of NAME
statements, and buffered in the work file.

v Whenever a NAME statement is found, the binder include API is invoked to
process all the data buffered to the work file, including any generated
INCLUDE statements, and the resulting data is bound into a program object
and saved using the name specified on the NAME statement.

v If no NAME statements have been found when end-of-file is reached on the last
primary input file, then the binder include API is invoked to process all the
data buffered to the work file, including any generated INCLUDE statements,
and the resulting data is bound and saved as though a NAME statement
specifying the default file name with the replace option were found.

v If any further input is found after the last NAME statement processed, then
when the end-of-file is reached on the last primary input file, the binder
include API is invoked to process all the data buffered to the work file,
including any generated INCLUDE statements. The resulting data is bound and
saved using a generated name of the form TEMPNAMn, where n is a
numeric character in the range 0-9. If all possible temporary names have
been used, the program object is not saved.

Note: The default file name and file mode are discussed in 3.
3. Default File Name and File Mode Determination

The BIND command determines a default file name and file mode that might
be used to determine the placement of output files. The determination of the
default file name and file mode depends on the location of the first primary
input file.
When the first primary input file is a CMS file the default file name is the
uppercase form of the specified file name. The default file mode will be the file
mode associated with the first primary input file if it is accessed in R/W mode,
or else it will be the first available R/W file mode.
When the first primary input file is a BFS file and OUTPUT BFS is in effect,
the default file name is the file name as specified on the BIND command,
subject to the file name extension convention discussed below. The default file
mode is the first available R/W file mode.
When the first primary input file is a BFS file and OUTPUT CMS is in effect,
the default file name is the file name as specified on the BIND command. It is
converted to uppercase unless the specified file name is not a valid CMS file
name. If the specified file name is not a valid CMS file name, then a warning
message is issued and the default file name is set to “$BINDER$.” The default
file mode is the first available R/W file mode in any case.

28 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

To see how the default file name and file mode are used by the BIND
command, refer to Usage Notes 2 on page 27 and 5.

4. BFS file name extension convention

The BIND command recognizes and uses a convention for BFS file name
extensions based on what is used by the c89 command. The convention is only
meaningful when the default file names are used. The following extensions are
recognized or used:

.i Signifies a listing file. This extension is appended to the default file
name when the BIND command generates a BFS file name for
SYSPRINT.

.m Signifies a program object file. This extension is appended to the
default file name when the BIND command generates a BFS file name
for SYSLMOD, unless the first primary input file used a .o extension, in
which case the default file name is used unextended.

.o Signifies an object file. If this extension is used on the first primary
input file, then the default file name becomes the name without the
extension.

.x Signifies a side file. This extension is appended to the default file name
when the BIND command generates a BFS file name for SYSDEFSD.

5. FILEDEF and PATHDEF Usage

The BIND command uses the CMS Binder implementation of the binder API to
control binder processing, but ultimately the program being run is the z/OS
MVS Program Management Binder. Because of this, input and output to the
binder is controlled by ddnames that are manipulated using the CMS FILEDEF
and OPENVM PATHDEF CREATE commands. In general, the BIND command
provides suitable defaults for the task at hand, but an understanding of the
ddname requirements of the binder makes it easier to use and facilitates the
performance of more advanced binding tasks.
See also “FILEDEF/PATHDEF - Relationship with DD Statement” on page 58
and “Binder Input and Output” on page 57 for general information about the
CMS Binder and file specification.
The BIND command uses the following ddnames:

SYSLIN
SYSLIN is the default ddname for primary input to the binder. The
BIND command only uses the SYSLIN ddname if no file names are
specified as arguments, in which case all active FILEDEFs and
PATHDEFs for SYSLIN are used. FILEDEFs are processed in the order
that the FILEDEF commands were entered, and all the FILEDEFs are
processed before any PATHDEF is processed. For example:

filedef syslin disk file1 text a (concat
openvm pathdef create syslin ./file3
filedef syslin disk file2 text a (concat

This would result in file1, file2 and file3 (in that order) being processed
by the binder.

Note: Only one PATHDEF at a time can be active for a given ddname.

SYSUT1
SYSUT1 is used as a work file for staging input to the binder. A
FILEDEF is always issued for this ddname, regardless of any
pre-existing FILEDEF or PATHDEF. The command issued is

Chapter 2. BIND 29

filedef sysut1 disk fn sysut1 fm

where fn and fm are the default file name and file mode.

SYSUT1 is used for staging input files that might contain control
statements so that NAME control statements can be detected. When a
NAME statement is encountered the command interface uses include and
bind workmod API calls to process the contents of SYSUT1, and then
issues a save workmod API call to save the bound program object.

options
Any ddname may be used for the options file. The options file is read
by the binder if the OPTIONS option is specified.

SYSLIB
SYSLIB is used by the binder to resolve external references when
automatic library call processing is invoked. The command interface
does not provide a default FILEDEF for this ddname.

Note: The library used to resolve external references can be altered
using the CALLIB option. When using the BIND command to invoke
the binder, the CALLIB option is only effective if set with a SETOPT
control statement. It has no effect if specified as an MVS binder style
option.

include
Any ddname may be used for files referred to by include statements.

SYSPRINT
SYSPRINT is used by the binder for diagnostic output. The SYSPRINT
target is determined as follows:
v If the NOPRINT option is specified, SYSPRINT output is not

produced and no FILEDEF or PATHDEF for SYSPRINT is issued.
v If the NOPRINT option is not specified and a FILEDEF or PATHDEF

for SYSPRINT exists when the BIND command is issued, then the
pre-existing FILEDEF or PATHDEF is used.

v If the DISK option is specified and no FILEDEFs or PATHDEFs for
SYSPRINT exist when the BIND command is issued, then the BIND
command issues an appropriate FILEDEF or PATHDEF for
SYSPRINT. If OUTPUT CMS is in effect, then the following is
issued:

filedef sysprint disk fn SYSPRINT fm

where fn and fm are the default file name and file mode respectively.
If OUTPUT BFS is in effect, then the following is issued:

openvm pathdef create sysprint ./fn.i

where fn is the default file name.

Notes:

a. Refer to the OUTPUT option for a discussion of OUTPUT CMS
and OUTPUT BFS.

b. Refer to Usage Note 3 on page 28 for a discussion of default file
name and file modes.

30 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

v If the PRINT option is specified and no FILEDEFs or PATHDEFs for
SYSPRINT exist when the BIND command is issued, then the BIND
command issues a FILEDEF to direct sysprint to the virtual printer:

filedef sysprint printer

Note: If more than one FILEDEF or PATHDEF exists, or a FILEDEF
exists that specifies the CONCAT option or is not to disk, printer, or
terminal, then the BIND command considers the specification to be in
error and terminates without invoking the binder.

SYSLMOD
SYSLMOD determines where program objects created by the binder are
placed. The SYSLMOD target is determined as follows:
v If neither a FILEDEF nor a PATHDEF for SYSLMOD exists when the

BIND command is invoked, then the SYSLMOD target used depends
on whether OUTPUT CMS or OUTPUT BFS is in effect, and on the
presence of NAME statements in the primary input stream.
– If OUTPUT CMS is in effect and no NAME statements are found in

primary input, then the single program object produced by the
binder is placed in a file called fn MODULE fm, where fn and fm
are the default file name and file mode respectively.

– If OUTPUT CMS is in effect and NAME statements are found in
primary input, then a program object with file type MODULE is
created for each NAME statement found using the symbol specified
on the statement as the file name.

– If OUTPUT BFS is in effect and no NAME statements are found in
primary input, then the single program object produced by the
binder is placed in a file called fn or fn.m in the current working
directory, where fn is the default file name. (The .m extension is
appended if the first primary input file is a BFS file without a .o
extension. This helps avoid inadvertently overwriting an input
text file with an output program object file.)

– If OUTPUT BFS is in effect and NAME statements are found in
primary input, then a program object is created in the current
working directory for each NAME statement found using the symbol
specified on the statement as the file name.

Table 3. Program Module Output Determination when No SYSLMOD is Predefined

OUTPUT Option First File Name Specified
on BIND Command

NAME Statement SNAME Option Output Module

none fn none none fn MODULE dfm

sname sname MODULE dfm

name none name MODULE dfm

sname name MODULE dfm

directory/file none none ./file or ./file .m

sname ./sname

name none ./name

sname ./name

Chapter 2. BIND 31

Table 3. Program Module Output Determination when No SYSLMOD is Predefined (continued)

OUTPUT Option First File Name Specified
on BIND Command

NAME Statement SNAME Option Output Module

CMS fn ft fm none none fn MODULE dfm

sname sname MODULE dfm

name none name MODULE dfm

sname name MODULE dfm

directory/file none none file MODULE dfm

sname sname MODULE dfm

name none name MODULE dfm

sname name MODULE dfm

BFS fn ft fm none none ./fn

sname ./sname

name none ./name

sname ./name

directory/file none none ./file or ./file .m

sname ./sname

name none ./name

sname ./name

Notes about the table:

1. This is a decision table. To use it, start in the left-hand column and work to the right choosing the row according
to the values that apply to your situation. The cell in the right-most column that you arrive at describes the
output program module file that will be created.

2. dfm represents the default file mode determined by the BIND command.

3. For BFS input that results in a CMS module file output, if the file name is used for the module name it is
changed to uppercase, checked for validity, and may be truncated.

4. The SNAME option value can be set as a BIND command option, or with a SETOPT control statement in the
input stream.

v If a FILEDEF for SYSLMOD exists when the BIND command is
invoked, it must specify a file type of either MODULE or LOADLIB.
– If the file type is MODULE and no NAME statements are found in

primary input, then the single program object produced by the
binder is placed in the specified file.

– If the file type is MODULE and NAME statements are found in
primary input, then a program object with file type MODULE is
created for each NAME statement found using the symbol specified
on the statement as the file name.

– If the file type is LOADLIB and no NAME statements are found in
primary input, then the single program object produced by the
binder is placed in the specified file using the default file name as
a member name.

– If the file type is LOADLIB and NAME statements are found in
primary input, then a load module is created for each NAME found
using the symbol specified on the statement as the member name.

The following table summarizes the relationship between the
SYSLMOD specification and the output program object file when a

32 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

FILEDEF for SYSLMOD exists prior to invoking the BIND command.
The OUTPUT option does not affect these scenarios.

Table 4. Program Module Output Determination (SYSLMOD FILEDEF Exists)

SYSLMOD
Specification

NAME
Statement

SNAME
Option

Output Module

fn MODULE fm none none fn MODULE fm

sname sname MODULE fm

name none name MODULE fm

sname name MODULE fm

fn LOADLIB fm none none fn LOADLIB(infile1) fm

sname fn LOADLIB(sname) fm

name none fn LOADLIB(name) fm

sname fn LOADLIB(name) fm

fn LOADLIB(member)
fm

none none fn LOADLIB(member) fm

sname fn LOADLIB(sname) fm

name none fn LOADLIB(name) fm

sname fn LOADLIB(name) fm

Notes about the table:

1. This is a decision table. To use it, start in the left-hand column and work to the right
choosing the row according to the values that apply to your situation. The cell in the
right-most column that you arrive at describes the output program module file that is
created.

2. infile1 represents the first file name specified on the BIND command

3. The SNAME option value can be set as a BIND command option or using a SETOPT
control statement in the input stream.

v If a PATHDEF for SYSLMOD exists when the BIND command is
invoked, the directory or file it specifies must exist.
– If it refers to a file and no NAME statements are found in primary

input, then the single program object produced by the binder
replaces the named file.

– If it refers to a file and NAME statements are found in primary
input, then a program object is created in the directory containing
the file specified by the PATHDEF for each NAME statement found
using the symbol specified on the statement as the file name.

– If it refers to a directory and no NAME statements are found in
primary input, then the single program object produced by the
binder is placed in the directory using the default file name.

– If it refers to a directory and NAME statements are found in primary
input, then a program object is created in the directory for each
NAME statement found using the symbol specified on the statement
as the file name.

The following table summarizes the relationship between the
SYSLMOD specification and the output program object file when a
PATHDEF for SYSLMOD exists prior to invoking the BIND
command. The OUTPUT option does not affect these scenarios.

Chapter 2. BIND 33

Table 5. Program Module Output Determination (SYSLMOD PATHDEF Exists)

SYSLMOD
Specification

NAME
Statement

SNAME
Option

Output Module

directory none none directory/infile1

sname directory/sname

name none directory/name

sname directory/name

directory/file none none directory/file

sname directory/sname

name none directory/name

sname directory/name

Notes about the table:

1. This is a decision table. To use it, start in the left-hand column and work to the right
choosing the row according to the values that apply to your situation. The cell in the
right-most column that you arrive at describes the output program module file that is
created.

2. infile1 represents the first file name specified on BIND command.

3. The expected behavior is dependent on the existence of the specified path. If the
directory or file does not exist the message IEW2785S is issued.

4. The SNAME option value can be set as a BIND command option or using a SETOPT
control statement in the input stream.

Notes:

a. Program objects are saved with an implicit disposition of replace if
no NAME statements are encountered in the primary input stream.

b. If the symbol name to be used for a file name exceeds the
maximum length allowed for the target file system, the name is
truncated to the maximum length and an error message issued.

c. The default file name is always uppercase when OUTPUT CMS is
in effect, and mixed case when OUTPUT BFS is in effect, and NAME
statement symbols may be mixed case, but whichever is the source
of the file name used, the case of the actual symbol, and therefore
file name used, depends on the CASE option setting.

d. The character set supported for BFS file names is not the same as
that for binder symbol names. Because the BIND command always
uses a symbol name (an “SNAME”) when saving program objects,
SYSLMOD PATHDEFs to files with names that contain characters
that are not valid in binder symbol names should not be used.

e. If more than one FILEDEF or PATHDEF exists, or a FILEDEF exists
that specifies the CONCAT option or is not to disk, then the BIND
command considers the specification to be in error and terminates
without invoking the binder.

f. When using the BIND command to invoke the binder, the MODLIB
option can only be specified as a parameter on the SETOPT control
statement. It is not a valid CMS style option and is ignored if
specified as an MVS binder style option.

SYSTERM
SYSTERM is used by the binder for diagnostic messages. The SYSTERM
target is determined as follows:

34 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

v If the NOTERM option is specified, SYSTERM output is not
produced and no FILEDEF or PATHDEF for SYSTERM is issued.

v If the NOTERM option is not specified and a FILEDEF or PATHDEF
for SYSTERM exists when the BIND command is issued, then the
preexisting FILEDEF or PATHDEF is used.

v If the TERM option is specified and no FILEDEFs or PATHDEFs for
SYSTERM exist when the BIND command is issued, then the BIND
command issues a FILEDEF to direct SYSTERM to the console:

filedef systerm terminal

Note: If more than one FILEDEF or PATHDEF exists, or a FILEDEF
exists that specifies the CONCAT option or is not to disk, printer, or
terminal, then the BIND command considers the specification to be
in error and terminates without invoking the binder.

SYSDEFSD
SYSDEFSD is used by the binder to save any side file generated when
the DYNAM=DLL option is used. The SYSDEFSD target is determined
as follows:
v If neither a FILEDEF or a PATHDEF for SYSDEFSD exists when the

BIND command is invoked, then the SYSDEFSD target used depends
on whether OUTPUT CMS or OUTPUT BFS is in effect.
If OUTPUT CMS is in effect, then the BIND command issues a
FILEDEF for SYSDEFSD:

filedef sysdefsd disk fn sysdefsd fm

where fn and fm are the default file name and file mode respectively.
If OUTPUT BFS is in effect, then the BIND command issues a
PATHDEF for SYSDEFSD:

openvm pathdef create sysdefsd ./fn.x

where fn is the default file name.

Note: If NAME statements are found in primary input and more than
one side file is generated, then only the last side file generated
remains in the file when the bind process has completed.

v If a FILEDEF for SYSDEFSD exists when the BIND command is
invoked, then it is used as the side file target.

Note: If NAME statements are found in primary input and more than
one side file is generated, then only the last side file generated
remains in the file when the bind process has completed.

v If a PATHDEF for SYSDEFSD exists when the BIND command is
invoked, the directory or file it specifies must exist.

