
1

2 Moving to ILE RPG

Moving to Integrated Language Environment for RPG IV

Document Number GG24-4358-00

April 1995

International Technical Support Organization
Rochester Center

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xv.

First Edition (April 1995)

This edition applies to Version 3 Release 1 of ILE RPG/400 Licensed Program 5763-RG1 for use with Version 3
Release 1 of the IBM Operating System/400 Licensed Program (Program 5763-SS1).

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 977 Building 663-3
3605 Highway 52N
Rochester, Minnesota 55901-7829

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document is unique in its detailed coverage of the new RPG IV language
and aspects of the Integrated Language Environment. The purpose of this
document is to provide an introduction to the RPG IV language and guidelines
for implementing applications using the Integrated Language Environment. The
publication Integrated Language Environment Concepts, SC41-3606, should be
considered a prerequisite to this publication.

This document is intended for experienced programmers, analysts, and
implementers who are responsible for the creation and maintenance of
application programs on the AS/400. It assumes the reader has a fairly good
background in the AS/400 programming environment.

(205 pages)

 Copyright IBM Corp. 1995 iii

iv Moving to ILE RPG

Contents

Abstract . i i i

Special Notices . xv

Preface . xvii
How This Document Is Organized . xvii
Related Publications . xviii
International Technical Support Organization Publications xviii
Acknowledgments . xix

Chapter 1. Introduction to ILE RPG . 1
1.1 Integrated Language Environment (ILE) . 1

1.1.1 ILE Languages . 2
1.1.2 Application Development Environment 4

Chapter 2. RPG Specification Sheets . 7
2.1 RPG IV Specifications Statements . 7
2.2 The Control (H) Specification Statement . 8
2.3 The File Description (F) Specification Statement 9
2.4 The Definition (D) Specification Statement 12

2.4.1 Examples for Declaring Data Items Using the Definition Specification 18
2.5 The Input (I) Specification Statement . 20
2.6 The Calculation (C) Specification Statement 23

2.6.1 The New Calculation Specification Layout 24
2.7 The Output (O) Specification Statement . 25
2.8 The File Extension (E) Specification Statement 27
2.9 The Line Counter (L) Specification Statement 27

Chapter 3. RPG IV Functions and Features . 29
3.1 Operation Codes . 29

3.1.1 Renamed Operation Codes . 29
3.1.2 New Operation Codes to Process Date and Time Data Types 30
3.1.3 New Operation Code for Static Call . 33
3.1.4 New Operation Codes for Structured Programming 34

3.2 Symbolic Names . 36
3.2.1 Upper/Lowercase . 36
3.2.2 Name Length . 37
3.2.3 Underscore . 37
3.2.4 Blank Lines . 37
3.2.5 Examples . 37

3.3 Changes in Limits . 37
3.4 Built-in Functions in RPG IV . 38
3.5 Using Date and Time Formats and Operations 40

3.5.1 Initializing Date and Time Data Type Fields 41
3.5.2 Example of Initializing Date and Time Data Type Fields 42
3.5.3 Calculations with Date and Time Data Types 43
3.5.4 Date and Time in MOVE Operations . 46
3.5.5 Using Date and Time APIs . 47
3.5.6 Timestamp . 49

3.6 Example Using Import/Export Data Structure 51
3.7 Example Using Pointers in RPG IV . 53

 Copyright IBM Corp. 1995 v

Chapter 4. Conversion Considerations . 57
4.1 CVTRPGSRC Conversion Command and Parameters 58

4.1.1 CVTRPGSRC Parameters . 59
4.1.2 /COPY Considerations . 61
4.1.3 Conversion Problems . 62
4.1.4 Scanning Tool for Migrated Source Code 64

4.2 Source Conversion Example . 64
4.3 Creation Commands . 68

4.3.1 Create RPG Module . 68
4.3.2 Create Program . 68
4.3.3 Create Bound RPG Program . 69

Chapter 5. National Language Support with RPG IV 71
5.1 Recommended Usage of Characters in RPG IV 71
5.2 Source File CCSID Considerations . 71
5.3 Externalizing Constants . 72
5.4 Date Fields . 73
5.5 Sort Sequence . 73
5.6 Case Conversion . 74
5.7 DBCS Graphic Data Type . 75

Chapter 6. CL and ILE CL . 77
6.1 ILE CL Functions . 77

6.1.1 Changes to Existing Interfaces . 77
6.1.2 CL Considerations with RPG IV in Compatibility Mode 78
6.1.3 ILE CL Considerations . 78
6.1.4 The Call Bound Procedure Command 79

6.2 Changing Source Type from CL to CLLE . 81
6.3 Should I Move CL to ILE CL? . 81

Chapter 7. ILE Design Considerations . 83
7.1 Overview of ILE Concepts . 83
7.2 ILE Compile and Bind Commands . 87

7.2.1 OPM Compatibility Mode . 87
7.2.2 Comparison of Compile/Bind Commands 88

7.3 Activation Groups . 89
7.3.1 Default activation group . 89
7.3.2 User-Named Activation Group . 90
7.3.3 Activation Group of Caller . 90
7.3.4 System-Named Activation Group (*NEW) 90
7.3.5 Activation Group Recommendations . 91

7.4 Differences Between Default and Non-Default Activation Groups 91
7.5 The Call Stack . 92
7.6 Control Boundary . 94

7.6.1 Control Boundary Example . 95
7.7 ILE Static Call Syntax . 96
7.8 Binding Considerations . 96

7.8.1 Exports and Imports . 97
7.8.2 RPG Initialization Considerations for an ILE *PGM or *SRVPGM . . . 99
7.8.3 Unresolved References . 103
7.8.4 Service Program Signature . 104
7.8.5 Service Program Recommendations 105
7.8.6 Updating Programs without Re-binding 105

7.9 Resource Scoping . 106
7.9.1 Overrides and File Opens . 106

vi Moving to ILE RPG

7.9.2 Override Example . 108
7.10 Transparency . 110
7.11 Ending an ILE Program . 112
7.12 Ending an Application . 113

7.12.1 OPM RPG Application Example . 113
7.12.2 ILE RPG/400 Application Example . 114
7.12.3 Ways of Ending an ILE Application 115
7.12.4 Use of RCLRSC . 121

Chapter 8. Development Environment . 123
8.1 Application Development Manager/400 . 123

8.1.2 Naming Conventions . 125
8.1.3 Relationships . 126

8.2 Introduction of the Walk-Through Scenarios 127
8.2.2 Setup of the Application Development Manager/400 Environment . 129
8.2.3 Enhance the Mailing Application (Service Programs) 132
8.2.4 Enhance a Service Program (Signature Implications) 138
8.2.5 Import/Export Variables in ILE . 140

8.3 Use Binding Directories in Application Development Manager/400 . . . 147
8.4 How to Manage Without Application Development Manager/400 148
8.5 Copyright Your Software . 148

Chapter 9. Performance . 151
9.1 Compile Time . 151

9.1.1 Compile Options . 152
9.2 Program Object Size Comparisons . 153

9.2.1 Object Size Conversion Project . 154
9.3 Runtime Performance . 155

9.3.1 Working Memory Size for Runtime . 155
9.3.2 Choice of Tools . 155
9.3.3 Considerations . 156

9.4 Performance Benefits of ILE . 159

Chapter 10. Exception Handling . 161
10.1 What Is An Exception/Error? . 161

10.1.1 File Exceptions . 161
10.1.2 Program Exceptions . 162

10.2 Exception Handling Architecture . 162
10.2.1 Job Message Queues and Call Stacks 163
10.2.2 Terminology . 164
10.2.3 Exception Messages . 167
10.2.4 Types of Exception Handlers . 167
10.2.5 Exception Handler Priority . 168
10.2.6 Default Actions for Unhandled Exceptions 168
10.2.7 Handling an Exception . 169
10.2.8 Percolating an Exception . 169
10.2.9 Promoting an Exception . 170

10.3 Steps in Exception Handling . 170
10.3.1 Exception Handling Flow . 171

10.4 Comparing OPM and ILE Exception Handling 174
10.4.1 Performance Impact . 175
10.4.2 ILE Condition Handler . 175

Appendix A. Diskette Install Instructions . 177

Contents vii

Appendix B. RPG IV Coding Examples . 179
B.1.1 Using Pointers in RPG IV . 179

Appendix C. Migration Information . 185

Appendix D. Development environment example code 189
D.1.1 ADM Setup . 189
D.1.2 Copy Build Options . 191
D.1.3 Check out PARTL parts . 193

D.2 Mailing List Application Description . 194
D.3 Functional Scenario . 194

D.3.1 Inquire into the Mailing List Master File 196
D.3.2 Maintain Mailing List Master File . 197
D.3.3 Submit Mailing by Account Number 199
D.3.4 Submit Special Analysis Report . 199
D.3.5 Query Mailing List File . 200

D.4 Parts Structure . 200

Index . 201

viii Moving to ILE RPG

Figures

 1. H Specification Coded in RPG IV . 8
 2. H Specification Coded in RPG/400 . 8
 3. F Specifications Coded in RPG IV . 9
 4. F Specifications Coded in RPG/400 . 10
 5. Layout of RPG IV Definition (D) Specifications 13
 6. Example Using EXPORT and IMPORT Keywords 17
 7. Examples Using the Definition Statements - Field Definitions 19
 8. Examples Using the Definition Statements - Arrays 19
 9. Examples Using the Definition Statements - Data Structures 20
10. RPG IV I Specification for Externally Described Files 20
11. RPG IV I Specification: Record Layout . 21
12. RPG IV I Specification: Program Described File 21
13. C Specification Coded in RPG IV . 23
14. C Specification Coded in RPG/400 . 24
15. O Specification Coded in RPG IV . 26
16. O Specification Coded in RPG/400 . 26
17. Example for ADDDUR Operation Code . 31
18. Example for SUBDUR Operation Code . 32
19. Example for EXTRCT Operation Code . 32
20. Example for TEST Operation Code . 33
21. Bound Procedure Call with Long Procedure Name 33
22. Structured Programming in RPG/400 . 34
23. Structured Programming in RPG IV . 34
24. Comparing EVAL to RPG/400 Coding Style 35
25. EVAL Operation Code . 36
26. The %ADDR Built-in Function . 38
27. The %ELEM Built-in Function . 39
28. The %SUBST Built-in Function . 39
29. The %SIZE Built-in Function . 39
30. The %TRIML Built-in Function . 40
31. Initializing Date and Time Data Type Fields 42
32. Initializing a Date with Today′s Date . 43
33. Calculating with Date and Time Data Types 44
34. Calculating with Date and Time Data Types 44
35. Calculating with Date and Time Data Types 45
36. ADDDUR, SUBDUR, EXTRCT and TEST Examples 45
37. Date and Time Data Types in MOVE Operations 46
38. Using Date and Time APIs . 48
39. Using Timestamp Data Type . 50
40. Using Timestamp Data Type . 51
41. Imported and Exported Data Structure . 52
42. Example for EXPORT/IMPORT: Exporting Procedure 52
43. Example for EXPORT/IMPORT: Importing Procedure 53
44. Pointers: Definition of Pointers in D-specs 54
45. Pointers: Receive a Pointer . 54
46. Pointers: Define Module Information Array 55
47. Pointers: Write Module List to a Database File 55
48. Command Convert RPG Source. 59
49. Conversion Example: Before . 65
50. Conversion Example: COPY Member . 66
51. Conversion Example: After . 67