Notes:

a. If the PATHDEF refers to a file and NAME statements are found in
primary input and more than one side file is generated, then only
the last side file generated remains in the file when the bind
process has completed.

b. If the PATHDEF refers to a directory and no NAME statements are
found in primary input, then if a side file is produced by the
binder, it is placed in the directory using the same name as is
used to save the program object. This means that if the

Chapter 2. BIND 35

SYSDEFSD PATHDEF specifies the same directory that the
program object is saved into, the side file overwrites the program
object.

c. If the PATHDEF refers to a directory and NAME statements are
found in primary input, then any side files produced are created
in the directory using the symbol specified on the associated
statement as the file name. This means that if the SYSDEFSD
PATHDEF specifies the same directory as the program objects are
saved into, the side files overwrite their corresponding program
objects.

d. The only way to successfully write multiple side files in a single
bind process is to issue a PATHDEF for SYSDEFSD that specifies
a directory that is different from the directory (normally the
current working directory) into which the program objects are
saved.

6. Resolution of External References

The following flowchart summarizes the external reference resolution process
for the BIND command and how it is affected by various option specifications.
For more details about the resolution process, see Figure 4 on page 71.

36 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Examples

In some cases the behavior described may vary from what you would see on your
own system. For example, if your installation defaults (established by the

Use standard search order to locate files with the file names
entered in the command and each of the file types in the
hierarchy , SYSLIN, TEXT, MODULE; where
is the file type specified with the FILETYPE option, if used.

filetype filetype

Any

files not

found

?

LIBE

option in

effect

?

GLOBAL

TXTLIB

defined

?

Generate
INCLUDES and
issue FILEDEFs
for the files that
cannot be found.

LIBE

option in

effect

?

GLOBAL

TXTLIB

defined

?

SYSLIB

already

defined

?

Connect SYSLIB
to GLOBAL
TXTLIB using
FILEDEF with
CONCAT.

CALL

option in

effect

?

CMSAUTO

option in

effect

?

Use standard search order to locate files with the file names
entered in the command and each of the file types in the
hierarchy , SYSLIN, TEXT, MODULE; where
is the file type specified with the FILETYPE option, if used.

filetype filetype

Use standard search order to locate files with the file type
TEXT and a file name matching the unresolved reference.

Search SYSLIB library concatenation.

Completed

YES YESLIBE

LIBE

NOLIBE

NOLIBE

YES

YES

NO NO

NO

NCAL

CALL

NOCMSAUTO

CMSAUTO

NO

Figure 2. External Reference Resolution Process for the BIND Command

Chapter 2. BIND 37

IEWBODEF CSECT, see “Defining Installation Defaults” on page 88) specify NO as
the value for the CALL option, the external references examples do not operate as
described.

Examples of Using the BIND Command from the CMS Ready Prompt

1. Binding a Single Text Deck with No External References

Assume you have a file called FILE1 TEXT on your A-disk containing object
code produced by a language compiler. Enter the following:

bind file1

This example binds the text file and produces a program module called FILE1
MODULE on your A-disk. A listing file called FILE1 SYSPRINT is also
produced.

2. Binding a Single Text Deck with External References

Suppose FILE2 is another program with external references resolved by
members of text libraries called MYLIB TXTLIB and PRODLIB TXTLIB. Enter
the following:

bind file2

This example results in error messages from the binder because no SYSLIB is
available for autocall processing and because of the unresolved external
references. Enter the following:

global txtlib mylib prodlib
bind file2 (/nocmsauto

This example binds the text file and resolves the external references to produce
a program object called FILE2 MODULE on your A-disk. A listing file called
FILE2 SYSPRINT is also produced.

Notes:

a. The binder searches text libraries in the GLOBAL TXTLIB concatenation
because the LIBE option is in effect by default. This automatic search is not
done if the NOLIBE option is specified.

b. The NOCMSAUTO option ensures that the external references are satisfied
from the SYSLIB concatenation and not by TEXT files in the standard search
order; see “CMSAUTO” on page 63.

3. Specifying binder options

The CMS Binder command interface allows you to specify binder options either
as “mapped” options, or as native binder options in an options string. The
CMS system attribute is implemented using the CMS Binder API CMSSYSTEM
option, which is mapped as the SYSTEMoption. So if you also wanted to set
addressing and residence mode attributes for FILE1, you could enter any of the
following:

bind file1 (system amode 31 rmode any
bind file1 (/ cmssytem=yes,amode=31,rmode=any
bind file1 (system / amode=31,rmode=any

Note: Options appearing before the slash (/) separator use a CMS-style syntax,
defined elsewhere in this manual, while options appearing after the slash use
binder JCL parameter string syntax described in z/OS MVS Program
Management: User's Guide and Reference.

4. Binding Several Text Decks with One Command

38 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Suppose you want to bind FILE1 and FILE2 into a single module. Enter the
following:

filedef syslib disk mylib txtlib *
bind file1 file2 (noauto

This example binds the two text files and resolves the external references to
produce a program module called FILE1 MODULE on your A-disk. A listing
file called FILE1 SYSPRINT is also produced.

Notes:

a. Only one text library is required to resolve external references. Therefore, it
can be specified directly on a FILEDEF for SYSLIB and no GLOBAL TXTLIB
command is required.

b. The first file name specified on the BIND command is used as a default for
determining the names of the output files.

5. Creating Several Modules Using Control Statements

In a single bind process using control statements we can initiate binds of
arbitrary complexity. Assume a file called FILE1 SYSLIN has been created
containing:
INCLUDE FILE1
NAME FILE1(R)
INCLUDE FILE1
INCLUDE FILE2
NAME FILE2(R)
SETOPT PARM(CMSAUTO=YES)
INCLUDE FILE3
NAME FILE3(R)

Entering the following:
global txtlib mylib prodlib
bind file1 (cmsauto no

This example binds the various text files and produces three program objects
called FILE1 MODULE, FILE2 MODULE and FILE3 MODULE on your A-disk.
A listing file called FILE1 SYSPRINT is also produced.

Notes:

a. The arguments of the INCLUDE statements are resolved to the required text
files by the binder. If however there were FILEDEFs or PATHDEFs in effect
with these names, then the files referred to by the FILEDEFs/PATHDEFs
would have been included instead. This behavior is controlled by the option
CMSINCL; see “CMSINCL” on page 64 for a description of the option.

b. The NAME statement causes a program object to be created with the
specified name and a file type of MODULE. A program object module file is
produced each time a NAME statement is encountered.

c. External references in FILE1 and FILE2 are resolved from the GLOBAL
TXTLIB concatenation, but the SETOPT control statement changed the
effective CMSAUTO option for FILE3 so that TEXT files in the standard
search order are used before members from the GLOBAL TXTLIB
concatenation.

6. Binding a BFS File from the CMS Ready Prompt

If your input file resides in the byte file system, you can bind it by specifying
the BFS file name in a way recognized by the BIND command:

bind ’file1.o’ "file2.o" ./file3.o /u/myself/file4.o (output cms

Chapter 2. BIND 39

If the current working directory is /u/myself, the preceding command binds
files file1.o, file2.o, file3.o and file4.o from that directory and produces a
program module called FILE1 MODULE on your A-disk.

Notes:

a. This example illustrates the four different ways of indicating to the BIND
command that a primary input file name represents a BFS path: enclosing in
single quotation marks, enclosing in double quotation marks, beginning the
file name with a “dot” (typically the start of a “dot-slash” combination to
indicate the current working directory), and beginning the file name with a
“slash” to indicate an absolute path name. File names enclosed in quotation
marks may be either absolute or relative paths.

b. The output file name is FILE1 because the first primary input file was a BFS
file with a .o extension. See 3 on page 28 for more information.

c. If the output cms option was not specified, the program module created is
saved as file1 in the current working directory.

Examples of Using the BIND Command from the OPENVM Shell

The BIND command itself functions in exactly the same way from the shell as
from the CMS ready prompt. The main usage differences relate to the way in
which the shell treats certain characters, and the use of BFS files.

Note: It may be useful to have both single and double quotation marks available
to enclose strings when working in the shell. The double quotation mark is often
set by default as the CMS terminal escape character (use cms query terminal from
the shell to check this). You can disable the terminal escape character to make the
double quotation mark available by entering: cms terminal escape off from the
shell. The following examples all assume the double quotation mark character is
available for use.
1. Binding a Single Text Deck with No External References

Assume you have a file called file1.o in your current working directory
containing object code produced by a language compiler. Enter the following:

cms ’bind "file1.o"’

This example binds the text file and produces a program object called file1 in
your current working directory. A listing file called file1.i is also produced.

Notes:

a. This example illustrates some of the extension naming conventions used by
the BIND command, which are compatible with those used by the c89
command. If the input file does not have the .o extension (file1, for
example), then a .m extension is added to the program object name
(file1.m). See 3 on page 28 for more information.

b. The single quotation marks around the CMS command argument are not
required, but ensure that no shell substitution occurs so that the enclosed
string is passed to CMS exactly as you type it. In subsequent examples
where options are specified, they also prevent a shell parsing syntax error.

c. The double quotation marks around the BIND command argument tell the
BIND command that the enclosed string is a BFS path. Alternative
specifications are ’’file1.o’’, ./file1.o, or an absolute path name.

2. Binding a Single Text Deck with External References

40 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Suppose file2.o is another program with external references resolved by files
in a subdirectory of the current working directory called mytxt. Enter the
following:

cms ’openvm pathdef syslib ./mytxt’
cms ’bind "file2.o" (nocmsauto’

This example binds the text file and resolves the external references to produce
a program object called file2 in your current working directory.

Notes:

a. It is not possible to concatenate PATHDEFs. If autocall resolution from
multiple sources is required then this can be achieved using the autocall
statement.

b. An archive library can also be specified as the target of the SYSLIB
PATHDEF.

3. Binding Several Text Decks with One Command

Suppose you want to bind file1.o and file2.o (from Fred's home directory)
into a single module. Enter the following:

cms ’openvm pathdef syslib ./mytxt’
cms ’bind ./file1.o /u/fred/file2.o (nocmsauto’

This example binds the two text files and resolves the external references from
the mytxt directory to produce a program object called file1 in your current
working directory. A listing file called file1.i is also produced.

Note: The first file name specified on the BIND command is used to generate a
default for determining the names of the output files.

4. Binding Several Text Decks Using Control Statements

Another way to effect the results of the previous example is to use a file of
control statements to control the bind process. Assume a file called
file1.syslin has been created containing:
setopt parm(nocmsauto)
include ’./file1.o’
include ’./file2.o’
name file1(r)

Enter the following:
cms ’openvm pathdef syslib ./mytxt’
cms ’bind ./file1.syslin’

This example binds the two text files and resolves the external references from
the mytxt directory to produce a program object called file1 in your current
working directory. A listing file called file1.syslin.i is also produced.

Notes:

a. file1.syslin must be in simulated card image format. An appropriate shell
command to create such a file is :

cms ’x file1.syslin (nametype bfs bfsline 80’

b. The arguments of the include statements are resolved to the required text
files by the binder.

c. The name statement causes a program object to be created with the specified
name. The replace option is redundant here because BFS files are always
replaced.

Chapter 2. BIND 41

d. Note that the listing file produced gets a “double-extension” because the
input file did not use the .o extension convention.

5. Binding a CMS File from the Shell

If your input file resides on a minidisk or in the shared file system, you can
bind it by specifying the file name in a way recognized by the BIND command
as representing a CMS file:

cms ’bind file1 (output bfs’

The preceding command would bind FILE1 TEXT and produce a program
object called file1.m in your current working directory.

Note: If the output bfs option is not specified, the program object created is
saved as FILE1 MODULE on your A-disk.

Messages and Return Codes

To display information on a specific error message enter HELP MSG and the
message identifier; for example:

HELP MSG DMS1616W

DMS002E [Input|Overlay] {File[(s)]|Dataset
|Note} [fn [ft [fm|dirname]]] not found[:
pathname]

DMS006E No read/write {disk|filemode|filemode
filemode } accessed [for fn ft]

DMS108S More than nn libraries specified

DMS179E Missing or invalid MACS card in
control file fn ft fm

DMS183E Invalid {CONTROL|AUX} file control
card

DMS234E Error in LOAD LIST file fn ft fm

DMS252E Invalid {filename fn|file ID|directory
id}

DMS389E Invalid operandtype: operand

DMS1600I diagnostic information

DMS1604E Error accessing primary input file
filename [filetype filemode] (service Return
Code rtncode [Reason Code rsncode])

DMS1605E Primary input path refers to a directory
path

DMS1606E No primary input specified

DMS1608E Incorrect dddef for ddname (reason)

DMS1609E Primary input file fileid not valid: fixed
format record length not 80

DMS1610I Primary input file found filename [filetype
filemode]

DMS1611W Unable to extend the default module
file name

DMS1612W Default file name reset from oldname to
newname

DMS1613W Short record found in BFS file filename

DMS1614I Temporary name generated for save
process TEMPNAMn

DMS1615W Unable to generate temporary name for
save process

DMS1616W LIBE option was specified but no
GLOBAL TXTLIB is defined

DMS1617W LIBE option was specified but SYSLIB
is already defined as a PATHDEF

DMS1618W LIBE option was specified but the
SYSLIB FILEDEF that exists is not for
file type TXTLIB

DMS002E • DMS1618W

42 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

DMS1619W LIBE option was specified, but the
SYSLIB FILEDEF that exists was
defined without the CONCAT option

DMS1621W Binder function function completed with
return code retcode and reason code
rsncode

DMS1681E Unable to load user MESSAGE exit
name CC/RC(cc/rc)

DMS1699E Unexpected error in module
(symptom[,symptom2]) [Return Code
rtncode [Reason Code rsncode]]

DMS1900I All TEMPNAMes have been used. The
module cannot be saved

DMS1901I No module name was specified. Module
was saved using TEMPNAMn

DMS1902E Symbol symbol has been truncated at the
first embedded blank

DMS1903E Expected control statement continuation
was not found

DMS1904E Unmatched quote in current control
statement stream

DMS1905S Duplicate module module found

DMS2141E Missing quote or quote specification is
not valid

DMS2513E Extended plist is required.

DMS1619W • DMS2513E

43

44 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Chapter 3. Binder Control Statements

Control Statements Syntax
Binder control statements are 80 byte records. Nothing should be written preceding
the operation, which must begin in or after column 2. Placing an asterisk (*) in
column 1 of a control statement causes the binder to treat that line as a comment.
Each binder control statement specifies an operation and one or more operands
which may be written up to column 71 or continued on subsequent records. Binder
control statements are placed before, between or after object modules. For more
details see “7.1 Binder Syntax Conventions” in z/OS MVS Program Management:
User's Guide and Reference.

Control Statements Summary
For each control statement that is relevant to the CMS environment, this section
gives a brief description and then documents any differences in the processing of
the control statement between CMS Binder and z/OS MVS Program Management
Binder.

Note: To obtain complete descriptions for control statements, this section should
be read in conjunction with “Chapter 7. Binder Control Statement Reference” in
z/OS MVS Program Management: User's Guide and Reference.

ALIAS

�� ALIAS �

,

directory_name
(external_symbol)

(SYMLINK , linkname)
(SYMPATH , pathname)

��

The ALIAS statement specifies one or more additional names for the primary entry
point, and can also specify names of alternate entry points. Symbolic links to
program objects in the BFS can also be created by using a combination of
SYMLINK and SYMPATH parameters. These entries can be repeated in any order,
and alias entries can be divided up among separate ALIAS statements as desired
except that there must be at least one SYMPATH specification following a given
SYMLINK or group of SYMLINKs. A SYMPATH specification applies to all
SYMLINK specifications that precede it, back to the first previous SYMPATH.

directory_name
specifies an alternate name for the program module.

externalsymbol
specifies the name of the entry point to be used when the program is executed
using the associated alias.

linkname
is a path that, when concatenated to the SYSLMOD path, provides the
symbolic link path name.

© Copyright IBM Corp. 2001, 2013 45

pathname
is a path used as the contents of the symbolic link.

Notes:

1. Aliases are supported only when the program module is written to either the
BFS or a LOADLIB.

2. Alternate entry points are supported only when the program module is written
to a LOADLIB.

3. Refer to “7.2 ALIAS Statement” in z/OS MVS Program Management: User's Guide
and Reference for more information and examples regarding symbolic links.