 Copyright IBM Corp. 1995 ix

52. CALLPRC Command Syntax . 79
53. Bind by Copy and by Reference . 84
54. DSPJOB - Activation Groups . 85
55. Example - ILE RPG/400 Application . 89
56. DSPJOB - Call Stack: Initial Screen . 92
57. DSPJOB - Call Stack: Activation Groups 93
58. DSPJOB - Call Stack: Modules . 94
59. Control Boundary Example . 95
60. Export and Import Relationship Example 101
61. Override Example . 109
62. Transparency Example . 110
63. DSPJOB - Display File Overrides . 111
64. Example - Ending an OPM RPG Application 114
65. Example - Ending an ILE RPG/400 Application 115
66. Example - Ending an ILE Application . 120
67. Example of a Build Option for Documentation 126
68. Create Relations . 126
69. Trigger Relations . 127
70. Part Naming Rules . 127
71. Mailing Application Menu . 128
72. Project Structure . 129
73. Building the Initial Application . 130
74. Build Report Initial Application . 130
75. Initial Program Structure . 131
76. Program Structure Scenario-2 . 133
77. Working with Application Parts . 133
78. Create a new Part Command . 134
79. Subsetting Parts List . 135
80. Example of Changing a BLDOPT of the CRTPGM Command 135
81. Display Call Stack Detail . 136
82. Defining a User Option for Promote Part 137
83. Promoting and Archiving Parts . 137
84. Program Structure Scenario-3 . 138
85. BNDSRC and BLDOPT Updates for Scenario-3 138
86. Relation Between Import/Export Variables and the Binding Language 141
87. Source Changes for MLGINQR . 143
88. Source Changes for MLGLBLR2 . 143
89. Source Changes for MLGNAMR . 144
90. Binding Source Changes for MLGSRV01 144
91. All Created Parts Using the PARTL . 145
92. Promoting Parts . 145
93. Content of the Promote Part List after the Promote 146
94. Error Handling Components for OPM and ILE 163
95. Job Message Queue/Call Stack example 164
96. Control Boundaries Due to Changing Activation Groups 165
97. Control Boundaries Within OPM Default Activation Group 166
98. Exception Flow in Call Stack . 171
99. Exception Flow in Call Stack . 171
100. Exception Flow in Call Stack . 172
101. Exception Flow in Call Stack . 173
102. Exception Flow in Call Stack . 173
103. Mailing List Menu . 196
104. Mailing List Inquiry Panel . 196
105. Account Number Inquiry . 196
106. Maintain Mailing List Master Panel . 197

x Moving to ILE RPG

107. Change Mailing List Master Panel . 197
108. Display GE Value . 198
109. Name Search . 198
110. Result JONES Search . 198
111. Return with Account Number . 199
112. Example Report . 199
113. Example Report Zip Code 55920 . 199

Figures xi

xii Moving to ILE RPG

Tables

 1. H Specifications - Function Changed to Keywords 9
 2. F Specifications - Functions Changed to Keywords 10
 3. Keywords Supported in Definition Specification 14
 4. Comparison for Externally Described Record Layout 21
 5. Comparison for Externally Described Field Layout 21
 6. Comparison for Program Described Record Layout 22
 7. Comparison for Program Described Field Descriptions 22
 8. Comparison of RPG IV and RPG/400 C Spec Layout 24
 9. Renamed Operation Codes . 29
10. Unary Operators . 34
11. Binary Operators . 35
12. Changes in Limits . 37
13. External Formats for Date Data Type . 41
14. External Formats for Time Data Type . 41
15. Date Formats with Control Specification 42
16. Usable Combinations with DATEDIT for MOVE of *DATE and UDATE . . 47
17. Invariant Character Set . 71
18. Comparison of ILE Compile and Bind Commands 88
19. Dynamic and Static Call Syntax . 96
20. ILE Program Termination . 112
21. Effect on Resources, Depending on the Way of Ending a Procedure at a

Stack Level Closest to a Hard- or Soft Control Boundary 116
22. Storage Requirements for ILE programs 154
23. Size Ratio ILE to OPM programs . 155

 Copyright IBM Corp. 1995 xiii

xiv Moving to ILE RPG

Special Notices

This publication is intended to help application fabricators to take advantage of
the RPG language evolution and the Integrated Language Environment, an
integral part of the Operating System/400 V3R1. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by Operating System/400 or ILE RPG/400. See the
PUBLICATIONS section of the IBM Programming Announcement for OS/400 V3R1
and ILE RPG/400 for more information about what publications are considered to
be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Application System/400 AS/400
C/400 COBOL/400
DATABASE 2 OS/400 DB2/400
Distributed Relational Database
Architecture

DRDA

IBM ILE
Integrated Language Environment Operating System/400
OS/400 RPG/400

 Copyright IBM Corp. 1995 xv

Windows is a trademark of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is
used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other trademarks are trademarks of their respective companies.

xvi Moving to ILE RPG

Preface

This document discusses implementation topics for users already familiar with
AS/400 application development.

It contains an introduction to the RPG IV language and ILE CL, as well as a
discussion of advanced topics related to the Integrated Language Environment.

This document is intended for experienced programmers, analysts, and
implementers responsible for the creation and maintenance of AS/400
applications.

How This Document Is Organized
The document is organized as follows:

• Chapter 1, “Introduction to ILE RPG”

Describes the benefits of ILE, lists the available high-level programming
languages and application development tools.

• Chapter 2, “RPG Specification Sheets”

Compares the new RPG language definition with it′s previous version,
RPG/400.

• Chapter 3, “RPG IV Functions and Features”

Describes the functional enhancements for the RPG IV language.

• Chapter 4, “Conversion Considerations”

Discusses the aspects for migrating RPG/400 to RPG IV.

• Chapter 5, “National Language Support with RPG IV”

Discusses the features available in RPG IV to internationalize your
application.

• Chapter 6, “CL and ILE CL”

Describes the extensions to the OS/400 command language support for ILE.

• Chapter 7, “ILE Design Considerations”

Defines and describes the new concepts available to run ILE applications.

• Chapter 8, “Development Environment”

Organizing application development projects has become increasingly
complex. This chapter attempts to show our approach for an ILE AD project.

• Chapter 9, “Performance”

Often, performance and its impact are secondary issues in a development
project. This chapter addresses performance aspects during the build
process and execution.

• Chapter 10, “Exception Handling”

Robust applications need to handle unexpected conditions. This chapter
describes the methods available with RPG IV and ILE.

 Copyright IBM Corp. 1995 xvii

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

• Integrated Language Environment Concepts, SC41-3606

• ILE Application Development Example, SC41-3602

• ILE RPG/400 Reference, SC09-1526

• ILE RPG/400 Programmer′s Guide, SC09-1525

• CL Programmer′s Guide, SC41-3721

• CL Reference Guide, SC41-3722

• Data Management, SC41-3710

• Work Management, SC41-3306

• Application Development Manager/400 User′s Guide, SC09-1808

• Application Development Manager Introduction and Planning Guide,
GC09-1807

• Application Development Manager API Reference, SC09-1809

• International Application Development, SC41-3603

• System API Reference, SC41-3801

• ILE COBOL/400 Reference, SC09-1523

• ILE COBOL/400 Programmers′ Guide, SC09-1522

• V31 Performance Capabilities Reference, ZC41-8166

International Technical Support Organization Publications
• System/36 to AS/400 Application Migration, GG24-3250

• AD/Cycle Code/400, ADM/400 and ADS/400, GG24-3928

• AS/400 ILE: A Practical Approach, GG24-4148

A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

 International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get listings of ITSO technical bulletins (Redbooks) online, VNET users may
type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

xviii Moving to ILE RPG

How to Order ITSO Technical Bulletins (Redbooks)

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-284-4721. Visa and Master Cards are accepted. Outside the
USA, customers should contact their IBM branch office.

You may order individual books, CD-ROM collections, or customized sets,
called GBOFs, which relate to specific functions of interest to you.

Acknowledgments
The advisor for this project was:

Klaus Subtil
International Technical Support Organization, Rochester Center

The authors of this document are:

Debbie Hatt
IBM UK

Jens Gert Andersen
IBM Denmark

Abraham Mizan
ISM South Africa

Ed van Weeren
IBM Netherlands

This publication is the result of a residency conducted at the International
Technical Support Organization, Rochester Center.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Dick Bains
Carmen Hanson
Walt Madden
Joe Parks
Paul Remtema
Lee Walkky
Jing Wang
Scott Youngman
IBM Rochester Development Laboratory - USA

Susan Gantner
IBM AS/400 Competency Center, Rochester - USA

Phil Coulthard
Ted Fines
Dave Knott
Hans Koert

Preface xix

Jon Paris
Pramod Patel
IBM Toronto Development Laboratory - Canada

Michele Chilanti
Jim Cook
Ted Zonderland
International Technical Support Organization, Rochester Center

xx Moving to ILE RPG

Chapter 1. Int roduction to ILE RPG

The Integrated Language Environment introduced with OS/400 Version 2 Release
3 and the new RPG IV language definition in Version 3 Release 1 writes the next
chapter on RPG and AS/400 programming.

RPG IV, as realized through the ILE RPG/400 compiler, joins the family of
Integrated Language Environment (ILE) languages. ILE provides the ability to
efficiently modularize applications. Applications are now built by using a
collection of smaller modules. The benefits of ILE RPG/400 are realized with the
ability to build, change and maintain code in smaller modules. When you build
modular applications in ILE RPG/400, you compile and bind smaller functions.
The increased compile time is offset by the fact that the modules being created
are smaller.