AUTOCALL

�� AUTOCALL library ��

The AUTOCALL control statement prompts the binder to perform incremental (or
immediate) autocall using only the given library as the search library to resolve
symbol references.

library
specifies either the name of a DD statement that describes a text library or the
path for an OpenExtensions file or archive library file.

Note: If the CMSINCL option is in effect when the AUTOCALL statement is
processed, then a file name filename may be substituted for library and then the
binder attempts to use the first text library filename TXTLIB found in the standard
search order.

CHANGE

�� CHANGE
-IMMED

�

,

externalsymbol (newsymbol) ��

The CHANGE statement causes an external symbol to be replaced by the symbol
in parentheses following the external symbol..

-IMMED
causes CHANGE to operate against the modules that have already been
included in the module being built rather than against the next input module.

externalsymbol
specifies a control section name, a common area name, an entry name, an
external reference or a pseudoregister name that is to be changed.

newsymbol
is the name to which the external symbol is to be changed.

For more information, refer to the description of the CHANGE control statement in
z/OS MVS Program Management: User's Guide and Reference.

46 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

ENTRY

�� ENTRY externalsymbol ��

The ENTRY statement specifies the symbolic name of the instruction to be the
main entry point for the program module.

externalsymbol
specifies a control section name or an entry name.

EXPAND

�� EXPAND �

,
, B_TEXT

sectionname (length)
, classname

��

The EXPAND statement lengthens control sections or named common areas by a
specified number of bytes.

sectionname
symbolic name of a common area or control section with a length that is to be
increased.

length
the decimal number of bytes to be added.

classname
the name of the text class to be expanded.

IDENTIFY

�� IDENTIFY �

,

sectionname (' data ') ��

The IDENTIFY statement specifies that any data you supply should be entered into
the CSECT identification records (IDR) for a particular control section.

sectionname
is the symbolic name of the control section to be identified.

data
specifies up to 80 EBCDIC characters of identifying information for program
objects, and up to 40 characters for load modules.

IMPORT

�� IMPORT CODE
DATA
CODE64
DATA64

,
dllname , import_name

, offset
��

Chapter 3. Binder Control Statements 47

The IMPORT statement specifies an external symbol name to be imported and the
name of the DLL module where it can be found. An imported symbol is one that is
expected to be dynamically resolved.

CODE
the import_name must represent the name of a code section or entry point.

DATA
the import_name must represent the name of a variable or data type definition
to be imported.

CODE64
equivalent to CODE but specified when using 64-bit addressing mode.

DATA64
equivalent to DATA but specified when using 64-bit addressing mode.

dllname
the name of the DLL module that contains the import_name to be imported. If
it is an OpenExtensions file, the file name is limited to 255 bytes. Otherwise,
the limit is eight bytes.

import_name
represents a function or method definition, or a variable or data type
definition. The import_name can be up to 32767 bytes in length.

offset
consists of up to 8 hexadecimal characters. The offset is stored with the DLL
information for an imported function. This is primarily for the use of LE
(Language Environment®).

Note: CODE64 and DATA64, although supported by the binder, are not currently
supported by the CMS loader.

INCLUDE

�� INCLUDE �

,

-ATTR
-IMPORTS
-ALIASES
-NOATTR
-NOIMPORTS
-NOALIASES

�

�

�

,

ddname
,

(membername)
,

(relative-path)
pathname

��

The INCLUDE statement specifies sequential data sets, library members, extended
format modules, or OpenExtensions files that are to be sources of additional input
for the binder.

Note: If options that contradict one another are specified, the last valid option
specified will be used. For example, if both -ATTR and -NOATTR are specified in
that order, the binder will honor the -NOATTR option.

-ATTR
specifies that module attributes should be copied from the input module and
be applied to the module being built by the binder.

48 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

-IMPORTS
specifies that dynamic resolution information (if any) will be copied from the
input module. Starting in z/VM 5.2, this is the default.

-ALIASES
specifies that the aliases of the input module be copied in and used as aliases
for the output module.

-NOATTR
specifies that module attributes will not be copied from the input module.

-NOIMPORTS
specifies that dynamic resolution information (if any) will not be copied from
the input module.

-NOALIASES
specifies that the aliases of the input will not be copied from the input module.

ddname
the name of a data definition that defines a sequential data set, a partitioned
data set, an extended format module, or an OpenExtensions file to be used as
additional input to the binder.

For a partitioned data set, at least one member name must also be specified. If
only a single member is to be included, its member name can be specified in
the FILEDEF rather than on the control statement. When the source is an
OpenExtensions file, the PATHDEF command must contain the full or partial
path name of the file to be included. If a partial path name is provided, it must
be completed using a relative-path expression following the ddname.

membername
the name of, or an alias for, a member of the library defined by the ddname.

pathname
the absolute or relative path name of an OpenExtensions file which can be up
to 255 bytes.

relative-path
If the referenced ddname specifies a path, then relative-path will be appended to
that path name.

Notes:

1. The path name may be enclosed in single quotation marks, but it must start
with a / in the case of an absolute path name, and either a ./ or a ../ in the
case of a relative path name.

2. If the CMSINCL option is in effect when the INCLUDE statement is processed,
then file name filename may be substituted for any ddname and the binder
attempts to use the first TEXT file, extended MODULE or TXTLIB library found
in the standard search order, whichever is appropriate. So, if membername is
specified, the binder tries to include member membername from text library
filename TXTLIB. If no membername is specified, the binder attempts to include
filename TEXT first; if none is found, then the binder includes filename
MODULE, but only if it is an extended format module.

3. A partitioned data set may be one of the following:
v A PDS (not PDSE) on an attached MVS disk
v A LOADLIB, which is created by either the CMS binder or the LKED

command
v A TXTLIB, which is created by the TXTLIB command

Chapter 3. Binder Control Statements 49

v A C/370™ CMS text library, which is created using the C370LIB command.
C/370 CMS text libraries have a file type of TXTLIB and also have the same
structure as TXTLIBs with the addition of a C370LIB-directory member(s)
@@DC370$ and/or @@DC390$.

INSERT
The INSERT statement is not applicable in the CMS environment. Overlays are not
supported in CMS and the INSERT repositions a section in an overlay structure.

LIBRARY

�� LIBRARY � �

�

�

�

�

,
,

ddname (membername)
,

ddname2 (membername)
,

pathname (membername)
,

(externalreference)
,

*(externalreference)

��

The LIBRARY statement can be used to specify:
v Additional automatic call libraries that contain modules used to resolve external

references found in the program.
v Restricted no-call: External references that are not to be resolved by an automatic

library call during the current binder job step.
v Never-call: External references that are not to be resolved by an automatic

library call during this or any subsequent binder job step.

When LIBRARY statements identify additional libraries that can be used, the
following search order is applied during final autocall:
1. The library or libraries associated with the first LIBRARY specification are

searched. This may identify an OpenExtensions directory, an OpenExtensions
archive, a partitioned data set, or a concatenation of partitioned data sets.
v For an OpenExtensions directory, the file names and links in the directory are

checked.
v For an OpenExtensions archive or C370LIB PDS, all names that have been

cataloged by the ar command or Object Library Utility are checked.
v For other partitioned data sets, only the member names and aliases are

checked.
v If specific names are listed in the LIBRARY specification, only those names

can be used for resolution; otherwise any name can be used.
2. Libraries associated with other LIBRARY specifications are searched in the

order the specifications were provided within a LIBRARY statement and the
order in which the LIBRARY statements were provided.

3. The SYSLIB concatenation is searched.

50 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

4. If unresolved symbols remain, the search is restarted from step 1 on page 50. It
is repeated until all symbols are resolved in a complete pass through all
libraries.

ddname
The name of a DD statement that defines a library from which the listed
symbols will be included during automatic library call.

membername
Usually, the name of or an alias for a member of the specified library. If the
ddname points to an OpenExtensions archive, the names in parentheses can be
any external symbols indexed by the ar command. If the ddname points to a
C370LIB, the names in parentheses can be any external symbols defined by the
special C370LIB directory. Conversely, if member names are used for a
C370LIB, the binder looks at the members only if there are unresolved symbols
whose name matches the member name.

Here is an example: A C370LIB (ddname MYC3LIB) contains a member named
FOO within which there is an external entry FooSez, and that FooSez is in the
special C370LIB directory. Also, a program has an unresolved symbol FooSez.
v If the LIBRARY statement says MYC3LIB(F00), the symbol is not found.
v If it says MyC3LIB('FooSez'), it is resolved.
v If it says MYC3LIB(FOO) and the program also contains unresolved symbol

FOO, both are resolved.
v Only those members specified are used to resolve references.

ddname2
The name of a DD statement that defines a library that may be used to resolve
references during automatic library call. The DD statement can point to a PDS,
PDSE, PDS/PDSE concatenation, OpenExtensions directory, or OpenExtensions
archive library.

pathname
The name of a OpenExtensions archive library or directory that may be used to
resolve references during automatic library cal. For a directory, the binder
looks for files or links whose name matches the symbol to be resolved.

(externalreference)
An external reference that can be unresolved after primary input processing.
The external reference is not to be resolved by automatic library call.

* Indicates never-call; the external references should never be resolved from an
automatic call library. If the * (asterisk) is missing, the reference is left
unresolved during the current binder job step but can be resolved in a
subsequent step.

If all binder input modules containing references to a specific symbol were
bound with never-call, that symbol is not resolved by automatic library call
during this binder run. However, if one or more input modules do not indicate
a symbol as never-call, the binder attempts to resolve the symbol from the
automatic call library.

Placement: A LIBRARY statement can be placed before, between, or after object
modules or other control statements.

Notes:

1. A member or external reference listed in a LIBRARY statement has no affect
except when a matching name appears as an unresolved reference in the
program.

Chapter 3. Binder Control Statements 51

2. For C370LIB or archives, the name may be any symbol listed in the archive or
special C370LIB directory.

3. For a non-C370LIB PDS or PDSE, the name must be a member name or alias to
be effective.

4. For an OpenExtensions directory, the name must be a file name or alias to be
effective.

5. If the NCAL option is specified, the LIBRARY statement has no effect.
6. Members included by automatic library call are placed in the root segment of

an overlay program, unless they are repositioned with an INSERT statement.
7. The LIBRARY control statement is not processed immediately. If the same

symbol appears on more than one LIBRARY statement, only the last occurrence
is used.

8. Specifying an external reference for restricted no-call or never-call by means of
the LIBRARY statement prevents the external reference from being resolved by
automatic inclusion of the necessary module from an automatic call library; it
does not prevent the external reference from being resolved if the module
necessary to resolve the reference is specifically included or is included as part
of an input module.

9. The LIBRARY statement is not allowed in a data set that is included from an
automatic call library.

MODE

�� MODE AMODE (24)
31 , RMODE (24)
64 ANY
ANY SPLIT
MIN

RMODE (24)
ANY
SPLIT

��

The MODE statement can specify the addressing mode for all the entry points into
the program module and the residence mode for the program module.

AMODE(24)
indicates that 24-bit addressing must be in effect.

AMODE(31)
indicates that 31-bit addressing must be in effect.

AMODE(64)
indicates that 64-bit addressing can be in effect. AMODE64 is not currently
supported by the CMS loader.

AMODE(ANY)
indicates that either 24-bit or 31-bit addressing may be in effect.

AMODE(MIN)
causes the most restrictive AMODE of all control sections within the program
module to be assigned.

RMODE(24)
indicates that the module must reside below the 16 MB virtual storage line.

RMODE(ANY)
indicates that the module may reside anywhere in virtual storage.

52 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

RMODE(SPLIT)
indicates that the module is split into two class segments, one to be loaded
below 16 MB and one to be loaded above the 16 MB virtual storage line. Split
residency mode is not currently supported by the CMS loader.

NAME

�� NAME membername
(R)

��

The NAME statement specifies the name of the program module created from the
preceding input modules.

membername
the name to be assigned to the program module.

(R)
indicates that this program module can replace an existing identically named
module.

ORDER

�� ORDER �

,

sectionname
(P)

��

The ORDER statement indicates the sequence in which control sections or named
common areas appear in the program module.

sectionname
is the name of the section to be sequenced.

(P)
indicates that the starting address of the control section or named common
area is to be on a page boundary. If the ALIGN2 option is in effect, sections are
aligned on 2 KB boundaries.

OVERLAY
The OVERLAY statement is not applicable because overlays are not supported in
CMS.

PAGE

�� PAGE �

,

sectionname ��

The PAGE statement aligns a control section or named common area on a 4 KB
page boundary in the program module.

sectionname
is the name of the section to be aligned on a page boundary. If the ALIGN2
option is in effect, sections are aligned on 2 KB boundaries.

Chapter 3. Binder Control Statements 53

RENAME

�� RENAME oldname , newname ��

The RENAME statement allows for the renaming of specific symbols. The rename
requests take place only after the binder attempts to resolve the original names.
The new names are then used during the binder's final autocall in order to resolve
any references previously unresolved.

oldname
is the symbol to be renamed.

newname
is the symbol name to which the oldname should be changed.

REPLACE

�� REPLACE
-IMMED

�

,

externalsymbol1
(externalsymbol2)

��

The REPLACE statement is used to replace or delete external symbols.

-IMMED
causes REPLACE to operate against the modules that have already been
included in the module being built rather than against the next input module.

externalsymbol1
specifies a control section, a common area, an entry point name, an external
reference, or a pseudoregister name that is to be either replaced or deleted.

externalsymbol2
is the section, common area, or name with which externalsymbol1 is to be
replaced. If no externalsymbol2 is specified, then the externalsymbol1 is deleted.

For more information, refer to the description of the REPLACE control statement in
z/OS MVS Program Management: User's Guide and Reference.

SETCODE
The SETCODE statement is not applicable in the CMS environment. A SETCODE
assigns an authorization code to the program module and the authorization code is
only used by the MVS Authorized Program Facility.

SETOPT

�� SETOPT PARM (parm) ��

The SETOPT statement allows you to set options at the module level rather than
the BIND command or dialog level. The options you specify are valid only until
after the next NAME control statement is processed

54 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

parm
a string of parameter specifications entered using the MVS binder style syntax
rather than the CMS style syntax.

Note: The following list of options cannot be specified or are ineffective on a
SETOPT statement:
v CALLERID
v COMPAT
v EXITS
v FILETYPE
v LIBE
v LINECT
v LIST
v MSGLEVEL
v OUTPUT
v PRINT
v REFR
v RENT
v REUS (Only the old form)
v SIZE
v TERM
v TRAP
v WKSPACE

SETSSI
The SETSSI statement is not applicable to the CMS environment.

Chapter 3. Binder Control Statements 55

56 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Chapter 4. The CMS Binder

Binder Input and Output
The following diagram shows the standard input and output processes.

Notes on the diagram:

�1� SYSLIN DD, or for the BIND command, it may instead be files specified in
the command. This is the only input that can validly introduce a name
statement.

�2� Include can be specified with ddnames or path names.

�3� Resolving external references.

�4� These inputs may be libraries (TXTLIB, C370LIB, or LOADLIB), BFS
archive files, or BFS directories and can be specified with a ddname or a
path name.

�5� Final automatic library call is done during the bind processing as part of
either a BINDW API call or a SAVEW for an unbound object.

�6� These input and output files have the BIND command's default ddname in
parentheses.

IEWBLINK

PRIMARY
INPUT

Include API CallBIND

command

User pgm

SECONDARY INPUT

TERTIARY
INPUT

INCREMENTAL
AUTOCALL

FINAL
AUTOCALL

Include Statements

Autocall API Call

Autocall Statements

CALLIB

SETL API Call

Library Statements

IEWBIND
binder front-end,
z/OS binder,
and binder cradle

PRINT

TERM

MODLIB

SIDEFILE

1

6

6

6

(SYSPRINT)

(SYSTERM)

(SYSLMOD)

(SYSDEFSD)

2

2

4

4

6

4

4

3

6

Include API Call

(SYSLIB DD)

2

5

User pgm

User pgm

Figure 3. The VM Binders Input and Output

© Copyright IBM Corp. 2001, 2013 57

FILEDEF/PATHDEF - Relationship with DD Statement
The CMS Binder's MVS heritage means that ddnames are used extensively to
determine the target of I/O activity. The concepts of JCL and allocation are foreign
to CMS, but OS Simulation provides the FILEDEF command to establish data
definitions for OS ddnames. See z/VM: CMS Commands and Utilities Reference for
details of syntax and usage.

The byte file system introduced with OpenExtensions can be accessed indirectly
with a ddname. The OPENVM PATHDEF CREATE command can be used to
establish a path definition for a ddname. See z/VM: OpenExtensions Commands
Reference for details of syntax and usage.

Restrictions
The FILEDEF command allows the specification of block size. In the case of input,
this option is redundant, and if block size is specified as anything other than 0 or
the record length, the library cannot be opened.

FILEDEFs for an output LOADLIB have some restrictions on the options: The
BLOCK value is ignored if the LOADLIB exists and the RECFM and LRECL values
are always ignored.

It is possible to issue both a FILEDEF and a PATHDEF for the same ddname.
However, this may lead to unpredictable results (usually the binder uses the path
definitions).

Files
There are 14 types of input or output files that can be distinguished by how they
are specified to the binder and how the binder uses them. For example, the PRINT
file is related to a ddname for the duration of each invocation of the binder and is
used by the binder as a listing data set for messages produced by the LIST, MAP
and XREF options. Of the 14 files, three are purely for diagnostic output and they
are discussed further in section “Diagnostic Information” on page 81. The binder
uses the remaining files as follows:

PRIMARY
Sequential data set, library member, or OpenExtensions file that is a source
of primary input for the binder. Not used by the binder API interface.

OPTIONS
Sequential data set, library member, or OpenExtensions file that contains
binder options.

INCLUDE
Sequential data set, library, or OpenExtensions file that is a source of
secondary input for the binder.

AUTOCALL
Library, OpenExtensions directory, or OpenExtensions archive searched to
resolve symbol references during an incremental automatic library call.

LIBRARY
OpenExtensions directory or OpenExtensions archive Library from which
specific symbols are included during final automatic library call.

SETL Library or OpenExtensions file from which specific symbols are included
during final automatic library call.

58 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

CALLIB
Library, OpenExtensions directory or OpenExtensions archive searched to
resolve symbol references during final automatic library call.

PRINT
Sequential data set or OpenExtensions file that is the target for messages
and listing produced by the LIST, MAP and XREF options.

TERM
Sequential data set or OpenExtensions file that is the target for messages
issued during binder processing.

SIDEFILE
Sequential data set, library, OpenExtensions file, or OpenExtensions
directory that is the target for the side file of a DLL module.

MODLIB
Sequential data set, library, OpenExtensions file, or OpenExtensions
directory that is the target for the produced executable.

Byte file system files and directories may be identified to the binder in one of two
ways:
v A PATHDEF relating the path to a ddname.
v Some APIs and control statements allow either a ddname or path name to be

specified. They recognize it as a path name if it starts with a /, ./ or ../. In the
case of control statements, the path name may be enclosed in quotation marks.

The following table summarizes the manner in which each file may be specified to
the binder.

Table 6. File Specification

FILE Default
ddname1

STARTD
Filelist

Option API call Control
Statement

PRIMARY SYSLIN

OPTIONS X

INCLUDE X X

AUTOCALL X X

LIBRARY X

SETL X

CALLIB SYSLIB X X X 2

PRINT SYSPRINT X

TERM SYSTERM X

MODLIB SYSLMOD X X X 3

SIDEFILE SYSDEFSD X 4

Notes:

1. If the binder is invoked using the API, then these files have no default
ddnames.

2. CALLIB may be overridden on the BINDW API call.
3. MODLIB may be overridden on the SAVEW API call.
4. SIDEFILE is the only STARTD FILELIST entry that may be a path name.
5. In addition to the files in the table, there are three diagnostic output files.

Chapter 4. The CMS Binder 59

The following table summarizes the I/O types supported for each file.

Table 7. File Types

FILE Physical
Sequential

LOADLIB TXTLIB or
C370LIB

BFS File BFS
Directory

Archive

PRIMARY X X 1 X

OPTIONS X X

INCLUDE X X X X

AUTOCALL X X X X

LIBRARY X X X

SETL X X X

CALLIB X X X X

PRINT X X 2

TERM X X 2

MODLIB X X X X

SIDEFILE X X X

Notes:

1. Primary input from a TXTLIB is supported by appending the GLOBAL TXTLIB
concatenation to the standard search order when the LIBE option is in effect.

2. These are only supported by relating a path name to the appropriate ddname
with the OPENVM PATHDEF CREATE command.

Autocall with Archive Libraries
The binder also supports autocall from OpenExtensions archive libraries. These
archive libraries may contain members that are object files – in OBJ, XOBJ and
GOFF format and with special directory information similar to that contained in
C370LIB object libraries. They may also contain members which are side files (of
IMPORT control statements) or other files of control statements.

Archive libraries are created by the OpenExtensions ar command. Like C370LIBs,
they may contain attributes used by the binder to select among variant routines
with matching names. Unlike C370LIBs, archives cannot be concatenated.

Note: Archive libraries cannot be used as the target for INCLUDE statements.

While the ar command is typically used to create archive libraries of object files, it
can also be used to create archive libraries of non-object files, or archive libraries
containing a combination of object files and non-object files. In addition to
processing archive library object file members during autocall, the binder can also
process certain non-object file archive library members. Those members must have
the following characteristics:
v Members that are side files (containing IMPORT control statements). To be

recognized, an IMPORT statement must be the very first statement in the file, in
the format produced by the binder when it writes to SYSDEFSD.

v Members that are files specifically identified as containing binder control
statements. To be recognized, the first statement must contain the string *! in the
first two columns, followed by the string IEWBIND INCLUDE. These two
strings may be separated by blanks, but must be contained in a single statement.

60 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

For the binder to process these non-object files, one such file must be positioned as
the very first member of the archive library (excluding the symbol table member,
_.SYMDEF). The binder then processes that first member as if it had been explicitly
included as binder input, and then includes any other such members that it can
recognize in that archive library. The following additional points should be noted:
v This processing is performed only during autocall processing of an archive

library and only when there are still unresolved symbols.
v If the archive library also contains members that are object files, it is still

processed to attempt to resolve symbols using those object file members. If the
archive library contains neither object file members nor non-object file members
with the characteristics described here, the binder reports an error when
attempting to process that archive library.

v As is the case for object files, these non-object files must be composed of
statements that are exactly 80 bytes long, with no newline terminator.

v Processing of non-object files during autocall does not change the binder
precedence for resolving symbols. Just as when a side file is explicitly included,
the IMPORT information will only be used to resolve a symbol dynamically if it
is still unresolved after all static resolution is complete.

See z/VM: OpenExtensions Commands Reference for more information about using the
ar utility to create archive libraries and how to position members within them.

Executable Formats
The following executable formats may be produced using the CMS Binder:

OS Load Module
A member of a CMS LOADLIB, which can be executed using the OSRUN
command

Module
A standard CMS module that may be produced by the GENMOD
command

Extended Module
A CMS module file that contains an MVS program object

Program Object
A standard program object identical to one that the MVS binder might
write to the hierarchical file system can be written by the CMS binder to
the byte file system.

All of the above objects except the standard CMS modules may be re-edited by the
CMS binder.

Program Object Formats
There are currently eight program object formats defined: PM1, PM2, PM3, PM4,
PM4SUB2, PM4SUB3, PM5, and PM5SUB2. PM1 format program objects cannot be
created by the CMS binder, although the CMS loader is able to load all formats. If
a program object is produced by the binder, then its format is controlled by the
COMPAT option and the program management features utilized in the program
object. See z/OS MVS Program Management: User's Guide and Reference “6.3.7
COMPAT: Binder Level Option” for details.

The following table summarizes how the executable format is determined based on
the COMPAT option and the value of MODLIB1.

Chapter 4. The CMS Binder 61

Table 8. Module Output Formats

COMPAT Option MODLIB1

File Type of
LOADLIB

File Type of
MODULE

OpenExtensions
Path

LKED | PM1 LOADMOD2 MODULE3 MODULE3

PM2 LOADMOD2 PM24 PM25

PM3 LOADMOD2 PM34 PM35

PM4 | ZOSV1R3 |
ZOSV1R4

LOADMOD2 PM44 PM45

ZOSV1R5 | ZOSV1R6 LOADMOD2 PM4SUB24 PM4SUB25

ZOSV1R7 LOADMOD2 PM4SUB34 PM4SUB35

PM5 | ZOSV1R8 |
ZOSV1R9

LOADMOD2 PM54 PM55

ZOSV1R10 | ZOSV1R11 |
ZOSV1R12

LOADMOD2 PM5SUB24 PM5SUB25

Notes:

1. The CMS BIND command uses a default ddname of SYSLMOD for MODLIB.
2. An OS loadmod with the same format as that created by LKED
3. A conventional format CMS module
4. A CMS extended module with an embedded program object
5. Program object written as an OpenExtensions file

API Considerations
In general, the application programming interface to the CMS binder is the same as
for the program management binder as documented in z/OS MVS Program
Management: Advanced Facilities. All extensions, restrictions, and other differences
are documented in the rest of this section.

Version Number
The default version number generated by the IEWBIND and IEWBUFF macros is
VERSION=1. It is recommended that you always explicitly code VERSION=6 if
you use these macros, and if not using the macros, set the parameter list version
field to 6.

Setting Options With the Binder API
Options may be set in a variety of ways while using the API:
v As part of a parameter string in the installation defaults module IEWBODEF.
v As an option keyword or value pair entry in the option list on the STARTD API

call
v As an option keyword or value pair on the SETO API call
v As part of a parameter string on either the STARTD or SETO API calls
v As part of a parameter string read in from an options file
v As part of a parameter string on the SETOPT control statement
v As part of a parameter string passed as the value of the IEWBIND_OPTIONS

environment variable when the ENVARS= parameter is used on the STARTD.

62 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

So with one or two exceptions, any option can be specified either as part of a
parameter string (see z/OS MVS Program Management: User's Guide and Reference
“Chapter 6. Binder Options Reference” for the syntax of this form and a
description) or as a keyword or value pair (see Table 35 in z/OS MVS Program
Management: Advanced Facilities “5.1 Setting Options With the Binder API”).

In addition to the binder options specified in the z/OS MVS Program Management:
User's Guide and Reference, the CMS binder provides seven CMS-specific options;
two that affect the binder processing and five that provide CMS-specific attributes
available on the GENMOD command. These attributes are saved into modules,
extended modules, and program objects, but not into load modules in load
libraries.

There are restrictions placed on the mixing of Program Management binder
options with CMS-specific binder options:
v Installation defaults must be specified as two variable length parameter strings

in module IEWBODEF; the first specifies the Program Management binder
options and the second specifies the CMS-specific binder options. See section
“Defining Installation Defaults” on page 88.

v An options file can specify both Program Management binder options and
CMS-specific binder options, but not in the same record.

v Any SETOPT control statement can specify Program Management binder options
or CMS-specific binder options, but not both in the same statement.

Each of the CMS-specific binder options is described below along with the syntax
of its parameter string form. See Table 9 on page 66 for the keyword/variable pair
forms (this table also shows the product defaults).

CMSAUTO
The CMSAUTO option is analogous to the AUTO option of the LOAD and
INCLUDE CMS commands.

�� CMSAUTO
NOCMSAUTO
CMSAUTO = YES

NO
(YES)

= NO

��

When CMSAUTO is in effect, object decks with file type of TEXT are used to
resolve external references during final automatic library call before searching the
default call library.

Notes:

1. TEXT files are not searched if a CALLIB ddname (usually SYSLIB) is specified
that points to an OpenExtensions directory or archive.

2. TEXT files are not searched to resolve external references specified on SETL API
calls and LIBRARY control statements.

CMSCLEAN
The CMSCLEAN option has the same effect as the CLEAN attribute option of the
GENMOD CMS command.

Chapter 4. The CMS Binder 63

�� CMSCLEAN
NOCMSCLEAN
CMSCLEAN = YES

NO
(YES)

= NO

��

CMSCLEAN
indicates that the module is to be removed from storage at the end of its
execution.

NOCMSCLEAN
indicates that the module is to remain in storage until end-of-command
(Ready;).

CMSINCL
The CMSINCL option controls the use of TEXT, extended format MODULE and
TXTLIB files for input when no FILEDEF or PATHDEF matches the ddname.

�� CMSINCL
NOCMSINCL
CMSINCL = YES

NO
(YES)

= NO

��

When CMSINCL is in effect, a file name can be substituted for a ddname that is
used for input where the file in question has a file type of either TEXT, MODULE,
or TXTLIB. This means that the user does not need to issue FILEDEFs for input
TEXT files, extended format MODULEs and TXTLIB libraries that are introduced
to the binder as a result of the following:
v INCLUDE control statements
v INCLUDE API calls
v AUTOCALL control statements
v AUTOCALL API calls
v LIBRARY control statements
v SETL API calls
v CALLIB file specification

CMSMACRO
The CMSMACRO option has the same effect as the OS, DOS or ALL attribute
options of the GENMOD CMS command.

�� CMSMACRO = OS
DOS
ALL

(OS)
= DOS

ALL

��

OS indicates that the program may contain OS macros, and therefore, should be
executed only when CMS/DOS is not active.

64 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

DOS
indicates that the program contains VSE macros; CMS/DOS must be active
(SET DOS ON must have been previously invoked) for this program to
execute.

ALL
indicates that the program:
v Contains CMS macros and must be capable of running regardless of whether

CMS/DOS is active.
v Contains no VSE or OS macros.
v Preserves and resets the DOS flag in the CMS nucleus.
v Does its own setting of the DOS flags.

The ALL option is primarily for use by CMS system programmers. CMS
system routines are aware of which environment is active and preserve and
reset the DOS flag in the CMS nucleus.

CMSSTR
The CMSSTR option has the same effect as the STR attribute option of the
GENMOD CMS command.

�� CMSSTR
NOCMSSTR
CMSSTR = YES

NO
(YES)

= NO

��

When a program bound with CMSSTR in effect is loaded by a LOADMOD
command with the NOPRES option, the system deletes previously loaded non-OS
programs.

CMSSYSTEM
The CMSSYSTEM option has the same effect as the SYSTEM attribute option of the
GENMOD CMS command.

�� CMSSYSTEM
NOCMSSYSTEM
CMSSYSTEM = YES

NO
(YES)

= NO

��

CMSSYSTEM
indicates that when the MODULE is loaded, it is to have a storage protect key
of zero.

CMSXC
The CMSXC option has the same effect as the XC attribute options of the
GENMOD CMS command.

Chapter 4. The CMS Binder 65

�� CMSXC
NOCMSXC
CMSXC = YES

NO
(YES)

= NO

��

CMSXC
specifies that this module can execute only in XC virtual machines.

NOCMSXC
indicates that this module can execute in XA and XC virtual machines.

Keyword/Variable Form
Table 9. Setting CMS Options With the Binder API

Option
Keyword

Description Allowable
Values

Product
Default Value

CMSAUTO Object decks with a file type of TEXT are
used to resolve external references.

YES, NO YES

CMSCLEAN The module is to be cleaned from storage at
the end of its execution.

YES, NO YES

CMSINCL FILEDEF assist for input TEXT, extended
format MODULE and TXTLIB files

YES, NO YES

CMSMACRO Indicates the program's requirements in
relation to the DOS flag.

OS, DOS, ALL OS

CMSSTR Deletes previously loaded non-OS programs
with NOPRES option on the LOADMOD.

YES, NO NO

CMSSYSTEM Indicates that when the MODULE is
loaded, it is to have a storage protect key of
zero.

YES, NO NO

CMSXC Indicates the programs require XC features. YES, NO NO

Note: All of these option keywords may be truncated to five characters.

Comments on Some Program Management Binder Options:
AC This option is not relevant if the executable produced is a CMS module, an

extended module, or a program object to be executed in CMS.

ALIASES
This option is not relevant because it only affects PDSEs.

AMODE
AMODE64, although supported by the binder, is not currently supported
by the CMS loader.

CALLIB
Can be specified as part of a parameter string using the following syntax:

�� CALLIB = ddname
pathname

(ddname)
= pathname

��

66 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

The option's description in z/OS MVS Program Management: Advanced
Facilities “5.1 Setting Options With the Binder API” specifies that ddname is
the only allowable value. This is incorrect because a 1024 character
pathname is also accepted. The pathname must resolve to either a directory
or an archive file. CALLIB is limited to ddname if it is specified, not as an
option, but as an entry in the STARTD FILELIST. See z/OS MVS Program
Management: Advanced Facilities “3.25 STARTD: Start Dialog” for details.