1.1 Integrated Language Environment (ILE)
ILE is an architectural change to language compilers and the runtime
characteristics of AS/400 programs. It is an extension to the architecture which
means that your existing programs continue to run without changing and
recompiling. ILE is available with Version 2 Release 3 of OS/400.

Integrated Language Environment is tightly integrated into the Operating
System/400. The key benefits for the new ILE environment are:

• Language Integration . Application programs are developed using the
language mix best suited to perform each required function.

• Reusability . Code from supported languages is divided into smaller,
reusable, more logical modules that compile faster and require less
maintenance over their life.

• Performance . Capability is provided to optimize code in compute-intensive
applications and to reduce the time to perform inter-program calls.

Integrated Language Environment increases developer productivity by providing
the capability to divide code into smaller, more logical units that compile faster.
The system binder combines the compiled modules to create the application
program. In addition, the separation of compilation and bind steps provides
more flexibility packaging the application.

The new source level debug tool that supports the ILE languages provides
enhanced capability over the system debugger with the new feature to debug at
the source or listing level of the program. Step, breakpoint, and conditional
breakpoint functions have been provided. Expressions are entered and
evaluated using the syntax of the programming language being debugged. The
current system debug facility remains unchanged for programs developed
outside ILE.

 Copyright IBM Corp. 1995 1

1.1.1 ILE Languages

1.1.1.1 Why ILE RPG/400 and RPG IV
Since IBM introduced the RPG language more than 20 years ago, the language
constructs have been constantly enhanced and modernized. With the
announcement of the Integrated Language Environment supporting the new RPG
compiler, the language makes another evolutionary step.

The changes and enhancements are not intended to create a new language but
to enhance the existing capabilities, to implement most of our customer
requirements, and to position RPG for evolving programming techniques. For
our customers and RPG programmers, this latest enhancement means an
assurance for the future and that their investment in skills and application
continues to be lucrative by giving them the capability to mix programming
languages through the ILE system support.

The designers had to take into consideration the existence of thousands of RPG
programmers that still need to be familiar and feel comfortable with the
language. The big advantage to this approach is that experienced programmers
can immediately start using the new functions changing existing programs and
writing new ones.

The RPG IV language:

• Re-formats and simplifies the RPG specifications forms and at the same time
adds new functions, most of them to answer customer requests.

• Removes some of the column-orientation limitations and introduces the
capability of free-format arithmetic expressions and built-in functions.

• Lifts the RPG file, field and array name length restrictions.

• Expands and removes some of the language limitations, such as the number
of files, and the number and size of arrays.

• Allows usage of uppercase and lowercase in symbolic names.

• Offers better support for date and time operations.

• Adds new functions and improves some of the existing functions.

• Prepares the languages for future enhancements and growth.

• Allows participation in the new Integrated Language Environment (ILE).

The AS/400 system offers a large number of RPG compilers in Version 3 Release
1. Integrated Language Environment RPG/400, more commonly known as RPG
IV, is a new member in the RPG compiler family. RPG IV is the only one we can
use to integrate RPG programs in the new ILE architecture. A separate chapter
in this book describes how you can migrate RPG/400 programs to RPG IV.

When you order the RPG product, Integrated Language Environment RPG/400,
you get a variety of different RPG compilers supporting all levels of the
language.

• ILE RPG/400

− for the RPG IV language definition

• RPG/400

− for the RPG III definition

2 Moving to ILE RPG

• S/36 Compatible RPG

− for the RPG II definition

• Two compilers for previous releases

− for S/36 and RPG/400

In addition, support for the S/38 environment is provided.

Note that there is no *PRV version for RPG IV

1.1.1.2 ILE COBOL/400
With V3R1, IBM also announced the ILE COBOL/400 programming language.
Through ANSI-85 High functions of ILE COBOL/400, it is easier to port code to the
AS/400 system from other platforms. Programmer productivity is increased with
ILE COBOL/400, through its extensive database and workstation support,
inter-language calls, interactive syntax checking, debug facilities, and a full
complement of compile-time error diagnostics.

The ILE COBOL/400 product consists of the following COBOL components:

• ILE COBOL/400

• COBOL/400

• IBM System/36-Compatible COBOL

• IBM System/38-Compatible COBOL

• COBOL/400 Previous Compiler

• System/36-Compatible COBOL Previous Compiler

A number of new functions have been incorporated into ILE COBOL/400 that help
increase user productivity. These new functions include:

• Variable Length Record support (RECORD IS VARYING Clause)

• EXTERNAL data items

• EXTERNAL files available to every program in the run unit

• Nested Source Programs

• INITIAL Clause to initialize on every call

• REPLACE statement to replace source program text

• DISPLAY WITH NO ADVANCING statement for cursor control

• ACCEPT FROM DAY-OF-WEEK statement

• Support for Nested Copy statements

• Enhancements to Extended ACCEPT and DISPLAY statements

• Procedure-pointer support

Additionally, new syntax has been added to COBOL on the CALL statement to
differentiate between static and dynamic calls. Your investment in IBM SAA
COBOL applications is protected by maintaining near-upward source
compatibility in ILE COBOL/400. Furthermore, greater conformance to additional
ANSI-85 High functions makes it easier for other IBM and non-IBM platform users
to move their COBOL code to the AS/400 system. Differences are documented
in the ILE COBOL/400 Programmer′s Guide SC09-1522.

Chapter 1. Introduction to ILE RPG 3

1.1.1.3 ILE C/400
C is a very popular language on most vendors′ systems and with most software
engineers. The key to the continued success of the AS/400 system is the
availability of new and state-of-the-art application solutions. Many application
vendors have been reluctant to use C on the AS/400 system because of its
performance history and capabilities. ILE C/400 overcomes these difficulties and
opens the AS/400 system to the power and flexibility of the C language.

ILE C/400 high-performance, high-function, conformance to ANSI standards, and
support of modular design helps software writers migrate their applications to
the AS/400 system.

ILE C/400 addresses the requirements of application vendors and individual
customers alike. The common runtime environment, improved inter-language
communication, and binding support allow improved packaging of solutions.
They reduce development effort through code reuse, enhance application
maintenance and support, and improve integration, while allowing the solution to
be written in the language of choice. Major areas of opportunity are:

• Non-C AS/400 customers

− C/400 complements RPG/400 and COBOL/400 by providing better support
for string and bit manipulation, numerical computation, floating-point
data, dynamic memory allocation, and system programming functions.

• Current IBM C customers (non-AS/400)

− Customers who have application software written in C on other platforms
can migrate their application to the AS/400 system. ILE C/400 conforms
to SAA C Level 2, and can now statically bind modules without any
performance penalties or design restriction.

• Current C/400 Customers

− The ILE C/400 compiler and its associated runtime form the basis for
continued C application support for the AS/400 system and its
successors. The C/400 compiler continues to be available in its present
form; however, new customer requirements and enhancements in system
support are implemented in ILE C/400.

Most third-party tools are written in C on competitive platforms. With the
availability of ILE C/400, new opportunities are open for application vendors on
the AS/400 system. Of particular importance to application vendors is the
opportunity to sell black box routines for incorporation into a customer′s own
programs.

1.1.2 Application Development Environment
Besides the ILE programming language compilers and the ILE system support,
IBM offers a variety of tools that help you create your application, shorten the
development cycle, maintain applications as an never-ending process and
reduce future development cost.

Application Development Manager/400 (ADM) is such a tool developed by IBM for
the AS/400 system as the change management and version control facility. Once
you get familiar with ILE, you will ask the question ″How do I manage my
application with all of these additional objects?″ To give you an idea how
important it is to control development and maintenance, we have chosen to use
ADM to build a scenario.

4 Moving to ILE RPG

1.1.2.1 Impact Management
We also should look at the effects that the use of ILE has on the maintenance
effort to use impact analysis methods and tools.

A product that is very integrated with ADM is Application Dictionary Services/400
(ADS). It maintains a database of the relationships between parts of your
applications, including programs, display files and database files. With the
dictionary database in place, you can do impact analysis for planned application
changes quickly. You can investigate a field in a database file to see how many
other files and programs that reference that particular field need to be
recompiled.

In Version 3 Release 1, ADS and ADM are packaged with the Application
Development ToolSet product.

This product also provides the AS/400 host support for the two workstation-based
development tools, CODE/400 and VRPG Client/2.

1.1.2.2 CODE/400 and VRPG Client/2
CODE/400 offers an interface from the workstation to the AS/400 system for
listing, retrieving and replacing source, for launching host compiles, and for
debugging applications. It provides productive, easy-to-use tools for edit,
compile, debug, and screen and report painting. It fully supports all new ILE
functions for CL and RPG IV including the RPG IV verifier that guarantees after
using this ″local compile verification″, the first compile at the host always
compiles without errors. It also supports a mixed debug environment for ILE and
OPM programs with one debugger.

A companion product to CODE/400 is VRPG Client/2 the latest offering for
creating workstation applications that access AS/400 data and AS/400 programs
using the RPG IV language definition. It allows easy transition from a character
based to a graphical user interface using existing RPG skills.

Chapter 1. Introduction to ILE RPG 5

6 Moving to ILE RPG

Chapter 2. RPG Specification Sheets

Chapter Overview: This chapter describes the specifications and the changes
that were made to enhance the RPG IV language definition.

2.1 RPG IV Specifications Statements
The first version of RPG was introduced by IBM almost 30 years ago based on
the 80-column punch cards used at this time. Evolving over the years, the
column orientation and limitations have been preserved, and RPG programmers
have become familiar with it. Functions added over the years had to fit into the
restrictive layout and sometimes led to misuse of certain functional
specifications.

With RPG IV, new and often requested functions made a major redesign of the
specification layouts necessary and opened the opportunity for modification. The
intention of this chapter is to help you, as an experienced RPG programmer,
quickly identify the changes and enhancements that have been made to this new
language definition.

To allow a better program structure, the number of specification statements has
been reduced to six. The layout for all of them has been modified to
accommodate the increased length, and free-format logical and arithmetic
expressions. Functional keywords replace column-specific special values,
allowing easier language enhancements in future. For programmers maintaining
code not written by themselves, keywords make the source easier, readable, and
less difficult to maintain. A new (D) spec layout has been added. Extension
specifications (E), and line counter specifications (L) statements have been
removed from the new RPG.