CALLERID
The option can be specified as part of a parameter string using the
following syntax:

�� CALLERID = characterString
(characterString)

=

��

characterString
a character string of up to 80 bytes to be printed at the top of each
page of binder output listing.

COMPAT
See Table 8 on page 62 for the effect of the COMPAT option on the CMS
binder.

DC This is NOT SUPPORTED in CMS. If specified in the installation defaults
or on a SETOPT control statement, it may cause unpredictable results
including the corruption of the target LOADLIB.

DCBS
This is NOT SUPPORTED in CMS. If specified in the installation defaults
or on a SETOPT control statement, it may cause unpredictable results
including the corruption of the target LOADLIB.

EXITS

v Although the EXITS option is listed in z/OS MVS Program Management:
Advanced Facilities “5.1 Setting Options With the Binder API,” the option
cannot be specified as a keyword/value pair. It is only valid when
specified in the parameter string on the STARTD API call.

v The description of the EXITS option in z/OS MVS Program Management:
User's Guide and Reference “6.3.13 EXITS: Specify Exits to be Taken
Option” is incorrect in describing the meaning of variable for the
MESSAGE exit. It should read: “error severity level below which the
binder does not call your exit.”

v Exit routines may also be specified in the STARTD exit list. See z/OS
MVS Program Management: Advanced Facilities “3.25 STARTD: Start
Dialog” for details.

EXTATTR
Not applicable to the CMS environment.

FETCHOPT
Not applicable to the CMS environment.

GID In addition to being applied to program objects created in the BFS, the
group ID is also applied to sidedecks in the BFS. To set group IDs, you
must have superuser authority or be the owner of the file or directory.

LNAME
The options LNAME and NAME are one and the same. LNAME may be

Chapter 4. The CMS Binder 67

used in either the keyword/variable pair form or in a parameter string,
whereas NAME is limited to the parameter string form. This option is only
applicable to the LOADW function call, which is not currently supported
in the CMS environment.

MAXBLK
This has limited effect in CMS because LOADLIBs are not blocked. The
only effect may be on size of the records written.

MODLIB
Can be specified as part of a parameter string using the following syntax:

�� MODLIB = ddname
pathname

(ddname)
= pathname

��

The option's description in z/OS MVS Program Management: Advanced
Facilities “5.1 Setting Options With the Binder API” specifies that ddname is
the only allowable value. This is incorrect because a 1024 character
pathname is also accepted. MODLIB is limited to ddname if it is specified
not as an option, but as an entry in the STARTD FILELIST. See z/OS MVS
Program Management: Advanced Facilities “3.25 STARTD: Start Dialog” for
details.

NAME
The options LNAME and NAME are one and the same. LNAME may be
used in either the keyword/variable pair form or in a parameter string,
whereas NAME is limited to the parameter string form. This option is only
applicable to the LOADW function call which is not currently supported in
the CMS environment.

OPTIONS
The OPTIONS option is supported by the application programming
interface, but only as a parameter string option on the STARTD call, and
with restrictions on mixing types of options. See details on page “Setting
Options With the Binder API” on page 62.

OVLY
This option is not relevant if the executable produced is a CMS module, an
extended module, or a program object to be executed in CMS.

RMODE
The SPLIT value, although supported by the binder, is not currently
supported by the CMS loader.

RES Not applicable to the CMS environment.

REUS
This option is not relevant if the executable produced is a CMS module, an
extended module, or a program object to be executed in CMS.

SCTR
This option is not relevant if the executable produced is a CMS module, an
extended module, or a program object to be executed in CMS.

SNAME
The option can be specified as part of a parameter string using the
following syntax:

68 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

�� SNAME = membername
(membername)

=

��

SIZE The use of this option is NOT SUPPORTED and is rejected with a return
code of eight and a reason code of 83000111.

SSI This option is not relevant if the executable produced is a CMS module, an
extended module, or a program object to be executed in CMS.

TEST This option is not relevant if the executable produced is a CMS module, an
extended module, or a program object to be executed in CMS.

TRAP The TRAP option is not relevant if the executable produced is a CMS
module, an extended module, or a program object to be executed in CMS.

UID In addition to being applied to program objects created in the BFS, the
owner ID is also applied to sidedecks in the BFS. To set owner IDs, you
must have superuser authority.

XCAL
This option is not relevant if the executable produced is a CMS module, an
extended module, or a program object to be executed in CMS.

Invoking the Binder API

Setting the Invocation Environment
Only two of the program environment requirements, as described in z/OS MVS
Program Management: Advanced Facilities “1.2.1 Setting the Invocation Environment,”
are relevant to the CMS binder. These are:
v In primary address space mode
v In 31-bit addressing mode

Loading the Binder
As described in z/OS MVS Program Management: Advanced Facilities “1.2.2 Loading
the Binder”: “The IEWBIND macro issues the LOAD macro for the IEWBIND entry
point on the STARTD call”. Considering IEWBIND is shipped as a module, the use
of the LOAD macro requires that the compiler switch (COMPSWT) flag is set on.
This is accomplished by using the COMPSWT macro to toggle the flag on and off
around the STARTD function call.

API Function Calls
The API functions are described in z/OS MVS Program Management: Advanced
Facilities “3.0 IEWBIND Function Reference.” There are CMS-specific comments for
the API calls described in the following:

BINDW
When reading the section “The processing rules for resolving external references
are:” in “3.5.1 Processing Notes” of z/OS MVS Program Management: Advanced
Facilities, take note of the following:
v Where SETL calls are mentioned, the same may be achieved using LIBRARY

control statements.
v The RES option is not applicable in the CMS environment.
v The CALLIB used is determined in the following order:

1. The CALLIB parameter if it was specified on the BINDW call

Chapter 4. The CMS Binder 69

2. The most recent SETOPT control statement, or SETO API call, which
specified the workmod token

3. The most recent SETO API call that specified the dialog token
4. The option list entry on the STARTD API call
5. The file list entry on the STARTD API call
6. The parameter string in the STARTD API call

If a CALLIB is used that resolves to a library, or a concatenation of libraries, AND
the symbol is eight characters or less, AND the CMSAUTO option is in effect, then
before looking at the CALLIB, the user's accessed disks or directories are searched
for a file with a file name of symbol and a file type of TEXT. See Figure 4 on page
71 for a summary of the processing for final autocall.

70 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Notes on figure Figure 4.

�1� If the symbol was designated 'restricted no call' or 'never call' on a
LIBRARY control statement or SETLIB function call, then message

The unbound workmod will undergo
“Final Autocall” as a result of
either a BINDW or SAVEW API call.

Build a list of unresolved external
references.
Note: This is a dynamic list because

entries are added and deleted
as more elements are added to
the workmod.

Any
unresolved

references

?

All
remaining
unresolved

references were
previously
processed

Select next unprocessed symbol
from list of unresolved references.

Is

reference

marked NOCALL or
NEVERCALL

?

Was

reference
named on LIBRARY ctl

stmt or SETL API
call

?

Attempt to locate
TXTLIB with file
name corresponding
to CALLIB name
and then search this
library to resolve the
reference.

Final Autocall
completed. Msg
IEW2454W is
issued for each
unresolved
symbol and
RC=4.

If reference is still
unresolved, mark
it processed.

Final Autocall
completed.
RC=0.

Final Autocall
completed.

Attempt
resolution
from
specified
LIBRARY.

Was

in Filelist or as an

CALLIB specified

option
?

Attempt to
resolve the
reference from
TXTLIB or
LOADLIB libraries
specified on
CALLIB FILEDEF.

Attempt to resolve
references from
BFS directory or
archive file.

Is

CALLIB a

valid path name
or Ddname

?

?

CMSINCL

option in effect

Is

Does

CALLIB DD

have a matching
FILEDEF

?

Is

the reference
now resolved

?

Use standard search
order to locate file
with file type of TEXT
and a file name which
corresponds to the
unresolved reference.

Is

CMSAUTO

effect
?

Is

CALLIB a

path name or a DDname
with a matching

PATHDEF

?

YES

YES

YES

YES

YES
YES

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

NO NO

NO

NO

NO

NO

NO

YES

1

2

3 3

2

5

4

NCAL,
NOCALL or
CALL=NO

option
?

?

option in

Figure 4. The API Perspective on Final Autocall

Chapter 4. The CMS Binder 71

IEW2455W is issued. If the symbol was marked as 'never call' when
previously bound, then message IEW2458W is issued. Return code is 4.

�2� If the symbol is not resolved, then message IEW2456E is issued "MEMBER
COULD NOT BE INCLUDED FROM THE DESIGNATED CALL LIBRARY"
with a return code of 8.

�3� Message IEW2457E is issued: "NO CALL LIBRARY SPECIFIED.." Return
code is 8.

�4� If CMSAUTO was specified, then message IEW2456E is issued; otherwise
message IEW2457E is issued. Return code is 8.

�5� If the symbol is not resolved, one of two messages are issued:
v IEW2457E is issued if no TXTLIB was located AND NOCMSAUTO was

specified.
v Otherwise, IEW2456E is issued.

Return code is 8.

INCLUDE
INTYPE=TOKEN and INTYPE=POINTER are both unsupported.

ATTRIB=YES only applies to the z/OS MVS Program Management Binder
attributes and not to the CMS-specific attribute options:
v CMSCLEAN
v CMSMACRO
v CMSSTR
v CMSSYSTEM
v CMSXC

LOADW
This function is not supported in the CMS environment.

SAVEW
The MODLIB used is determined in the following order:
1. The MODLIB parameter if it was specified on the SAVEW call
2. The most recent SETOPT control statement, or SETO API call, that specified a

workmod token
3. The most recent SETO API call that specified a dialog token
4. The option list entry on the STARTD API call
5. The file list entry on the STARTD API call
6. The parameter string in the STARTD API call

The format of the executable produced by SAVEW is determined by the settings of
MODLIB and the COMPAT option, see Table 8 on page 62. Table 10 on page 73
summarizes the output module or error message to be expected for various
combinations of MODLIB and program object name specification.

72 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Table 10. API-Level Module Output Determination

MODLIB
Specification

SAVEW
SNAME

SNAME
Option

Output Module or Error Message

fn MODULE fm none none fn MODULE fm

sname sname MODULE fm

name none name MODULE fm

sname name MODULE fm

fn LOADLIB fm none none IEW2639S

sname fn LOADLIB(sname) fm

name none fn LOADLIB(name) fm

sname fn LOADLIB(name) fm

fn LOADLIB(member)
fm

none none fn LOADLIB(member) fm

sname fn LOADLIB(sname) fm

name none fn LOADLIB(name) fm

sname fn LOADLIB(name) fm

directory none none IEW2812S

sname directory/sname

name none directory/name

sname directory/name

directory/file none none directory/file

sname directory/sname

name none directory/name

sname directory/name

Notes about the table:

1. This is a decision table. To use it, start in the left-hand column and work to the right
choosing the row according to the values that apply to your situation. The cell in the
right-most column that you arrive at describes the output module that is created, or else
gives the error message number that you would get.

2. The SNAME option value can be set in one of the following ways:

v A parameter string or option value on a STARTD API call

v From an options data set processed as the result of an OPTIONS option in a
parameter string on a STARTD API call

v From a dialog or workmod level SETO API call

v From a SETOPT control statement in the input stream

3. When a LOADLIB is specified with a member, and an SNAME option is in effect but no
SNAME is specified on the SAVEW API call, the SNAME option value is used as the
member name. This is not what you would expect from reading z/OS MVS Program
Management: Advanced Facilities (but is consistent with z/OS MVS Program Management
Binder behavior).

4. When a directory is specified with a file, and an SNAME option is in effect, but no
SNAME is specified on the SAVEW API call, the SNAME option value is used as the file
name. This is not what you would expect from reading z/OS MVS Program Management:
Advanced Facilities (but is consistent with z/OS MVS Program Management Binder
behavior).

5. When a path is specified, the expected behavior is dependent on the existence of the
specified path. If the directory or file does not exist, message IEW2785S is issued.

Chapter 4. The CMS Binder 73

SETO
All option keywords may be truncated to three characters with the exception of the
following, which require a minimum of five characters:
v CALLIB
v CMSCLEAN
v CMSMACRO
v CMSSTR
v CMSSYSTEM
v CMSXC

STARTD
The following lists of options can only be specified on a STARTD call. The first list
of options is classified in the z/OS MVS Program Management: Advanced Facilities
“5.1 Setting Options With the Binder API” as “environmental options”:
v CALLERID
v COMPAT
v LINECT
v MSGLEVEL
v PRINT
v SIZE
v TERM
v TRAP
v WKSPACE

The second list can only appear in the parameter string on the STARTD function
call:
v EXITS
v RENT
v REFR
v REUS (Only the old form)

The truncation of option keywords is the same as for SETO; see “SETO” with the
addition of CALLERID, which must have a minimum of five characters.

STARTS
Overlays are not relevant in the CMS environment.

Exits
As described in z/OS MVS Program Management: Advanced Facilities “7. User Exits”
with the following additions:
v If exits are specified using the option, then they must be found as MODULE

files on one of the user's accessed disks or directories.
v The SAVE exit is invoked only if the target is a LOADLIB member.

C/C++ API
The following z/OS MVS Program Management Binder C/C++ API access
functions and utilities functions are supported. For more information, see z/OS
MVS Program Management: Advanced Facilities .

Note that CMS Binder does not support the following features:
v The _IEW_ZOSV1R12_ feature test macro

74 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

v The XPLINK DLL
v The __iew_modmap.h header file

The CMS Binder C/C++ API uses a single header file with the name IEWBAPI H,
rather than __iew_api.h as in z/OS.

C/C++ API access functions:
v __iew_addA()
v __iew_alignT()
v __iew_alterW()
v __iew_autoC()
v __iew_bindW()
v __iew_closeW()
v __iew_getC()
v __iew_getD()
v __iew_getE()
v __iew_getN()
v __iew_import()
v __iew_includeName()
v __iew_includePtr()
v __iew_includeSmde()
v __iew_includeToken()
v __iew_insertS()
v __iew_loadW()
v __iew_openW()
v __iew_orderS()
v __iew_putD()
v __iew_rename()
v __iew_resetW()
v __iew_saveW()
v __iew_setL()
v __iew_setO()
v __iew_startS()

C/C++ API utilities functions:
v __iew_api_name_to_str()
v __iew_create_list()
v __iew_eod()
v __iew_get_reason_code()
v __iew_get_return_code()
v __iew_get_cursor()
v __iew_set_cursor()

Chapter 4. The CMS Binder 75

Invoking the Binder from a Program
In general, the program invocation of the CMS binder version of IEWBLINK is the
same as for the program management binder as documented in z/OS MVS Program
Management: User's Guide and Reference “3.4 Invoking the Binder from a Program.”
All extensions, restrictions and other differences are documented in the rest of this
section.

The module IEWBLINK can be given control by a program using the LINK, XCTL
or ATTACH macroinstructions or the combination of the LOAD and CALL
macroinstructions. IEWBLINK uses the INCLUDE function of the binder API to
process any files associated with the ddname SYSLIN and attempts to bind and
save any resulting program object to the target identified by the ddname
SYSLMOD. Support for the alternate entry points IEWBLOAD, IEWBLODI, and
IEWBLDGO is not provided by the CMS binder.

COMPSWT
Prior to issuing the LINK, LOAD, XCTL or ATTACH macroinstruction which
causes the IEWBLINK module to be loaded, the compiler switch (COMPSWT) flag
must be set on. This is accomplished by using the COMPSWT macro to toggle the
flag on and off.

Aliases
None of the alternate aliases for IEWBLINK are supported by the CMS binder:
v IEWL
v HEWL
v HEWLH096
v LINKEDIT

Primary Input
SYSLIN is the default ddname for primary input to IEWBLINK. Multiple
FILEDEFs for a ddname can be defined if the FILEDEF commands use the
CONCAT option. In the case of IEWBLINK, all active FILEDEFs and PATHDEFs
for SYSLIN are used. FILEDEFs are processed in the order that the FILEDEF
commands are entered, and all the FILEDEFs are processed before any PATHDEF
is processed. For example:
filedef syslin disk file1 text a (concat
openvm pathdef create syslin ./file3
filedef syslin disk file2 text a (concat

This would result in file1, file2 and file3 (in that order) being processed by
IEWBLINK.

Note: Only one PATHDEF at a time can be active for a given ddname.

Setting Options for IEWBLINK
Options may be set in a variety of ways while using IEWBLINK:
v As part of an option string in the installation defaults module IEWBODEF
v As part of an option string passed as a parameter on the LINK, CALL, XCTL or

ATTACH macroinstruction

76 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

v As part of an option string read in from an options file; the options file is
defined on an OPTIONS option which may be passed on the invoking
macroinstruction.

v As part of a parameter string on the SETOPT control statement

The general syntax rules for specifying options in an option string are described in
z/OS MVS Program Management: User's Guide and Reference “Chapter 6. Binder
Options Reference.”

In addition to the binder options specified in the z/OS MVS Program Management:
User's Guide and Reference, the CMS binder provides CMS-specific options; see page
“Setting Options With the Binder API” on page 62 for the syntax and descriptions
of these options.

There are restrictions placed on the mixing of Program Management binder
options with CMS-specific binder options; see page “Setting Options With the
Binder API” on page 62 for details.

Output Formats
The format of the executable produced by IEWBLINK is determined by the settings
of SYSLMOD (MODLIB) and the COMPAT option, as shown in Table 8 on page 62.
Table 11 summarizes the output module or error message to be expected for
various combinations of SYSLMOD and program object name specification.

Table 11. IEWBLINK SYSLMOD Output Determination

SYSLMOD
Specification

NAME
Control
Stmt

SNAME
on
SETOPT
Stmt

Member
in DD
List

SNAME
in Option
List

Output Module or
Error Message

fn MODULE fm none none none none fn MODULE fm

option option MODULE fm

ddlist - ddlist MODULE fm

setopt - - setopt MODULE fm

name - - - name MODULE fm

fn LOADLIB fm none none none none IEW2639S

option fn LOADLIB(option)
fm

ddlist - fn LOADLIB(ddlist)
fm

setopt - - fn LOADLIB(setopt)
fm

name - - - fn LOADLIB(name)
fm

Chapter 4. The CMS Binder 77

Table 11. IEWBLINK SYSLMOD Output Determination (continued)

SYSLMOD
Specification

NAME
Control
Stmt

SNAME
on
SETOPT
Stmt

Member
in DD
List

SNAME
in Option
List

Output Module or
Error Message

fn LOADLIB(member)
fm

none none none none fn LOADLIB(member)
fm

option fn LOADLIB(option)
fm

ddlist - fn LOADLIB(ddlist)
fm

setopt - - fn LOADLIB(setopt)
fm

name - - - fn LOADLIB(name)
fm

directory none none none none IEW2812S

option directory/option

ddlist - directory/ddlist

setopt - - directory/setopt

name - - - directory/name

directory/file none none none none directory/file

option directory/option

ddlist - directory/ddlist

setopt - - directory/setopt

name - - - directory/name

Notes about the table:

1. This is a decision table. Starting in the left-hand column, move to the right while
choosing the row according to the values that apply to your situation. The cell in the
rightmost column either describes the output module that is created or lists an error
message number that you would get.

2. When a path is specified, the expected behavior is dependent on the existence of the
specified path. If the directory or file does not exist, message IEW2785S is issued.

General Environmental Considerations

Concatenating Files
To define more than one library with the same ddname, use the CONCAT option
of the FILEDEF command in conjunction with an appropriate GLOBAL command.
You can concatenate CMS TXTLIB files with each other or with TXTLIB files on
OS/MVS disks. Any library to be searched must be specified in the GLOBAL
TXTLIB statement. Similarly, you can concatenate LOADLIBs by specifying
CONCAT on a FILEDEF for a LOADLIB and having an active GLOBAL LOADLIB.

CMS files in the GLOBAL list do not require individual file definitions. The
GLOBAL list determines the order in which the libraries are searched. For
GLOBAL libraries, the file mode on a related concatenated FILEDEF is honored. If
the file cannot be found on the specified CMS disk, an error message is issued
during open processing for the ddname. If a file mode of '*' is used on FILEDEFs
relating to GLOBAL libraries, the established search order finds the first occurrence

78 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

of the file and uses it. However, the use of file mode '*' can increase search time
and degrade overall performance if there are many disks in the search order.

For example, set up two OS/MVS libraries and a CMS LOADLIB for use in an
incremental autocall with a ddname of AUTOC1:

ACCESS 520 P (520 is the address of the OS/MVS disk)
FILEDEF AUTOC1 DISK OSLIB LOADLIB P DSN SYS1 LIB1
FILEDEF AUTOC1 DISK OSLIB2 LOADLIB P DSN SYS1 LIB2 (CONCAT)
GLOBAL LOADLIB OSLIB OSLIB2 DMSGPI

It is advisable not to code the CONCAT option on the first FILEDEF command
because this guarantees that it clears all previous FILEDEFs for that ddname.

Restrictions

Relocatability
1. The CMS Binder only generates relocatable standard format modules. This

implies the following:
v Fixed transient, variable transient, and variable non-relocatable modules

cannot be generated.
v The BIND command needs no equivalent to the LOAD command's

RLDSAVE/NORLDSAVE option.
2. Two-byte adcons (Y-types and AL2) are not supported and do not appear in

either standard or extended modules. This is because these are discarded with
message IEW2633 unless the module output is directed to a LOADLIB.

Overlay Structures
The z/OS MVS Program Management Binder only supports overlay structures for:
COMPAT(LKED)

and
COMPAT(PM1)

Overlay structures are not supported in CMS.

Chapter 4. The CMS Binder 79

80 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Appendix A. Troubleshooting

This appendix contains information that can be used to analyze and resolve
problems in the CMS Binder.

For messages issued by the CMS Binder, refer to z/VM: CMS and REXX/VM
Messages and Codes.

The BIND Command DEBUG Option
The DEBUG option of the BIND command requests debugging messages to be
issued by the command interface to indicate its progress, and stops the
suppression of information messages related to the API calls made by the interface.
It should only be used at the direction of your IBM service representative. The
syntax of the DEBUG option is:

�� DEBUG ALL
CMD
API

��

The effect of the DEBUG settings is as follows:

ALL Requests both the CMD and API debug options.

CMD Causes the command interface to issue debugging messages containing
information that may be useful for command level problem diagnosis.

API Stops the suppression of information messages related to the API calls
made by the command interface that may be useful for command or API
level problem diagnosis. LIST ALL should be specified in conjunction with
this option.

Note: The DEBUG option specifying ALL or CMD should be specified as the first
option. This allows it to be found prior to the options processor being invoked. If it
is not specified first, the debugging messages that would have been issued prior to
options processing are not issued, and a warning message is issued during options
processing to indicate this condition.

Diagnostic Information
The z/OS MVS Program Management Binder can generate up to four different
output files that provide diagnostic information. Also, diagnostic options can be
provided in an options file with the ddname IEWPARMS. The options file can be a
sequential data set, a member of a maclib, a BFS file, or a concatenation of
sequential data sets.

Table 12 shows the diagnostic input and output files that can be used by the z/OS
MVS Program Management Binder.

Table 12. z/OS MVS Program Management Binder Diagnostic Input and Output Files

DD Name Filelist
Name

Type of
File

Contents

SYSPRINT PRINT Output z/OS MVS Program Management Binder processing
messages. See “The SYSPRINT File” on page 82.

© Copyright IBM Corp. 2001, 2013 81

Table 12. z/OS MVS Program Management Binder Diagnostic Input and Output
Files (continued)

DD Name Filelist
Name

Type of
File

Contents

IEWDIAG DIAG Output z/OS MVS Program Management Binder diagnostic
messages are duplicated in SYSPRINT if it exists. See “The
IEWDIAG File.”

IEWGOFF GOFF Output z/OS MVS Program Management Binder GOFF records
produced by the binder when the input is Extended
Object (XOBJ) module records. See “The IEWGOFF File”
on page 83.

IEWPARMS Input z/OS MVS Program Management Binder options,
specified in MVS format (using commas and equals signs
rather than spaces). See “The IEWPARMS File” on page
83.

IEWTRACE TRACE Output z/OS MVS Program Management Binder Internal Trace.
See “The IEWTRACE File” on page 83.

Note: These files are the ddnames which:
v For SYSPRINT, is the default unless using the API.
v For IEWPARMS, is fixed.
v In all other cases these ddnames are fixed unless using the API, in which case

they are defaults and can be overridden by providing an entry in the STARTD
file list.

The SYSPRINT File
The SYSPRINT file is where the z/OS MVS Program Management Binder writes
the Binder processing messages.

The SYSPRINT file can be allocated to one of the following:
v A FILEDEF to a file on an accessed CMS minidisk or SFS directory
v A FILEDEF to the virtual printer
v A FILEDEF to the terminal
v A PATHDEF to a BFS file (not a BFS directory)

No SYSPRINT records are produced if NOPRINT option is set or when the API is
being used if either a FILEDEF or a PATHDEF for SYSPRINT cannot be located.

The IEWDIAG File
The IEWDIAG file is where the z/OS MVS Program Management Binder writes
the Binder diagnostic messages. If there is a SYSPRINT file, these messages are
duplicated there.

The IEWDIAG file can be allocated to one of the following:
v A FILEDEF to a file on an accessed CMS minidisk or SFS directory
v A FILEDEF to the virtual printer
v A FILEDEF to the terminal
v A PATHDEF to a BFS file (not a BFS directory)

If a FILEDEF or a PATHDEF cannot be located, then no IEWDIAG records are
produced.

82 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

The IEWGOFF File
The IEWGOFF file is where the z/OS MVS Program Management Binder writes
GOFF records when the input is Extended Object (XOBJ) module records.

The IEWGOFF file can be allocated to one of the following:
v A FILEDEF to a file on an accessed CMS minidisk or SFS directory
v A FILEDEF to the virtual printer
v A FILEDEF to the terminal

Note: Output to the terminal for the IEWGOFF file is not recommended.

If a FILEDEF cannot be located, then no IEWGOFF records are produced.

The IEWPARMS File
The IEWPARMS file contains z/OS MVS Program Management Binder options,
specified in MVS format (using commas and equals signs rather than spaces). The
existence of the IEWPARMS DDNAME is all that is required for it to be used as a
source of options. The file can reside on a minidisk, SFS directory or in the BFS.
The ddname is specified using either of the following commands:
v FILEDEF
v PATHDEF

The IEWTRACE File
The IEWTRACE file is where the z/OS MVS Program Management Binder writes
the Binder internal trace. If a FILEDEF cannot be located, then no IEWTRACE
records are produced. The amount of trace output can be controlled with the
TRACE option:

�� TRACE
= ALL
= OFF

=
(start_ecode)

, end_ecode

��

ALL
indicates that tracing of all components is required. This is the default when
the IEWTRACE DD is allocated.

OFF
indicates that no tracing is to occur even if the ddname IEWTRACE is
allocated.

start_ecode
the event code which will cause tracing to start.

end_ecode
the event code which will stop tracing.

The IEWTRACE file can be allocated to one of the following:
v A FILEDEF to a file on an accessed CMS minidisk or SFS directory
v A FILEDEF to the virtual printer
v A FILEDEF to the terminal

Note: Output to the terminal for the IEWTRACE file is not recommended.

Appendix A. Troubleshooting 83

Unexpected messages
In the following message descriptions the original explanations and system actions
from the relevant product documentation have been included in parentheses,
followed by explanations and actions applicable to the CMS Binder. Refer to the
relevant product documentation for complete information.

z/OS MVS Program Management Binder (IEW) Messages
Refer to z/OS MVS System Messages, Vol 8 (IEF-IGD) for further details of Binder
specific messages (messages with a prefix of IEW).

IEW2730S INVALID RECFM FOR DDNAME
ddname AND CONCATENATION
NUMBER number.

Explanation: (A sequential data set was found to have
an incorrect record format. The DCB must specify
either RECFM=F or RECFM=U, or RECFM=V for GOFF
modules.)

This is what you get if you try to bind a standard
format CMS module (for example, bind fred
(ft(module), where fred is an ordinary module)

System action: (Processing for the data set
terminates.)

No special action is taken by the CMS Binder.

User response: Reissue the bind command for a valid
input file.

IEW2796S FILE ASSOCIATED WITH DDNAME
ddname CANNOT BE WRITTEN. HFS
WRITE ISSUED RETURN CODE return

code AND REASON CODE reason code.

Explanation: (UNIX® System Services write() failed
with the indicated return and reason codes.)

Issued following DMS1905S when the write routine
(DMSBX2WR) determines that the module being saved
already exists and the replace option was not specified.

System action: (Processing for the file ends.)

No special action is taken by the CMS Binder.

User response: Refer to the user response for
DMS1905S.

Note: The “posix” return and reason codes returned
with this message are generated by DMSBX2WR and
documented in z/VM: OpenExtensions Callable Services
Reference.

Language Environment (CEE) Messages
Refer to z/OS: Language Environment Run-Time Messages for further details of
Language Environment messages (messages with a prefix of CEE).

CEE3534S The requested function is not
supported.

Explanation: (The CEEPPOS service was invoked with
a function that is not recognized. No action was taken.)

The version of Language Environment that is running
does not support CMS program objects. So a request
for an LE program object service has been rejected.

System action: (Unless the condition is handled the
default action is to terminate the enclave.)

The deferred class loader cannot be invoked on behalf
of LE without the LE program object service.

User response: Provide access to LE version 1.8 or
higher to provide direct support for CMS program
objects.

OpenExtensions Return and Reason Codes
The CMS Binder utilizes the POSIX Callable Services to process the Program Object
data. Any data errors detected with the Program Object data generates an error
message indicating the nature of the error. This is followed by the z/OS MVS
Program Management Binder error message:
IEW2796S DF16 FILE ASSOCIATED WITH DDNAME /fd CANNOT BE WRITTEN. HFS WRITE

ISSUED RETURN CODE rc AND REASON CODE rsn.

IEW2730S • CEE3534S

84 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

For return codes and reason codes in the range 83000000-8300FFFF, refer to z/VM:
OpenExtensions Callable Services Reference for further details of these OpenExtensions
return codes (rc) and reason codes (rsn) that relate to the CMS Binder.

Common Problems
A large number and variety of problems may occur with the CMS Binder. When
using the CMS BIND command, the most likely errors are in the allocation or
specification of included or autocall objects.

Incorrect SYSLIB
An incorrect or missing SYSLIB FILEDEF may result in unexpected z/OS MVS
Program Management Binder messages, particularly where an object being bound
is required to resolve external references. For instance, the following FILEDEF for
SYSLIB with the CONCAT keyword:
FILEDEF SYSLIB DISK SCEELKED TXTLIB * (CONCAT PERM

And no GLOBAL TXTLIB specified causes the following messages when the z/OS
MVS Program Management Binder attempts to open the SYSLIB:
IEW2715S D806 JOB FILE CONTROL BLOCK (JFCB) CANNOT BE FOUND FOR DDNAME SYSLIB.

RDJFCB MACRO ISSUED RETURN CODE 4.
IEW2453E 920D UNABLE TO PROCESS LIBRARY SYSLIB DURING AUTOCALL PROCESSING.
IEW2456E 9207 SYMBOL CEEBETBL UNRESOLVED. MEMBER COULD NOT BE INCLUDED FROM

THE DESIGNATED CALL LIBRARY.
IEW2456E 9207 SYMBOL CEEROOTA UNRESOLVED. MEMBER COULD NOT BE INCLUDED FROM

THE DESIGNATED CALL LIBRARY.
IEW2456E 9207 SYMBOL PRINTF UNRESOLVED. MEMBER COULD NOT BE INCLUDED FROM THE

DESIGNATED CALL LIBRARY.
IEW2456E 9207 SYMBOL EDCINPL UNRESOLVED. MEMBER COULD NOT BE INCLUDED FROM THE

DESIGNATED CALL LIBRARY.
IEW2456E 9207 SYMBOL CEESG003 UNRESOLVED. MEMBER COULD NOT BE INCLUDED FROM

THE DESIGNATED CALL LIBRARY.
DMSBCP1621W Binder function BINDW completed with return code 8 and reason code 83000320

The solution is to remove the CONCAT keyword on the FILEDEF or to issue a GLOBAL
command for one or more valid TXTLIBs.