RPG IV supports the following specifications in the listed order:

• Control (H) Specifications

• File Description (F) Specifications

• Definition (D) Specifications

• Input (I) Specifications

• Calculation (C) Specifications

• Output (O) Specification

Before we discuss the specification sheets in detail, you should be aware of the
following modifications:

The source entry utility (SEU) has been enhanced to capture and check the new
RPG IV Specification layouts. The SEU prompt facility (P?) allows you to display
a list of the prompt formats.

The default name of the source file for RPG IV is QRPGLESRC. The length for
the source statements is now 100 characters. When you create a source file for
RPG IV using the command CRTSRCPF, the record length should be 112
characters; 12 for source sequence number and date fields, and 100 for the
source statement field.

 Copyright IBM Corp. 1995 7

A new source type RPGLE is added for the RPG IV source member.

2.2 The Control (H) Specification Statement
The control specification provides the compiler with information about the
program and the system. Other types of information you can include are:

• Name of the program

• Date and time formats for fields used in the program

• Use of alternate collating sequence or file translation

In the control specifications statement, keywords and values are used in a free
format to specify the desired information. The positions used are from 7 to 80.
Notice in the example in Figure 1, the enhanced H specification allows you to
code multiple keywords on a single line, and you can use multiple H
specification formats in the same source. Additionally, you can use data area
RPGLEHSPEC in your library list to provide the same information.

� �
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...
HKeywords++
H ALTSEQ(*EXT) �1� CURSYM(′ $′) �2� DATEDIT(*MDY) �3�
H DEBUG(*YES) �4�
H TIMFMT(*ISO) �5� DATFMT(*MDY) �6�� �

Figure 1. H Specification Coded in RPG IV

Figure 2 shows you equivalent source coded for RPG/400. The differences
between the two coding styles are shown in the following example.

� �
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+.....
H........1..CDYI....S..............1.F...............................Pgm-Id
H 1 $M/ S� �

Figure 2. H Specification Coded in RPG/400

The reference keys help you to identify the RPG IV keywords while you have to
refer to the column position in the RPG/400 example.

�1� The alternate collating sequence entry for database files in position 26 is
now specified using the ALTSEQ keyword.

�2� The currency symbol in position 18 is now represented by the CURSYM
keyword.

�3� The date edit function in column 20 has been altered to the DATEDIT
keyword.

�4� The debug entry in column 15 of the original H specification has been
replaced by the DEBUG keyword.

�5� The time format is an enhancement of RPG IV, and was not available in the
prior RPG language.

�6� The date format function moved from position 19 to the DATFMT keyword.

8 Moving to ILE RPG

Table 1 summarizes the keywords supported in the RPG IV control specification
and shows the equivalent position for RPG/400.

Table 1. H Specifications - Function Changed to Keywords

Keywords{(Value)} RPG/400 equivalent Description

ALTSEQ Pos. 26 Alternate collating sequence

CURSYM Pos. 18 Currency symbol

DATEDIT Pos. 20 Date edit code

DATFMT Pos. 19 Date format

DEBUG Pos. 15 Debug option

DECEDIT Pos. 21 Decimal notation

DFTNAME Pos. 75-80 Program or module identif ication

FORMSALIGN Pos. 41 Forms alignment

FTRANS Pos. 43 File translation

TIMFMT No equivalent Time format for time data type

Since date and time external formats relate closely to data types, DATE and
TIME and the duration operation codes, refer to 3.5, “Using Date and Time
Formats and Operations” on page 40 for a contextual discussion and examples.

2.3 The File Description (F) Specification Statement
Each file used by your program, such as database, printer, or display file to
name only the most common ones, and its attributes is identified by a
corresponding file description specification. For RPG IV, the former limitation of
50 files per user program is raised, and now there is almost no limit.

The layout of this statement has been changed. A continuation line no longer
exists. Keywords replace the continuation line. The Extension (E) and line (L)
specifications forms have been removed. The Record Address File moved from
E spec and is now a keyword in F spec. Forms length from L spec is also a
keyword in F spec. Array definitions have been moved to the new definition (D)
specification.

The differences between RPG IV and RPG/400 format layout and coding style are
shown in Figure 3 and Figure 4 on page 10. In these examples, note that
through the implementation of keywords and source text in mixed case, the code
is less difficult to read and maintain.

To fully understand the examples, assume that FILE1 contains 4 record formats,
FMT1 through FMT4, and that FMT2 contains 4 fields: CUSTNUM, ORDNUMB,
ORDDATE, and TOTAMOUNT.

� �
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+.....
FFilename++IPEASFRlen+LKlen+AIDevice+.Functions++++++++++++++++++++++++++
FFile1 UF E Disk Include(Fmt2) �1�
F.....................................Functions++++++++++++++++++++++++++
F COMMIT(OneCharFld) �2�� �

Figure 3. F Specifications Coded in RPG IV

Chapter 2. RPG Specification Sheets 9

� �
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+.....
FFilenameIPEAF....RlenLKlAIOvKlocEDevice+......KOptionEntry+A....U1......
FFILE1 UF E DISK

F FMT1 KIGNORE�1�
F FMT3 KIGNORE�1�
F FMT4 KIGNORE�1�
F KCOMMIT�2�
: : :
: : :

I CUSTNUM CUSTNO�3�
I ORDNUMB ORDNO �3�
I ORDDATE ORDDAT�3�
I TOTAMOUNT TOTAMT�3�

� �
Figure 4. F Specifications Coded in RPG/400

�1� Instead of using the IGNORE option multiple times in the RPG/400 example,
you can now exploit the INCLUDE keyword to select the record format used in
your program. The new COMMIT keyword �2� gives the capability to condition
commitment control, and to set the parameter before opening the file.

�3� These lines are eliminated in RPG IV since the increased length for field
names does not require renaming.

If additional keywords are required, you can enter them on subsequent F specs
starting from the Functions position.

Note:

Two different prompt layouts exist in SEU, one for Program Described Files (F),
and one for External Described Files (FX).

Table 2 is a list of the keywords we can use in the File Description Specification
statement.

Table 2 (Page 1 of 2). F Specifications - Functions Changed to Keywords

Keywords{(Value)} RPG/400 equivalent Description

COMMIT{(rpg_name)} COMIT option on continuation line Optional commitment control

Enhanced function

DATFMT(format{separator}) n/a Date format and optional separator

New function

DEVID(fieldname) ID option on continuation line Name of the program device for last
processed record

EXTIND(U1-U8) U1-U8 in pos. 71-72 External fi le condition indicator

FORMLEN(number) Pos. 18-19 on L-spec Form length for PRINTER file

FORMOFL(number) Pos. 20-22 on L-spec The line number specified in the
overflow l ine

IGNORE(recformat{:recformat...}) IGNORE option on continuation line Ignores record format from externally
described fi le

INCLUDE(recformat{:recformat...}) n/a Opposite of IGNORE

New function

INFDS(DSname) INFDS option on continuation line Name of fi le information data
structure

10 Moving to ILE RPG

Table 2 (Page 2 of 2). F Specifications - Functions Changed to Keywords

Keywords{(Value)} RPG/400 equivalent Description

INFSR(SUBRname) INFSR option on continuation line File exception/error subroutine

KEYLOC(number) Pos. 35-38 Key field starting location for
program-described f i les

MAXDEV(*ONLY/*FILE) NUM option Maximum number of devices

OFLIND(indicator) Pos. 33-34 Overf low indicator

PASS(*NOIND) PASS option on continuation line User controlled indicator area for
program described WORKSTN file

PGMNAME(program-name) Pos. 54-59 Program to handle the support of
SPECIAL I/O devices

PLIST(Plist name) PLIST option on continuation line Parm list to be passed to the program
specif ied in PGMNAME keyword

PREFIX(prefix_name) n/a The prefix_name is attached to all the
fields of the external described file

New function

PRTCTL(data_struct{:*COMPAT}) PRTCTL option on continuation line Dynamic printer control

Enhanced function

RAFDATA(fi lename) Pos. 11-18 on E-spec Record address file (RAF) name

RECNO(fieldname) RECNO option on continuation line For DISK fi les processed by
relat ive-record number

RENAME(Ext_format:Int_format) RENAME option on continuation line To rename record formats of
externally described fi les

SAVEDS(DS_name) SAVDS option on continuation line Names data structure to be saved and
restored for each device

SAVEIND(number) IND option on continuation line Restores and saves indicators

SFILE(recfmt_name:RRN_fld) SFILE option on continuation line The first parameter is the name of the
subfile record format. The second
parameter is a field name that
contains the relative record number of
the subfile.

SLN(number) SLN option on continuation line The start l ine number determines
where a record format is written to a
display fi le.

TIMFMT(format{separator}) n/a Default time format and optional time
separator

New Function

USROPN UC in Pos 71-72 User controlled open of a file

The following sections describe the new and enhanced functions indicated in
Table 2 on page 10 in more detail. For a detailed description of existing
functions, please refer to publication ILE RPG/400 Reference.

COMMIT(Rpg_Name)

The enhancement for the commitment control option allows you to
optionally activate commitment control for a file described in your
program. If the one character Rpg_Name field contains a value of 1,
the file is opened for commitment control. If Rpg_name is set to a
different value, commitment control is not activated. The content of
the field is explicitly set, or it is passed as a parameter to your
program. This keyword has no effect on shared opened files. The
parameter must be set prior to opening the file. Conditional
commitment control allows applications to open files with

Chapter 2. RPG Specification Sheets 11

commitment control active under certain conditions, for example,
random auditing or on customer request.

DATFMT(format{separator})

Specifies the default date format and an optional default date
separator. On the file level, this keyword is typically used for
program-described files.

TIMFMT(format{separator})

Specifies the default time format and an optional default time
separator. On the file level, this keyword is typically used for
program-described files.

PREFIX(prefix_name)

All field names in all record formats of the externally described file
are prefixed with the value specified in the keyword argument. Using
the fields in your program requires that those field names are coded
with the prefix.

The total length of the name must not exceed the maximum length of
an RPG field name.

PRTCTL(data_struct{:COMPAT})

The dynamic print control function has been moved from the F-spec
continuation and the data_structure argument for the PRTCTL
keyword has a new layout. The parameter *COMPAT indicates that
you want to use the old style of the print control data structure. If
*COMPAT is not used, the structure of the PRTCTL data structure is:

1-3 pos A character field that contains the space-before value

4-6 pos A character field that contains the space-after value

7-9 pos A character field that contains the skip-before value

10-12 pos A character field that contains the skip-after value

13-15 pos A numeric field that contains the current line value

INCLUDE

This keyword has the opposite effect of the IGNORE option. You can
now specify the names of the record format of a file to be included in
your program. All of the not listed record formats are ignored.