Storage
Insufficient virtual storage may give a variety of symptoms:
v Trying to run the Binder with insufficient contiguous space for the executables:

DMSFRO159E Insufficient storage available to satisfy free storage
request from 0113A11E

DMSMOD109S Virtual storage capacity exceeded
DMSBCP1621W Binder function STARTD completed with return code 16 and

reason code 02CDCC12

v Binding a program module with insufficient working storage may cause
termination with any of a number of messages:
IEW2971T C406 INSUFFICIENT DATASPACE STORAGE WAS AVAILABLE TO CONTINUE

BINDER PROCESSING.
DMSBCP1621W Binder function BINDW completed with return code 16 and

reason code 83000050

or
IEW2900T E913 BINDER ABNORMAL TERMINATION 4F5A2900
IEW2134S 0005 INVALID DIALOG TOKEN 8054900001D1B638 PASSED.
DMSBCP1621W Binder function SAVEW completed with return code 16 and

reason code 83EE2900

Appendix A. Troubleshooting 85

CMS OpenExtensions Problems
Here is a selection of the most common problems with BFS output:
v SYSLMOD to a directory without write access:

IEW2777S DF03 FILE ASSOCIATED WITH DDNAME SYSLMOD CANNOT BE WRITTEN
BECAUSE HFS HAS DENIED WRITE ACCESS TO THE FILE.

DMSBCP1621W Binder function SAVEW completed with return code 12 and
reason code 83000602

v SYSDEFSD to a directory without write access:
IEW2777S DF03 FILE ASSOCIATED WITH DDNAME SYSDEFSD CANNOT BE WRITTEN

BECAUSE HFS HAS DENIED WRITE ACCESS TO THE FILE.
DMSBCP1621W Binder function SAVEW completed with return code 12 and

reason code 83000424

v SYSPRINT to a directory:
IEW2765S ED43 FILE ASSOCIATED WITH DDNAME SYSPRINT CANNOT BE OPENED.

HFS OPEN ISSUED RETURN CODE 123 AND REASON CODE 100.
DMSBCP1621W Binder function STARTD completed with return code 12 and

reason code 83000200

v SYSTERM to a directory:
IEW2765S ED43 FILE ASSOCIATED WITH DDNAME SYSTERM CANNOT BE OPENED.

HFS OPEN ISSUED RETURN CODE 123 AND REASON CODE 100.
DMSBCP1621W Binder function STARTD completed with return code 12 and

reason code 83000203

v SYSPRINT to a file without write access:
IEW2765S ED43 FILE ASSOCIATED WITH DDNAME SYSPRINT CANNOT BE OPENED.

HFS OPEN ISSUED RETURN CODE 111 AND REASON CODE 0.
DMSBCP1621W Binder function SAVEW completed with return code 12 and

reason code 83000200

v SYSTERM to a file without write access:
IEW2765S ED43 FILE ASSOCIATED WITH DDNAME SYSTERM CANNOT BE OPENED.

HFS OPEN ISSUED RETURN CODE 111 AND REASON CODE 0.
DMSBCP1621W Binder function SAVEW completed with return code 12 and

reason code 83000203

86 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Appendix B. Customization and Set Up

The following sections describe the setup required to use the Program
Management Binder for CMS and the ways it can be customized.

Virtual Storage Requirements
The storage required for the binder can be determined by adding the sum of the
sizes of the executables to the working storage. The approximate sizes of the
executables (all RMODE ANY) are as follows:

BIND 75K
IEWBIND 57K
IEWBINDM 1771K

The amount of working storage required by the binder is directly related to the
number of pieces being bound together (not just the text size itself, but the number
of CSECTs, load modules, RLDs, and so on, being combined). The recommended
practice is to provide working storage that is twice the text size.

Providing Dataspace Support
The CMS Binder makes use of dataspaces if the user is authorized to create
dataspaces. When a user is not authorized to create dataspaces, or is unable to
create a dataspace of the required size, the z/OS MVS Program Management
Binder continues and uses storage from the CMS user's primary address space. The
use of the user's storage rather than dataspace storage is likely to cause problems
when using the CMS Binder to bind large objects.

The use of dataspaces by the CMS Binder requires a user to be able to create
PRIVATE (non-shared) dataspaces.

The DIRMAINT XCONFIG command is used to define a user's authority to create
dataspaces. The use of the DIRMAINT command must be performed by a person
authorized to use the XCONFIG subcommand. Refer to z/VM: Directory Maintenance
Facility Commands Reference and z/VM: CP Planning and Administration.

The following example of the DIRMAINT XCONFIG command can be used to
provide the required dataspace support:
DIRMAINT XCONFIG ADDRSPACE MAXNUMBER 20 TOTSIZE 64M NOSHARE
DIRMAINT XCONFIG ACCESSLIST ALSIZE 40

The number used in the above XCONFIG commands should be reviewed according
to installation requirements. The minimum values that should be used are:

MAXNUMBER 4
TOTSIZE 16M
ALSIZE 20

Note: The use of VM dataspaces is restricted to a virtual machine running in XC
mode. When a user is running a virtual machine in XA or ESA mode, dataspaces
are not available.

© Copyright IBM Corp. 2001, 2013 87

Defining Installation Defaults
Default values for the CMS Binder can be tailored to the need of your installation
by replacing the data-only module IEWBODEF.

The customization of the z/OS MVS Program Management Binder default options
is described in the section “Establishing Installation Defaults” in z/OS MVS
Program Management: User's Guide and Reference. There are also a number of
CMS-specific binder options. So an additional section has been added to the
IEWBODEF module that contains the installation default options that relate to CMS.
A halfword length field preceding each of the strings contains the length of each of
the z/OS MVS Program Management Binder and CMS-specific binder option
strings. The module is initially supplied as two null strings with each halfword
string length set to zero.

The following example shows how to set the z/OS MVS Program Management
Binder installation default options LET and MSGLEVEL, and the CMS Binder option
CMSAUTO:

IEWBODEF CSECT
IEWBODEF AMODE 31
IEWBODEF RMODE ANY

DC AL2(MVSEND-MVSPARMS)
MVSPARMS EQU *

DC C’LET(4),’
DC C’MSGLEVEL(4)’

MVSEND EQU *
DC AL2(CMSEND-CMSPARMS)

CMSPARMS EQU *
DC C’CMSAUTO(NO)’

CMSEND EQU *
END

Once this code has been assembled, it must be linked into the relocatable module
IEWBODEF using either LOAD/GENMOD or the CMS Binder.

Note: When the BIND command is used to create the IEWBODEF module, specify
the COMPAT LKED option to create a standard CMS module.

88 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2001, 2013 89

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The

90 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Privacy Policy Considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see the IBM Online Privacy Policy at http://www.ibm.com/
privacy and the IBM Online Privacy Statement at http://www.ibm.com/privacy/
details, in particular the section entitled “Cookies, Web Beacons and Other
Technologies”, and the IBM Software Products and Software-as-a-Service Privacy
Statement at http://www.ibm.com/software/info/product-privacy.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain services of the z/OS MVS Program Management Binder.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at IBM copyright and
trademark information - United States (www.ibm.com/legal/us/en/
copytrade.shtml).

Notices 91

http://www.ibm.com/privacy
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/us/en/copytrade.shtml

92 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Glossary

For a list of z/VM terms and their definitions, see z/VM: Glossary.

The z/VM glossary is also available through the online z/VM HELP Facility, if
HELP files are installed on your z/VM system. For example, to display the
definition of the term “dedicated device”, issue the following HELP command:
help glossary dedicated device

While you are in the glossary help file, you can do additional searches:
v To display the definition of a new term, type a new HELP command on the

command line:
help glossary newterm

This command opens a new help file inside the previous help file. You can
repeat this process many times. The status area in the lower right corner of the
screen shows how many help files you have open. To close the current file, press
the Quit key (PF3/F3). To exit from the HELP Facility, press the Return key
(PF4/F4).

v To search for a word, phrase, or character string, type it on the command line
and press the Clocate key (PF5/F5). To find other occurrences, press the key
multiple times.
The Clocate function searches from the current location to the end of the file. It
does not wrap. To search the whole file, press the Top key (PF2/F2) to go to the
top of the file before using Clocate.

© Copyright IBM Corp. 2001, 2013 93

94 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Bibliography

See the following publications for additional
information about z/VM. For abstracts of the
z/VM publications, see z/VM: General Information,
GC24-6193

Where to Get z/VM Information
z/VM product information is available from the
following sources:
v z/VM V6.3 Information Center

(publib.boulder.ibm.com/infocenter/zvm/
v6r3/)

v IBM: z/VM Internet Library
(www.ibm.com/vm/library/)

v IBM Publications Center (www.ibm.com/e-
business/linkweb/publications/servlet/
pbi.wss)

v IBM Online Library: z/VM Collection, SK5T-7054

z/VM Base Library
Overview
v z/VM: General Information, GC24-6193
v z/VM: Glossary, GC24-6195
v z/VM: License Information, GC24-6200

Installation, Migration, and Service
v z/VM: Installation Guide, GC24-6246
v z/VM: Migration Guide, GC24-6201
v z/VM: Service Guide, GC24-6247
v z/VM: VMSES/E Introduction and Reference,

GC24-6243

Planning and Administration
v z/VM: CMS File Pool Planning, Administration,

and Operation, SC24-6167
v z/VM: CMS Planning and Administration,

SC24-6171
v z/VM: Connectivity, SC24-6174
v z/VM: CP Planning and Administration,

SC24-6178
v z/VM: Getting Started with Linux on System z,

SC24-6194
v z/VM: Group Control System, SC24-6196
v z/VM: I/O Configuration, SC24-6198

v z/VM: Running Guest Operating Systems,
SC24-6228

v z/VM: Saved Segments Planning and
Administration, SC24-6229

v z/VM: Secure Configuration Guide, SC24-6230
v z/VM: TCP/IP LDAP Administration Guide,

SC24-6236
v z/VM: TCP/IP Planning and Customization,

SC24-6238
v z/OS and z/VM: Hardware Configuration Manager

User's Guide, SC33-7989

Customization and Tuning
v z/VM: CP Exit Customization, SC24-6176
v z/VM: Performance, SC24-6208

Operation and Use
v z/VM: CMS Commands and Utilities Reference,

SC24-6166
v z/VM: CMS Pipelines Reference, SC24-6169
v z/VM: CMS Pipelines User's Guide, SC24-6170
v z/VM: CMS Primer, SC24-6172
v z/VM: CMS User's Guide, SC24-6173
v z/VM: CP Commands and Utilities Reference,

SC24-6175
v z/VM: System Operation, SC24-6233
v z/VM: TCP/IP User's Guide, SC24-6240
v z/VM: Virtual Machine Operation, SC24-6241
v z/VM: XEDIT Commands and Macros Reference,

SC24-6244
v z/VM: XEDIT User's Guide, SC24-6245
v CMS/TSO Pipelines: Author's Edition, SL26-0018

Application Programming
v z/VM: CMS Application Development Guide,

SC24-6162
v z/VM: CMS Application Development Guide for

Assembler, SC24-6163
v z/VM: CMS Application Multitasking, SC24-6164
v z/VM: CMS Callable Services Reference, SC24-6165
v z/VM: CMS Macros and Functions Reference,

SC24-6168
v z/VM: CP Programming Services, SC24-6179
v z/VM: CPI Communications User's Guide,

SC24-6180

© Copyright IBM Corp. 2001, 2013 95

http://publib.boulder.ibm.com/infocenter/zvm/v6r3/
http://www.ibm.com/vm/library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

v z/VM: Enterprise Systems Architecture/Extended
Configuration Principles of Operation, SC24-6192

v z/VM: Language Environment User's Guide,
SC24-6199

v z/VM: OpenExtensions Advanced Application
Programming Tools, SC24-6202

v z/VM: OpenExtensions Callable Services Reference,
SC24-6203

v z/VM: OpenExtensions Commands Reference,
SC24-6204

v z/VM: OpenExtensions POSIX Conformance
Document, GC24-6205

v z/VM: OpenExtensions User's Guide, SC24-6206
v z/VM: Program Management Binder for CMS,

SC24-6211
v z/VM: Reusable Server Kernel Programmer's Guide

and Reference, SC24-6220
v z/VM: REXX/VM Reference, SC24-6221
v z/VM: REXX/VM User's Guide, SC24-6222
v z/VM: Systems Management Application

Programming, SC24-6234
v z/VM: TCP/IP Programmer's Reference, SC24-6239
v Common Programming Interface Communications

Reference, SC26-4399
v Common Programming Interface Resource Recovery

Reference, SC31-6821
v z/OS: IBM Tivoli Directory Server Plug-in

Reference for z/OS, SA76-0148
v z/OS: Language Environment Concepts Guide,

SA22-7567
v z/OS: Language Environment Debugging Guide,

GA22-7560
v z/OS: Language Environment Programming Guide,

SA22-7561
v z/OS: Language Environment Programming

Reference, SA22-7562
v z/OS: Language Environment Run-Time Messages,

SA22-7566
v z/OS: Language Environment Writing

Interlanguage Communication Applications,
SA22-7563

v z/OS MVS Program Management: Advanced
Facilities, SA22-7644

v z/OS MVS Program Management: User's Guide
and Reference, SA22-7643

Diagnosis
v z/VM: CMS and REXX/VM Messages and Codes,

GC24-6161
v z/VM: CP Messages and Codes, GC24-6177

v z/VM: Diagnosis Guide, GC24-6187
v z/VM: Dump Viewing Facility, GC24-6191
v z/VM: Other Components Messages and Codes,

GC24-6207
v z/VM: TCP/IP Diagnosis Guide, GC24-6235
v z/VM: TCP/IP Messages and Codes, GC24-6237
v z/VM: VM Dump Tool, GC24-6242
v z/OS and z/VM: Hardware Configuration

Definition Messages, SC33-7986

z/VM Facilities and Features
Data Facility Storage Management
Subsystem for VM
v z/VM: DFSMS/VM Customization, SC24-6181
v z/VM: DFSMS/VM Diagnosis Guide, GC24-6182
v z/VM: DFSMS/VM Messages and Codes,

GC24-6183
v z/VM: DFSMS/VM Planning Guide, SC24-6184
v z/VM: DFSMS/VM Removable Media Services,

SC24-6185
v z/VM: DFSMS/VM Storage Administration,

SC24-6186

Directory Maintenance Facility for z/VM
v z/VM: Directory Maintenance Facility Commands

Reference, SC24-6188
v z/VM: Directory Maintenance Facility Messages,

GC24-6189
v z/VM: Directory Maintenance Facility Tailoring

and Administration Guide, SC24-6190

Open Systems Adapter/Support Facility
v zEnterprise System, System z10, System z9 and

eServer zSeries: Open Systems Adapter-Express
Customer's Guide and Reference, SA22-7935

v System z9 and eServer zSeries 890 and 990: Open
Systems Adapter-Express Integrated Console
Controller User's Guide, SA22-7990

v System z: Open Systems Adapter-Express
Integrated Console Controller 3215 Support,
SA23-2247

v System z10: Open Systems Adapter-Express3
Integrated Console Controller Dual-Port User's
Guide, SA23-2266

Performance Toolkit for VM
v z/VM: Performance Toolkit Guide, SC24-6209
v z/VM: Performance Toolkit Reference, SC24-6210

96 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

RACF Security Server for z/VM
v z/VM: RACF Security Server Auditor's Guide,

SC24-6212
v z/VM: RACF Security Server Command Language

Reference, SC24-6213
v z/VM: RACF Security Server Diagnosis Guide,

GC24-6214
v z/VM: RACF Security Server General User's

Guide, SC24-6215
v z/VM: RACF Security Server Macros and

Interfaces, SC24-6216
v z/VM: RACF Security Server Messages and Codes,

GC24-6217
v z/VM: RACF Security Server Security

Administrator's Guide, SC24-6218
v z/VM: RACF Security Server System Programmer's

Guide, SC24-6219
v z/VM: Security Server RACROUTE Macro

Reference, SC24-6231

Remote Spooling Communications
Subsystem Networking for z/VM
v z/VM: RSCS Networking Diagnosis, GC24-6223
v z/VM: RSCS Networking Exit Customization,