2.4 The Definition (D) Specification Statement
The definition specification format has no equivalent in the language definition
prior to RPG IV. The definition specification consolidates and simplifies the
definition of program variables. The declaration of data structures has been
moved from the input specification; array definition from the eliminated extension
(E) specification is now located in the D specification. Additional declaration
facilities are for stand-alone fields, arrays within data structures, and dynamic
arrays. It is located between the file description (F), and the input (I)
specification.

In Figure 5 on page 13 the layout of the definition specification is shown.

12 Moving to ILE RPG

� �
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...
DName+++++++++++ETDsFrom+++To/L+++IDc.Functions++++++++++++++++++++++++++
DField1 S 10 0 INZ
D Field2 S20 INZ(′ September 06, 1994′)� �

Figure 5. Layout of RPG IV Definit ion (D) Specifications

The following list is a brief discussion of the specification entries:

Name The name of a data item. This is a field, a data structure, a named
constant, a data structure subfield, or an array. Please note the 15
character-wide space provided to allow indentation for structuring and
better readability supported by mixed case source text.

E An ′E′ in this position indicates that the data structure or the data
structure subfield is externally described.

T ′S′ means program status data structure, ′U′ means data-area data
structure.

Ds Positions 24-25 identify a data structure or the type of the variable.
′DS′ describes a data structure, ′C′ defines a constant and ′S′ a
stand-alone field or an array. Blank means none of the listed data
items.

From From position. If this entry is blank, the To/L+++ field contains the
length. The entry is used only for subfields in a data structure.

To/L This is the length of the field if the From position is blank. If the From
position is not blank, this entry contains the To position value.

I Internal data type. Defines the characteristics of a field.

A Character

G Graphic character

T Time

D Date

Z Timestamp

P Packed decimal

B Fixed binary

S Zone

* Pointer.

D Decimal positions. Up to 30 decimal positions.

Functions Keywords are used to define data and attributes.

The RPG IV language in V3R1 supports a set of keywords that is categorized as
follows:

• Array/Table

• Data

• Data structure

• Date/time

• Initialization

Chapter 2. RPG Specification Sheets 13

• Named constants

• Pointers

• Storage

Please refer to Table 3 for a complete list of the supported keywords and the
RPG/400 equivalent declarations.

Table 3 (Page 1 of 2). Keywords Supported in Definit ion Specification

RPG IV Keyword RPG/400 equivalent Description

ALT(array_name) Pos. 46-57 on E-spec Array/table in alternating format

ASCEND A in pos. 45 on E-spec Data in an array/table in ascending
sequence

DESCEND D in pos. 45 on E-spec Data in an array/table in descending
sequence

BASED(ptr) n/a The basing pointer (ptr) holds the
storage location of the based data
structure or stand-alone field.

New function

CONST(literal) Named constant on I-spec Value for a named constant

CTDATA Pos. 33-35 on E-spec Array or table data is loaded at
compile time.

DATFMT(format{separator}) n/a Specifies the date format for a date
data type field and optional separator.

New function

DIM(numeric_constant) Pos. 36-39 on E-spec Maximum number of elements in an
array or table

DTAARA(dtaaraname) Pos. 21-30 on I-spec External data area associated to the
field, data-structure, data-structure
subfield or data-area data-structure

EXPORT n/a The storage for the field is allocated
in this module but may be used in
other modules in this program.

New function

EXTFLD(fldname) Pos. 21-30 on I-spec External name of a field in an
externally described DS that is to be
renamed.

EXTFMT(code) Pos. 43 on E-spec External data type for arrays

Enhanced function

EXTNAME(fi le_name{:format_name}) Pos. 21-30 on I-spec File name containing the definition of
an externally described data structure

FROMFILE(file_name) Pos. 11-18 on E-spec Required for a pre-runtime array or
table

IMPORT n/a The storage for the field is allocated
in another module, but may be
accessed in this module.

New function

INZ{(constant)} on I-specs The field is initialized to the default
values of the data type or to the
specified constant.

LIKE(fld_name) *LIKE DEFN The attributes of the data being
defined are taken from the variable
fld_name.

NOOPT n/a No optimization performed for
stand-alone field or data structure

New function

14 Moving to ILE RPG

Table 3 (Page 2 of 2). Keywords Supported in Definit ion Specification

RPG IV Keyword RPG/400 equivalent Description

OCCURS(numeric_constant) Pos. 44-47 on I-spec Number of occurrences in a multiple
occurrence data structure

OVERLAY(name{:pos}) On I-spec A data structure subfield overlays the
storage of the subfield specified in the
argument of the keyword.

Enhanced function

PACKEVEN Zeros out the high order digit of an
even packed subfield in a data
structure

PERRCD(numeric_constant) Pos. 33-35 on E-spec Number of elements per record for a
compile-t ime or pre-runtime array or
table

PREFIX(prefix_name) n/a The name is prefixed to all subfields
in an externally described data
structure.

New function

PROCPTR n/a Defines a pointer as a procedure
pointer. Only allowed with data type *
(pointer).

New function

TIMFMT n/a Specifies the time format for a time
data type field

New function

TOFILE(file_name) Pos. 19-26 on E-spec Target fi le for pre-runtime and
compile-time array or table

The following sections describe the new and enhanced functions indicated in
Table 3 on page 14 in more detail. For a detailed description of existing
function, please refer to publication ILE RPG/400 Reference.

BASED(PTR)

PTR is the name of a field that contains the address of a space in
storage. The keyword is used for a field, a data structure or a
runtime array. There is no need to define the PTR field. The function
is used to access dynamically allocated storage. To set the point into
the PTR field, we use the %ADDR built-in function. An example of
how to use the BASED keyword is given in 3.7, “Example Using
Pointers in RPG IV” on page 53 where we explain the built-in
functions.

DATFMT(format{separator})

Use this keyword to define the format of a D (date) data type field and
optionally the date separator character. See an example in Figure 7
on page 19. If you also initialize the field, the constant must be in the
format you defined in the H specifications. The default format in H
specs is *ISO. See Table 13 on page 41 for a list of date formats.

TIMFMT(format)

Use this keyword to define the format of a T (time) data type field and
optionally the date separator character. See an example in Figure 7
on page 19. If you also initialize the field, the constant must be in the
format you defined in the H specifications. The default format in H
specs is *ISO. See Table 14 on page 41 for a list of time formats.

Chapter 2. RPG Specification Sheets 15

EXPORT/IMPORT

The keyword is used when binding multiple compilation units into an
executable program. EXPORT allows you to make a data item, for
example, variables or constants, known outside of the compilation
unit (module) where it is defined. Through the IMPORT feature, other
compilation units can access this data item without allocating the
storage.

When binding multiple compilation units into a program, the exported
field name must be unique within the program. Multiple modules can
import an exported field. Program creation fails if no matching
exported field name is found for an import. Characteristics of
exported and imported fields should not be altered within the
program. The program is created even if the characteristics are
different, but you might have to deal with unpredictable results.

EXPORT or IMPORT keywords cannot be used for unnamed data
structures.

An IMPORT field may not be initialized. Modules with EXPORT fields
must be called first to allocate and set up the exported fields.

Compared to passing parameters, EXPORT/IMPORT has the
advantage of accessing the data from more than one module within
the same program.

Compared to Local Data Area (*LDA), EXPORT/IMPORT is faster.

Figure 6 on page 17 shows you an example for the EXPORT and
import keywords. Imagine that both code fragments �1� and �2� are
compiled separately and bound in to an executable program. The call
bound (CALLB) �3� operation code is used to transfer control from
procedure RPG1 to procedure SUBMOD. Field Custname1 is exported
from module RPG1 and imported by module SUBMOD.

16 Moving to ILE RPG

� �
F* This is the calling module RPG1 �1�
F
FORDERFILE IF E K DISK
F
DCustname1 S 30 EXPORT
D : :
D : :
C DOW (*IN01 = *OFF)
C READ RF1 01
C IF *IN01 = *OFF
C Eval Custname1 = CUSTNAME
C �3� CALLB ′ SUBMOD′
C ENDIF
C ENDDO
C EVAL *INLR = *ON

D* This is the called module SUBMOD �2�
D
DCustname1 S 30 IMPORT
D : :
D : :
C MOVE *BLANKS Rpl_y 10
C
C Rpl_y DSPLY ′ *EXT′ Custname1
C
C EVAL *INLR = *ON

� �
Figure 6. Example Using EXPORT and IMPORT Keywords

EXTFMT(code) The external data type definition for arrays has been enhanced to
support date and time data types.

INZ{(CONSTANT)}

Use this keyword to initialize a stand-alone field, data structure, data
structure subfield, or array. Without a constant, the data item is
initialized to the default value for its data type. Using a constant
initializes to the specified constant.

When initializing date or time type fields, the format of the literal must
be according to the format specified in control specifications for date
and time. If no format is declared in the control specifications, it
defaults to *ISO, yyyy-mm-dd for date and hh.mm.ss for time. The
literal should be defined as following:

• INZ(D′date value′) for date

• INZ(T′ time value′) for time

• INZ(Z′ t imestamp value ′) for timestamp

A field, array, or data structure with keyword INZ cannot be used as a
parameter in an *ENTRY PLIST.

OVERLAY(name{:pos})

The keyword is only allowed for data structure subfields. It overlays
the storage of an already defined subfield on the same data structure.
In parenthesis, you specify the subfield you want to overlay.
Optionally, you can specify the starting position. If the starting
position is not specified, the overlay starts from the first position. The
length of the f ield is def ined in To/ l+++.

Chapter 2. RPG Specification Sheets 17

If the subfield is an array, OVERLAY applies to each element of the
array.

PACKEVEN

The PACKEVEN keyword indicates that the packed field or array has
an even number of digits. The keyword is only valid for packed
program-described data-structure subfields defined using FROM/TO
positions. For a field or array element of length N, if the PACKEVEN
keyword is not specified, the number of digits is 2N - 1; if the
PACKEVEN keyword is specified, the number of digits is 2(N-1).

The keyword can improve performance in arithmetic operations
replacing the null left-most digit with zero.

PREFIX(prefix_name)

Field names for externally described files are prefixed with the
prefix_name for all fields in all records of the file.

Fields that are explicitly renamed on the Input specifications are not
affected by this keyword.

The total length of the name after applying the prefix must not exceed
the maximum length of an RPG field name.