SC24-6224
v z/VM: RSCS Networking Messages and Codes,

GC24-6225
v z/VM: RSCS Networking Operation and Use,

SC24-6226
v z/VM: RSCS Networking Planning and

Configuration, SC24-6227

Prerequisite Products
Device Support Facilities
v Device Support Facilities: User's Guide and

Reference, GC35-0033

Environmental Record Editing and
Printing Program
v Environmental Record Editing and Printing

Program (EREP): Reference, GC35-0152
v Environmental Record Editing and Printing

Program (EREP): User's Guide, GC35-0151

Bibliography 97

98 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

Index

A
AC

comment on binder option 66
address space mode

invoking the binder API 69
addressing mode

invoking the binder API 69
ALIAS

control statement syntax 45
ALIASES

comment on binder option 66
ALIGN2 option syntax 10
AMODE

comment on binder option 66
AMODE option syntax 10
AMODE64

comment on binder option 66
API considerations 62
api invocation environment 69
AUTOCALL

control statement syntax 46
autocall file 58
autocall with archive libraries 60

B
BFS file name extension convention 29
BFS files

definition xi
BIND command

examples 37
operands 7
option summary 7
options 9

binder input 57
binder output 57
binder style option syntax

CMSAUTO 63
CMSCLEAN 63
CMSINCL 64
CMSMACRO 64
CMSSTR 65
CMSSYSTEM 65
CMSXC 65

BINDW
API function call 69

C
C370LIB 50, 57, 60
CALL option syntax 11
CALLERID 54

comment on binder option 67
callib

default ddname 59
CALLIB

comment on binder option 66
limitation 26, 30

callib file 59
CASE option 11

CEE3534S CEE3534S unexpected messages 84
CHANGE

control statement syntax 46
CMS files

definition xi
CMSAUTO

product default value 66
CMSAUTO option

example 38
setting installation default 88
setting with the binder API 63
syntax 11

CMSCLEAN
binder style option syntax 63
limitation of ATTRIB=YES on INCLUDE function call 72
product default value 66

CMSCLEAN option syntax 11
CMSINCL

binder style option syntax 64
its effect on AUTOCALL control statements 46
its effect on INCLUDE control statements 49
product default value 66

CMSINCL option
example 39

CMSINCL option syntax 12
CMSMACRO

binder style option syntax 64
limitation of ATTRIB=YES on INCLUDE function call 72
product default value 66

CMSMACRO option syntax 12
CMSSTR

binder style option syntax 65
limitation of ATTRIB=YES on INCLUDE function call 72
product default value 66

CMSSTR option syntax 12
CMSSYSTEM

binder style option syntax 65
example 38
limitation of ATTRIB=YES on INCLUDE function call 72
product default value 66

CMSSYSTEM option syntax 12
CMSXC

binder style option syntax 65
limitation of ATTRIB=YES on INCLUDE function call 72
product default value 66

CMSXC option syntax 13
common problems 85
COMPAT 54

comment on binder option 67
influence on program module format 62

COMPAT option syntax 13
COMPRESS option syntax 14
COMPSWT macroinstruction

IEWBLINK invocation 76
invoking the binder API 69

CONCAT
option on FILEDEF 78, 85

concatenating files 78
control statement syntax

ALIAS 45
AUTOCALL 46

© Copyright IBM Corp. 2001, 2013 99

control statement syntax (continued)
CHANGE 46
ENTRY 47
EXPAND 47
IDENTIFY 47
IMPORT 47
INCLUDE 48
LIBRARY 50
MODE 52
NAME 53
ORDER 53
PAGE 53
RENAME 54
REPLACE 54
SETOPT 54

control statements
syntax 45

CTL option syntax 14
customization 87

D
dataspace support 87
DC

comment on binder option 67
DCBS

comment on binder option 67
ddname

definition xi
SYSDEFSD 35
SYSLIB 30
SYSLIN 30
SYSPRINT 30
SYSUT1 30

DEBUG option 81
default

DISK option 15
file mode 28
file name 28
FILETYPE option 16
LIBE option 18
option values 10, 38, 62
OUTPUT option 21

default ddnames 59
default option values 76
defining installation defaults 88
DIAG

diagnostic information 81
diagnostic information 81
diagnostic messages

from the z/OS MVS Program Management Binder 82
DISK option 10
DISK option default 15
DISK option syntax 15
DMS002E 42
DMS006E 42
DMS108S 42
DMS1600I 42
DMS1604E 42
DMS1605E 42
DMS1606E 42
DMS1608E 42
DMS1609E 42
DMS1610I 42
DMS1611W 42
DMS1612W 42
DMS1613W 42

DMS1614I 42
DMS1615W 42
DMS1616W 42
DMS1617W 42
DMS1618W 42
DMS1619W 43
DMS1621W 43
DMS1681E 43
DMS1699E 43
DMS179E 42
DMS183E 42
DMS1900I 43
DMS1901I 43
DMS1902E 43
DMS1903E 43
DMS1904E 43
DMS1905S 43
DMS2141E 43
DMS234E 42
DMS2513E 43
DMS252E 42
DMS389E 42
DMSAPI1732S

problem with BFS output 86
DMSMOD109S

insufficient virtual storage 85
DYNAM option syntax 15

E
EDIT option syntax 16
ENTRY

control statement syntax 47
EPNAME option syntax 16
examples

from the CMS ready prompt 38
from the OPENVM shell 40
specifying binder options 38
using control statements 39

executable formats 61
exits

comments on 74
EXITS 54

comment on binder option 67
EXPAND

control statement syntax 47
EXTATTR

comment on binder option 67

F
FETCHOPT

comment on binder option 67
FILEDEF

definition xi
restrictions 58
usage 29, 58
with CONCAT option 78, 85

filename
definition xi

files
autocall 58
callib 59
include 58
library 58
modlib 59

100 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

files (continued)
options 58
primary 58
print 59
setl 58
sidefile 59
term 59

FILETYPE 54
option syntax 16

FILETYPE option 8, 10
FILETYPE option default 16
FILL option syntax 16
fixed transient

restriction 79

G
GID

comment on binder option 67
GID option syntax 17
GLOBAL LOADLIB 78
GLOBAL TXTLIB 8, 18, 36, 38, 39, 60, 78, 85
GOFF 3, 16

diagnostic information 81
GOFF records

from the z/OS MVS Program Management Binder 83

H
HEWL 76
HEWLH096 76
HOBSET option syntax 17

I
IDENTIFY

control statement syntax 47
IEW messages 84
IEW2453E

invalid SYSLIB 85
IEW2715S

invalid SYSLIB 85
IEW2730S 84
IEW2765S

problem with BFS output 86
IEW2777S

problem with BFS output 86
IEW2796S 84
IEW2900T

insufficient virtual storage 85
IEW2971T

insufficient virtual storage 85
IEWBIND 69
IEWBLINK 4, 76

setting options for 76
IEWBODEF 10, 38, 62, 76

creating 88
restriction 63

IEWDIAG
diagnostic information 81

IEWGOFF
diagnostic information 81

IEWL 76
IEWPARMS

diagnostic information 81

IEWTRACE
diagnostic information 81

IMPORT
control statement syntax 47

INCLUDE
API function call 72
control statement syntax 48

include file 58
INFO option syntax 17
INSERT

control statement 50
installation defaults

defining 88
restriction 63

INTFEXIT option syntax 17
invoking the binder API 69
invoking the binder from a program 76

L
LET option syntax 18
LIBE 54

option syntax 18
LIBE option 10, 36, 38, 60
LIBE option default 18
LIBRARY

control statement syntax 50
library file 58
LINECT 54

option syntax 18
LINKEDIT 76
LIST 54
LIST ALL option

use with DEBUG 81
LIST option syntax 18
LISTPRIV option syntax 19
LNAME

comment on binder option 67
LOADW

API function call 72

M
MAP option syntax 19
MAXBLK

comment on binder option 68
message examples, notation used in xiv
MODE

control statement syntax 52
modlib

default ddname 59
influence on program module format 62

MODLIB 26
comment on binder option 68
precedence 72

modlib file 59
MODMAP option syntax 19
MSGEXIT option syntax 19
MSGLEVEL 54
MSGLEVEL option 10
MSGLEVEL option syntax 20

N
NAME

comment on binder option 68

Index 101

NAME (continued)
control statement syntax 53

notation used in message and response examples xiv

O
OBJ 3
OL option syntax 21
OpenExtensions 8

problems 86
return and reason codes 84

option default values 66
option defaults 10, 38, 62, 76
options

SETOPT control statement 54
summary 7

OPTIONS
comment on binder option 68

options file 58
OPTIONS file 63
OPTIONS option 30, 63
OPTIONS option syntax 21
ORDER

control statement syntax 53
OS/MVS libraries

input from 79
OUTPUT 54

BFS 28
CMS 28
option syntax 21

OUTPUT option 10
OUTPUT option default 21
OVERLAY

control statement 53
overlay structures

restriction 79
OVLY

comment on binder option 68

P
PAGE

control statement syntax 53
PATHDEF

definition xi
restrictions 58
usage 29, 58

PATHMODE option syntax 22
PDS

definition 1
PDSE

definition 1
primary

default ddname 59
primary input 58

CMS files 27
IEWBLINK invocation 76

print
default ddname 59

PRINT 54
print file 59
PRINT option 10
PRINT option syntax 15
problems, common 85
problems, storage 85

program module
definition xi

program object
definition 1

program object formats 61

R
REFR 54
RENAME

control statement syntax 54
RENT 54
REPLACE

control statement syntax 54
requirement

virtual storage 87
RES

comment on binder option 68
resolution of external references 36
response examples, notation used in xiv
restriction

SNAME 34
restrictions

FILEDEF 58
IEWBODEF 63
installation defaults 63
OPTIONS file 63
OPTIONS option 63
overlay structures 79
PATHDEF 58
relocatability 79
SETOPT control statement 63

REUS 54
comment on binder option 68

REUS option syntax 22
RMODE

comment on binder option 68
RMODE option syntax 22

S
SAVEW

API function call 72
SAVEXIT option syntax 23
SCTR

comment on binder option 68
set up 87
SETCODE

control statement 54
setl file 58
SETO

API function call 74
SETOPT 39

control statement syntax 54
SETOPT control statement

restriction 63
SETSSI

control statement 55
setting options

api considerations 62
IEWBLINK invocation 76

sidefile
default ddname 59

sidefile file 59
SIZE 54

comment on binder option 69

102 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

SNAME
comment on binder option 68
option syntax 23
restriction 34

SNAME option 32, 33, 34
SSI

comment on binder option 69
STARTD

API function call 74
STARTS

API function call 74
storage problems 85
STORENX option syntax 23
STRIPCL option syntax 23
STRIPSEC option syntax 24
syntax 83

ALIGN2 option 10
AMODE option 10
BIND command 7
CALL option 11
CASE option 11
CMS style options 7
CMSAUTO option 11
CMSCLEAN option 11
CMSINCL option 12
CMSMACRO option 12
CMSSTR option 12
CMSSYSTEM option 12
CMSXC option 13
COMPAT option 13
COMPRESS option 14
control statements 45
CTL option 14
DEBUG option 81
DISK option 15
DYNAM option 15
EDIT option 16
EPNAME option 16
FILETYPE option 16
FILL option 16
GID option 17
HOBSET option 17
INFO option 17
INTFEXIT option 17
LET option 18
LIBE option 18
LINECT option 18
LIST option 18
LISTPRIV option 19
MAP option 19
MODMAP option 19
MSGEXIT option 19
MSGLEVEL option 20
OL option 21
OPTIONS option 21
OUTPUT option 21
PATHMODE option 22
PRINT option 15
REUS option 22
RMODE option 22
SAVEXIT option 23
SNAME option 23
STORENX option 23
STRIPCL option 23
STRIPSEC option 24
TERM option 24
TYPE option 24

syntax (continued)
UID option 24
UPCASE option 25
WKSABOVE option 25
WKSBELOW option 25
XREF option 25

syntax diagrams, how to read xi
SYSDEFSD 35

default 59
SYSLIB 30, 36

default 59
incorrect 85

SYSLIN 30
default 59

SYSLMOD
default 59
influence on program module format 62

SYSPRINT 30
default 59

SYSTERM
default 59

SYSUT1 30

T
term

default ddname 59
TERM 54
term file 59
TERM option syntax 24
terminology xi
TEST

comment on binder option 69
TRACE

diagnostic information 81
trace information

from the z/OS MVS Program Management Binder 83
TRACE option 83
trademarks 91
TRAP 54

comment on binder option 69
troubleshooting 81
two-byte adcons

restriction 79
TYPE option syntax 24

U
UID

comment on binder option 69
UID option syntax 24
unexpected messages 84
unsupported aliases

HEWL 76
HEWLH096 76
IEWL 76
LINKEDIT 76

UPCASE option syntax 25

V
variable non-relocatable

restriction 79
variable transient

restriction 79

Index 103

version number
api considerations 62

virtual storage rquirements 87

W
WKSABOVE option syntax 25
WKSBELOW option syntax 25
WKSPACE 54

X
XCAL

comment on binder option 69
XOBJ 3, 83
XREF option syntax 25

104 z/VM V6.3 Program Management Binder for CMS: Program Management Binder for CMS

����

Product Number: 5741-A07

Printed in USA

SC24-6211-03

	Contents
	Figures
	Tables
	About This Document
	Intended Audience
	Conventions Used in This Document
	How to Read Syntax Diagrams
	Message and Response Notation

	Where to Find More Information
	Links to Other Documents and Web Sites

	How to Send Your Comments to IBM
	Summary of Changes
	SC24-6211-03, z/VM Version 6 Release 3
	SC24-6211-02, z/VM Version 6 Release 2

	Chapter 1. Introduction
	z/OS MVS Program Management: User's Guide and Reference
	Summary of Chapters and Appendices

	z/OS MVS Program Management: Advanced Facilities
	Summary of Chapters and Appendices

	Overview
	Invoking the Binder from a Program

	The Command Interface
	The API Front End

	Chapter 2. BIND
	Chapter 3. Binder Control Statements
	Control Statements Syntax
	Control Statements Summary
	ALIAS
	AUTOCALL
	CHANGE
	ENTRY
	EXPAND
	IDENTIFY
	IMPORT
	INCLUDE
	INSERT
	LIBRARY
	MODE
	NAME
	ORDER
	OVERLAY
	PAGE
	RENAME
	REPLACE
	SETCODE
	SETOPT
	SETSSI

	Chapter 4. The CMS Binder
	Binder Input and Output
	FILEDEF/PATHDEF - Relationship with DD Statement
	Restrictions

	Files
	Autocall with Archive Libraries
	Executable Formats
	Program Object Formats

	API Considerations
	Version Number
	Setting Options With the Binder API
	CMSAUTO
	CMSCLEAN
	CMSINCL
	CMSMACRO
	CMSSTR
	CMSSYSTEM
	CMSXC
	Keyword/Variable Form
	Comments on Some Program Management Binder Options:

	Invoking the Binder API
	Setting the Invocation Environment
	Loading the Binder

	API Function Calls
	BINDW
	INCLUDE
	LOADW
	SAVEW
	SETO
	STARTD
	STARTS
	Exits

	C/C++ API

	Invoking the Binder from a Program
	COMPSWT
	Aliases
	Primary Input
	Setting Options for IEWBLINK
	Output Formats

	General Environmental Considerations
	Concatenating Files

	Restrictions
	Relocatability
	Overlay Structures

	Appendix A. Troubleshooting
	The BIND Command DEBUG Option
	Diagnostic Information
	The SYSPRINT File
	The IEWDIAG File
	The IEWGOFF File
	The IEWPARMS File
	The IEWTRACE File

	Unexpected messages
	z/OS MVS Program Management Binder (IEW) Messages
	Language Environment (CEE) Messages
	OpenExtensions Return and Reason Codes

	Common Problems
	Incorrect SYSLIB
	Storage
	CMS OpenExtensions Problems

	Appendix B. Customization and Set Up
	Virtual Storage Requirements
	Providing Dataspace Support
	Defining Installation Defaults

	Notices
	Privacy Policy Considerations
	Programming Interface Information
	Trademarks

	Glossary
	Bibliography
	Where to Get z/VM Information
	z/VM Base Library
	z/VM Facilities and Features
	Prerequisite Products

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