PROCPTR

Defines a procedure pointer for a variable with * in position 40 for the
internal data type.

NOOPT

No optimization is to be performed on the stand-alone field or data
structure when this keyword is specified. This insures that the
content of the data item is the latest assigned value. This may be
necessary for those fields whose values are used in exception
handling.

2.4.1 Examples for Declaring Data Items Using the Definition Specification
The source code fragment shown in Figure 7 on page 19 gives you some
self-explanatory examples for the definition of stand-alone and constant fields.

18 Moving to ILE RPG

� �
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++++

D* Define a named constant whose value is the lower case alphabet
DLower C CONST(′ abcdefghijklmnop-
D qrstuvwxyz′)

D* A named constant can also be defined without the keyword CONST
DUPPER C ′ ABCDEFGHIJKLMNOPQRSTUVWXYZ′

D* Define a numeric field size 20 with 12 decimal positions:
DMonthTotal S 20 12

D* Define the same field initialized to 0
DMonthTotal S 20 12 INZ

D* Define a date field and initialize it to 19th of June 1994
DDelv_date S D INZ(D′1994-06-19′)
D DATFMT(*YMD)

D* Define a time field
DDelv_time S T INZ(T′12-00-00′)

D* Define a field LIKE an existing one
DJanuary S 5 2
DFebruary S LIKE(January)
DTot_months S +2 LIKE(January)
DArmonths S LIKE(January) DIM(12)� �

Figure 7. Examples Using the Definition Statements - Field Definitions

Figure 8 illustrates the coding for arrays. More examples are found in the
publication ILE RPG/400 Reference.

� �
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++++
D* Myarray has 20 elements, each is 5 digits long
DMyarray S 5 0 DIM(20)
D
D
D* Array2 is a compile time array with 6 elements, each element
D* 10 char long, in ascending order, 3 elements per record
DArray2 S 10 DIM(6) CTDATA PERRCD(3)
D ASCEND

: : :
: : :

*The specifications for the compile-time array Array2 are:

**CTDATA(Array2)
AAAAAAAAAABBBBBBBBBBCCCCCCCCCC
DDDDDDDDDDEEEEEEEEEEFFFFFFFFFF� �

Figure 8. Examples Using the Definition Statements - Arrays

Figure 9 on page 20 describes the coding for data structures. To define data
structures, you can either use From and To/L, or you can only specify the length
in the To/L. field. To split a data structure subfield, you can either use the
OVERLAY keyword, or entries in From and To/L.

Chapter 2. RPG Specification Sheets 19

� �
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords++++++++++++++++++++++++++
D* Define a data structure and initialize it to zero and blanks
DItemNumber DS INZ
D Group 5
D Color 6
D Size 3 0
D Number 6 0
D
D
D* Define a data structure with splitting subfields
D* State is part of CityState field
DAddress DS
D street 15
D Number 10
D CityState 30
D State 26 45
D
D
D* Define a data structure with array
DTotalyear DS
D Total 7 2
D Permonth 5 2 DIM(12)
D
D
D* Define a data structure with OVERLAY
DWorkerDet DS OCCUR(100)
D Name 30
D FirstName 1 15
D LastName 16 30
D Phone_No 10
D Area_Code 3 OVERLAY(Phone_No)
D Local_No 7 OVERLAY(Phone_No:4)
D Status 1 inz(′ 1 ′)� �

Figure 9. Examples Using the Definition Statements - Data Structures

2.5 The Input (I) Specification Statement
The layout for the input specifications has been redesigned drastically and is
now used for its original purpose: To describe files, record layouts, and fields.
The definition for data structures, data structure subfields, and named constants
has been moved to the new definition specification. After converting your source
to RPG IV, this is where your declaration is found. Please refer to 2.4, “The
Definition (D) Specification Statement” on page 12 for the definition of those data
items. The following sections discuss externally and program-described file
description.

2.5.1.1 Externally Described Files

� �
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...
 *Externally described record layout
IRcdname+++....Ri..
I..............Ext-field+..................Field+++++++++L1M1..PlMnZr....� �

Figure 10. RPG IV I Specification for Externally Described Files

20 Moving to ILE RPG

Layout changes for externally described files are required for the increased
name length for record and field names. The record identification entry now
allows you to enter 10 characters. Although the length of field names is now 10
characters, the field description entry provides space for 14 characters. This
allows you to indent entries for better readability.

� �
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...
 *Externally described record layout
IRcdname+++....Ri..
I..............Ext-field+..................Field+++++++++L1M1..PlMnZr....� �

Figure 11. RPG IV I Specification: Record Layout

Table 4 and Table 5 summarize the layout changes of record and field
description for externally described files:

Table 4. Comparison for Externally Described Record Layout

RPG IV RPG/400 equivalent Description

Pos. 7-16 Pos. 7-14 Record name

Pos. 17-20 Reserved

Pos. 21-22 Pos. 18-20 Record identifying indicator

Pos. 23-80 Reserved

Table 5. Comparison for Externally Described Field Layout

RPG IV RPG/400 equivalent Description

Pos. 7-20 Pos. 7-20 Reserved

Pos. 21-30 Pos. 21-30 External field name

Pos. 31-48 Reserved

Pos. 49-62 Pos. 53-58 RPG/400 field name, (optional in RPG
IV)

Pos. 63-64 Pos. 59-60 Control level

Pos. 65-66 Pos. 61-62 Matching fields

Pos. 67-68 Reserved

69-74 65-70 Field indicators

75-80 Reserved

2.5.1.2 Program Described Files
Program described files are shown here only for completeness. We assume that
most applications designed today would use externally described files. So you
might want to skip this section.

� �
*.. 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+...
 *Program described record layout
IFilename++SqNORiPos1+NCCPos2+NCCPos3+NCC................................

 *Program described field layout
I........................Fmt+SPFrom+To+++DcField+++++++++L1M1FrPlMnZr....� �

Figure 12. RPG IV I Specification: Program Described File

Chapter 2. RPG Specification Sheets 21

For program described files, you can now define date, time, or timestamp type of
fields, and specify the formats of them. See Table 13 on page 41 and Table 14
on page 41 for a list of external formats for date and time data types.

• Record identification entries

− 10 positions for file name

− 5 characters for record position identification code

• Field description entries

− Date/time format. This entry is used to specify the external format for a
date or time field. It is only used for program described files. See
Table 13 on page 41 and Table 14 on page 41 for valid date and time
formats.

− Separator. This entry is used to specify the separator for a date or time
field. It is also used for program described files.

− Data format. New data type fields are added, (D) for date, (T) for time,
(Z) for timestamp, (A) for character, (S) for zoned decimal, and (G) for
graphic.

You can still use blank for numeric and character fields.

− 5 positions for FROM and TO entries

− 2 positions for decimal positions

− 14 positions for the field name. If the name is a normal input field, or the
name of an entire array, it must follow the rules for a symbolic name. To
refer to an element of an array, specify the name of the array, and
enclosed the index in parenthesis.

Table 6 and Table 7 summarize the layout changes of program described
records and fields.

Table 6. Comparison for Program Described Record Layout

RPG IV RPG/400 equivalent Description

Pos. 7-16 Pos. 7-14 File name as in file description
specification

Pos. 16-18 Pos. 14-18 Logical relationship

Pos. 17-18 Pos. 15-16 Sequence

Pos. 19 Pos. 17 Number

Pos. 20 Pos. 18 Option

Pos. 21-22 Pos. 19-20 Record identifying indicator or **

Pos. 23-46 Pos. 14-18 Up to three record identification codes
are entered. See the following:

23-27, 31-35, 39-43 21-24, 28-31, 35-38 Position

28, 36, 44 25, 32, 39 Not

29, 37, 45 26, 33, 40 Code part

30, 38, 46 27, 34, 41 Character

Table 7 (Page 1 of 2). Comparison for Program Described Field Descriptions

RPG IV RPG/400 equivalent Description

Pos. 7-30 Pos. 7-42 Reserved

22 Moving to ILE RPG

Table 7 (Page 2 of 2). Comparison for Program Described Field Descriptions

RPG IV RPG/400 equivalent Description

Pos. 31-34 n/a Date/Time external format

Pos. 35 n/a Date/Time separator

Pos. 36 Pos. 43 Data format

Pos. 37-46 Pos. 44-51 Field location, equivalent to From and
To

Pos. 47-48 Pos. 52 Decimal posit ion

Pos. 49-62 Pos. 53-58 Field name

63-64 59-60 Control level

65-66 61-62 Matching fields

67-68 63-64 Field record relation

69-74 65-70 Field indicator

2.6 The Calculation (C) Specification Statement
Most of the major enhancements in the RPG IV language definition take effect in
the calculation specifications. The following list is a summary of the most
important modifications:

• The space for factor 1, factor 2, and result field has been increased to 14
positions.

• Extended factor 2 has been designed to allow free format, and arithmetic and
logical operations. The space provided by the extended factor 2 is 45
positions.

• There is only one conditioning indicator instead of three.

• The space for operation codes has been increased to 10 positions.

• Free format and built-in functions have been added.

• New operation codes and functions have been added.

Figure 13 and Figure 14 on page 24 compare the original with the enhanced
RPG IV format and give a first example.

� �
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C
C MySalary ADD YourSalary MySalary 10 2
C
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++..
C
C IF *IN01 = *ON and Quantity > 0� �

Figure 13. C Specification Coded in RPG IV

Chapter 2. RPG Specification Sheets 23

� �
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDHHiLoEqComments+++++++....
C MOVE ARRY,2 ARRY,3� �

Figure 14. C Specification Coded in RPG/400

2.6.1 The New Calculation Specification Layout
The position of almost all of the columns has changed. Before the new layout
for the C-specs is discussed in detail, Table 8 briefly summarizes and compares
the different formats.

• Conditioning indicator. There is only one conditioning indicator instead of
three. When you convert RPG/400 source members with more than one
indicator on the same line, the conversion command creates additional line
statements, one for every indicator.

• Factor one. The space for factor 1 is now 14 positions.

• Operation code. The space for operation codes has been increased to 10
positions. Some of the existing operation codes are renamed to improve
readability and better understanding of the program code. All of the
renamed operation codes are listed in Table 9 on page 29.

Conversion from RPG/400 code to RPG IV renames these operation codes to
the new names. The RPG IV compiler and SEU do not support the previous
syntax when the source member is RPGLE.

• Operation Extender. The operation extenders provide additional attributes to
some of the operations. The extenders are specified in parenthesis following
the operation code, for example, MULT(H) or MULT (H). Valid extenders are:

Entry Explanation

Table 8. Comparison of RPG IV and RPG/400 C Spec Layout

RPG/400
Position

RPG IV
Position

Function

6 6 Format

7-8 7-8 Control level

9-17 9-11 Condition indicators are reduced to a single one. Mult iple
indicators are converted to multiple lines.

18-27 12-25 Length of factor 1 increased from 10 to 14 characters

28-32 26-35 Operation and extender length increased from 5 to 10
characters

33-42 36-49 Length of factor 2 increased from 10 to 14 characters

43-48 50-63 Length of the Result field increased from 6 to 14 characters

49-51 64-68 Field length field increased from 3 to 5 characters

52 69-70 Decimal posit ion

53 n/a Moved to the operation and extender column (26-35)

54-59 71-76 Result indicators

60-74 81-100 Comments

24 Moving to ILE RPG

Blank No operation extension

(H) Half adjust. It indicates that the result of an arithmetic
operation is to be rounded. It is used with arithmetic
operations, but not with MVR (move remainder), or DIV
followed by MVR.

(N) Record is read but not locked. It is used for database
files defined as read-for-update. Using the extender
(N) in read operations such as READ, READE, READP,
READPE, and CHAIN does not lock the record. If the
extender is not used, the record is locked until update,
or next read from the same file.

(P) Pad operation. A (P) defined in operations such as
CAT, SUBST, MOVEA, MOVEL, or XLATE indicates that
the result of these operations is padded with blanks on
the right of the string if the result field is longer than
the result of the operation. For MOVE operations,
padding is done from the left.

(D), (T), (Z) These extenders are used to test a character or
numeric field for valid date, time, or timestamp values.
It is used with the new TEST operation code. The field
we want to test is not a field defined as date, time, or
timestamp type.

• Factor 2. The space for factor 2 is now 14 positions.

• Extended Factor 2. The extended factor 2 is used with the new operation
codes DOU (Do until), DOW (Do while), EVAL (Evaluation), IF (If/Then), and
WHEN (When true then select). The space for extended factor 2 is 45
characters, and allows free format coding and expressions such as:

− EVAL Amount = Quantity * Price

− DOW *IN90 = *ON AND Quantity > 0

If there is not enough space for the expression in one extended factor 2, you
can continue on the extended factor 2 on the next line. In case you split the
name of the field, you can terminate the first line using an hyphen (-) or plus
(+) .

You can find further details on the new operation codes and examples in
chapter 3.1, “Operation Codes” on page 29.

• Result Field. The space for the Result field is now 14 positions.

• Field length. The size of this entry has been increased to 5 characters to
allow the new field length of 32,767 for character fields.

• Decimal position. The size of this entry has been increased to 2 characters
to allow up to 30 decimal positions in a numeric field.

2.7 The Output (O) Specification Statement
The output specification layout has been changed. The positions of some of the
column specifications have been increased to include the new name size and
the new field length. Compare Figure 15 on page 26, and Figure 16 on page 26
for the differences between RPG/400 and RPG IV:

Chapter 2. RPG Specification Sheets 25

� �
OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+...........................
OQSYSPRT T LR 1 1
O INSTAL 21
O 24 ′ OF′� �

Figure 15. O Specification Coded in RPG IV

� �
OName++++DFBASbSaN01N02N03Excnam...
OQSYSPRT T 1 1 LR
O INSTAL 21
O 24 ′ OF′� �

Figure 16. O Specification Coded in RPG/400

The following sections describe the changes in the output specification
statement.

2.7.1.1 Record Identification and Control Entries
• 10 positions for file name entry.

• 10 positions for EXCEPT name entry.

• 20 positions for comments. This a new entry added in RPG IV.

• Space lines before and after printing a line. The entries have been
increased from one position to three. The maximum spaces you can now
specify to advance before and after printing a line is from 0 to 255.

• Skip to line before and after printing a line. The entries have been increased
from two positions to three. The maximum line number you can now specify
to skip before and after printing a line is from 1 to 255.

2.7.1.2 Record Identification for Addition/Deletion
• 10 positions for file name entry.

• 10 positions for EXCEPT name entry.

• 20 positions for comments. This is a new entry added in RPG IV.

2.7.1.3 Field Description and Control Entries
• 14 positions for field name entry.

• The end position entry has been increased to 5 in order to capture the end
position of fields in records with up to 32767 characters.

• Data format.

New data type of fields are added. (D) for date field, (T) for time field, (Z) for
timestamp field, (A) for character field. (S) for zone decimal field, and (G) for
graphic field. Remember, the entry in this position specifies the format of
the data in the record in the file. The entry has no effect on the format used
for internal processing of the specified field in the program.

• 28 positions for constant/edit word entry.

In addition to constants, edit words, and format names, we can now specify
the external format for date and time fields.

• 20 positions for comments. This a new entry added in RPG IV.

26 Moving to ILE RPG

2.8 The File Extension (E) Specification Statement
The extension specification has been eliminated in RPG IV. Prior to RPG IV it
was used to describe:

• Record address files

This function is now implemented with keyword RAFDATA in the file
specifications.

• Arrays and tables

Those data items are now described in the definition specifications.

2.9 The Line Counter (L) Specification Statement
The line counter specification has been eliminated and the function is now
implemented with keywords in the file specification.

Chapter 2. RPG Specification Sheets 27

28 Moving to ILE RPG

Chapter 3. RPG IV Functions and Features

Chapter Overview: While the previous chapter focused primarily on the layout
changes for RPG specification sheets, this chapter discusses the functional
enhancements introduced with the RPG IV language definition that include:

• Expanded naming capabilities

• Mixed-case source code (not case-sensitive)

• Built-in functions

• Format-free arithmetic and logical expressions

• New and renamed operation codes

• Support for new data types

• Raised and removed limits

Most of the enhancements are illustrated with comprehensive examples. Some
features, for example, the new date and time support, are discussed in more
detail than other more obvious and easy-to-use functions. For more thorough
information, please refer to the publications ILE RPG/400 Reference, SC09-1526,
and the ILE RPG/400 Programmer′s Guide, SC09-1525.

3.1 Operation Codes
You can classify the changes to operation codes in four different categories.
These operation codes are:

• Renamed

• New and process date and time data types

• New and perform a static call

• New and support your efforts for structured programming

3.1.1 Renamed Operation Codes
Due to the expanded space for operation codes, some of the existing codes have
been renamed to increase readability. RPG IV does not support the previous
syntax of these operation codes. The functionality of these operation codes
remains unchanged. The conversion command CVTRPGSRC converts them
automatically. Table 9 gives you a complete list of the operation codes that are
renamed:

Table 9 (Page 1 of 2). Renamed Operation Codes

RPG/400 Operation Code RPG IV Operation Code

BITOF BITOFF

CHEKR CHECKR

COMIT COMMIT

DEFN DEFINE

DELET DELETE

EXCPT EXCEPT

LOKUP LOOKUP

 Copyright IBM Corp. 1995 29

The characteristics of the renamed operation codes remain unchanged.

Table 9 (Page 2 of 2). Renamed Operation Codes

RPG/400 Operation Code RPG IV Operation Code

OCUR OCCUR

REDPE READPE

RETRN RETURN

SELEC SELECT

SETOF SETOFF

UNLCK UNLOCK

UPDAT UPDATE

WHxx WHENxx

3.1.2 New Operation Codes to Process Date and Time Data Types
Duration codes are used in operations such as: add duration (ADDDUR),
subtract duration (SUBDUR), and extract (EXTRCT) to specify from/to which part
of the date, time, or timestamp field a value is added, subtracted, or extracted.
They are specified in the factor 2 and result field. See examples in Figure 36 on
page 45.

You can express time periods by using the duration codes

• *YEARS or *Y

• *MONTHS or *M

• *DAYS or *D

• *HOURS or *H

• *MINUTES or *MN

• *SECONDS or *S

• *MSECONDS or *MS

in combination with the following operations codes:

ADDDUR The ADDDUR operation adds the duration specified in factor 2 to the
field or constant specified in factor 1 and places the resulting date,
time, or timestamp in the Result field.

Factor 1 is optional and may contain a date, time, or timestamp field.
It can also contain a field, array element, or data structure subfield.
In this case, the data type of the field must be the same data type as
the field specified in the result field. If factor 1 is not specified, the
duration is added to the field specified in the result field.

Factor 2 is required and consists of two parts. The first part is a
numeric field or constant with zero decimal positions. If the value is
negative, the duration is subtracted. The second part, separated by a
colon, is a duration code consistent with the result field data type.

The result field must be a date, time, or timestamp field, array, or
array element.

30 Moving to ILE RPG

� �
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C
C OrderDate ADDDUR 23:*Days ShipDate
C ADDDUR 12:*Hours StartTime� �

Figure 17. Example for ADDDUR Operation Code

SUBDUR The SUBDUR provides two operations:

 1. Subtract a duration to establish a new date, time, or timestamp

 2. Calculate a duration

Subtract a duration: The SUBDUR subtracts a duration specified in
factor 2 from a field or constant specified in factor 1 and places the
resulting date, time, or timestamp in a field specified in the result
field.

Factor 1 is optional and may contain a date, time, or timestamp field.
It can also contain a field, array element, or constant. In this case,
the data type of the field must be the same data type as the field
specified in the result field. If factor 1 is not specified, the duration is
subtracted from the field specified in the result field.

Factor 2 is required and consists of two parts. The first part is a
numeric field or constant with zero decimal positions. If the value is
negative, the duration is added. The second part, separated by colon,
is a duration code consistent with the result field data type.

The result field must be a date, time, or timestamp field, array, or
array element.

Calculate duration: The SUBDUR can also be used to calculate a
duration between:

 1. Two dates

 2. A date and a timestamp

 3. Two times

 4. A time and a timestamp

 5. Two timestamps

Both factor 1 and 2 are required and must contain date, time, or
timestamp field types, according to the rules specified above.

The result field contains two sub-factors. The first part is the name of
a numeric field, array, or array element with zero decimal positions.
The second part, separated by a colon, is a duration code denoting
the type of the duration.

Please note that calculating a duration, using the SUBDUR operation,
the result is in years, days, months, hours, minutes, seconds, or
microseconds and not in date, time, or timestamp.

Chapter 3. RPG IV Functions and Features 31

� �
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C
C*Determine the OrderDate which was XX years, YY months, ZZ days
C*prior to DelDate
C
C DelDate SUBDUR xx:*Years OrderDate
C SUBDUR yy:*Months OrderDate
C SUBDUR zz:*Days OrderDate
C
C*Calculate the number of days between OrderDate and DelDate
C
C DelDate SUBDUR OrderDate Num_days:*D� �

Figure 18. Example for SUBDUR Operation Code

Note:

EXTRCT Extracts year, month, day, hours, minutes, seconds, or microseconds
of a date, time, or timestamp data type field and places it into a field
specified in Result. This facilitates the isolation of the year, month,
day, hours, minutes, seconds or microseconds portion of a field.

Factor 2 contains two sub-factors. The first part is a date, time, or
timestamp field, array, or array element. The second part, separated
by a colon, is a duration code. The duration code must be consistent
with the field type in the first sub-factor.

The result field is a numeric or character field, array, or array
element.

� �
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C
C*Extract the year from a date field
C
C EXTRCT BrtDate:*Y BrtYear
C
C*Extract the hour from a timestamp field
C
C EXTRCT LogonTime:*H Loghour� �

Figure 19. Example for EXTRCT Operation Code

TEST The TEST checks if the content of a field is a valid date, time, or
timestamp.

Factor 1 contains a date or time format if the field to test in the result
field is a character or numeric field. If not specified, the format is
taken from the format (DATFMT) specified on the Control
specification. You should also specify an operation extender (D), (T),
or (Z).

If the field to test on the result field is a date, time, or timestamp type,
no operation extender is used. Factor 1 must be blank.

An indicator is required in positions 73-74 and is set to on if the value
in the result field is not valid.

32 Moving to ILE RPG

� �
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C
C* DATE1 is a numeric field and contains ′911014′
C* Indicator 40 is set ON since DATE1 is not *DMY
C
C *DMY TEST(D) DATE1 40
C� �

Figure 20. Example for TEST Operation Code

3.1.3 New Operation Code for Static Call

CALLB CALLB is a new operation code in RPG IV. It has been added to
perform within the ILE environment. CALLB calls a procedure bound
in an ILE program. The operation code is used in an ILE RPG module
to call a procedure (module) bound on the same ILE program. The
difference between CALL and CALLB is that the CALL calls another
program, and the CALLB calls a module within a program. The
procedure to call can be written in any ILE language. Factor 2 is
required, and must be a literal or a named constant containing the
name of the procedure or a procedure pointer containing the address
of a procedure to be called. The name of the procedure can be up to
255 characters if this is not the name of a procedure of an RPG
module. The result field is optional and may contain the name of a
PLIST.

You can specify an indicator in 75-76. This indicator is set to on if the
call ends with LR set on.

As all the modules of a program are bound together, calling a
procedure of a module is faster than to call a program using the
CALL operation command.

Note:

In order to use the bound procedure call with other ILE languages
allowing procedure names longer than 10 characters such as C/400,
you might want to consider the example illustrated in Figure 21.

� �
D*ame+++++++++++ETDsFrom+++To/L+++IDc.Functions++++++++++++++++++++++++++
D Longname C CONST(′ Long_C_Procedure_Name′)
...
C*0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C CallB LongName

C CallB ′ Medium_Name′� �
Figure 21. Bound Procedure Call with Long Procedure Name

Chapter 3. RPG IV Functions and Features 33

3.1.4 New Operation Codes for Structured Programming
The redesigned calculation specification for extended factor 2 allows a syntax
change for the operation codes for structuring your program. The arithmetic
expressions in extended factor 2 gives you a more intuitive way to code do loops
and case statements as illustrated in Figure 23 compared to the previous coding
shown in Figure 22:

� �
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDEHiLoEqComments+++++++...
C *IN03 DOWEQ*OFF
C STATUS IFEQ ′ S′
C QTY ANDLE1000
...
C ENDIF
C ENDDO� �

Figure 22. Structured Programming in RPG/400

� �
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
C
C
C DOW *IN03 = *OFF
C IF (Status = ′ S′) AND Quantity < 1000
...
C ENDIF
C ENDDO� �

Figure 23. Structured Programming in RPG IV

The new operation codes in this category are:

• DOU

• DOW

• IF

• WHEN

• EVAL result = expression

The operation codes DOU (Do until), DOW (Do while), IF(If/Then), and WHEN
(when true then select), are similar to DOUxx, DOWxx, IFxx, and WHENxx.
Instead of using factor 1 and factor 2, you can now use the extended factor 2 to
describe the logical expression. The expression can contain more than one
condition concatenated by relational operators. Factor 1 is not used.

The unary and binary operators supported in arithmetic and logical expressions
are:

Table 10. Unary Operators

Description Operator

Positive value +

Negative value -

Negation of indicators NOT

34 Moving to ILE RPG

Table 11. Binary Operators

Description Operator

Addition, String Concatenation +

Subtraction -

Mult ipl ication *

Exponentiation **

Division /

Remainder / /

Equal =

Greater than or equal > =

Greater than >

Less than or equal < =

Less than <

Not equal < >

Logical and AND

Logical or OR

3.1.4.1 EVAL Operation Code
EVAL is a new operation code also used in extended factor 2 to code
expressions such as: Result = Expression. The expression is evaluated, and
the result placed in result. Therefore the result cannot be a constant and must
be the name of field, array, array element or data structure subfield. The
expression must match the result field type and is numeric, character, relational,
or logical.

Figure 24 and Figure 25 on page 36 compare two code fragments written in
RPG/400 and RPG IV. The RPG IV example is using the new EVAL operation
code while the RPG/400 is coded in the traditional way. As you see, the code in
RPG IV is more readable.

� �
CL0N01N02N03Factor1+++OpcdeFactor2+++ResultLenDEHiLoEqComments+++++++...
C STATUS IFEQ ′ S′
C QTY ANDLE1000
C QTY MULT PRICE AMOUNT 72H
C ELSE
C PRICE MULT 0.10 PRICED 52H
C QTY MULT PRICED AMOUNT H
C ENDIF� �

Figure 24. Comparing EVAL to RPG/400 Coding Style

Chapter 3. RPG IV Functions and Features 35

� �
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
C
C IF (Status = ′ S′) AND Quantity < 1000
C EVAL(H) Amount = Quantity * Price
C ELSE
C EVAL(H) Amount = (Price * 0.10) * Quantity
C ENDIF� �

Figure 25. EVAL Operation Code

3.2 Symbolic Names
Names for data items used in your program such as variables, constants, and
data structures are called symbolic names. They identify uniquely a specific data
item.

3.2.1 Upper/Lowercase
You can now mix lower and uppercase characters in the names of files, fields,
record formats, arrays, data structures, labels, and in any symbolic names used
to identify and access specific data in the program. This is also true for
operation codes and reserved words. The SEU and RPG IV compiler accepts
everything in upper or lowercase. The compiler translates all the characters to
uppercase. In the list produced by the compiler, all the characters appear as
they were written by the programmer (in upper and lowercase). In the cross
reference list, all the names are in uppercase.

The compiler does not translate the following:

• Literals

• Comments

• Compile-time array/table data

• Currency symbol

• Date/time edit values on H spec

• Date/time separator on I and O specs

• Decimal edit value on H spec

• Comparison characters on Record ID entries of I spec

Note: Although the characters $, #, and @ are allowed for names, you should
avoid using them. The reason for this is that in some countries, these
characters are shown as uppercase national characters. For example, in
Denmark and Norway, the $ is shown as the character Å (its lower case
equivalent is å), # is Æ (lower case æ), and @ is Ø (lower case ø). In Spain, the
is Ñ, which has ñ as the lower case equivalent.

A Danish programmer would expect that all names could be entered in
lowercase Danish. A name such as SÆLGER is a valid field or file name for
RPG IV, but it cannot be entered as sælger. The compiler only translates the
letters a-z to uppercase.

36 Moving to ILE RPG

3.2.2 Name Length
The new RPG IV supports symbolic names from 1 to 10 characters long. That
includes file, field, record format, data structure and array names. The
programmer does not need to rename record formats to 8, or field names to 6
characters just because the definition in DDS is longer. The factor 1, factor 2,
and results field have also been increased to 14 characters. This allows the
usage of built-in functions and arrays with names of up to 10 characters and
enough space for the index.

3.2.3 Underscore
You can use underscore symbol (_) on the symbolic name except as the first
character.

3.2.4 Blank Lines
Totally blank lines are now allowed between statements. This makes the source
more readable and allows it to indicate logical program portions.

3.2.5 Examples
The following examples show some of the new functions.

• CusNumber = CUSNUMBER = cusnumber

• Ord_Number = ORD_NUMBER = ord_number

• MyArray,idx

• MySa la ry <> Mysa la r

In the last example, the field names refer to two different variables because they
do not contain the same number of characters.

3.3 Changes in Limits
One of the reasons for redefining the RPG language lay in the limitations built
into the previous compiler. With the ILE system support, restrictions and
limitations could be removed. Table 12 summarizes the raised limits.

Table 12 (Page 1 of 2). Changes in Limits

Description RPG/400 RPG IV

Field/Array Name 6 10

Data Structure Name 6 10

Record Format Name 8 10

File Name 8 10

Number of Files 50 None

Character Field Size 256 32767

Constant Size 256 1024

Data Structure Size 9999 32767

Number of Decimal Places 9 30

Number of Array Elements 9999 32767

Chapter 3. RPG IV Functions and Features 37

Table 12 (Page 2 of 2). Changes in Limits

Description RPG/400 RPG IV

Named Constant 256 1024

Number of Subroutines 256 None

Size of Program Varies None

Note:

The length for the file name in the INFDS (INFormation DataStructure)
remains 8 characters.

3.4 Built-in Functions in RPG IV
%ADDR(variable) Places the address of an item into a variable. The item is a

field, an element of array, or an expression.

%ADDR built-in function is also used in the Definition specification
with an * data type field (pointer). The size of the * data type field is
always 16, and you do not have to specify it. When you use a field in
calculation to contain the address of an item, you do not have to
define the size of this field.

Figure 26 shows an example of using %ADDR built-in function.

:

� �
D Pointer1 S * INZ(%ADDR(Field1)) �1�
D Field1 S 10 INZ(′ ABCD′)
D Field2 S 10 BASED(Pointer2) �2�
D Result S 10

: : :
: : :

C EVAL Pointer2 = %ADDR(Field1) �3�
C
C IF Field1 = Field2
C MOVE ′ Yes′ Result
C ELSE
C MOVE ′ No′ Result
C ENDIF
C DSPLY ′ *EXT′ Result
C MOVE *ON *INLR� �

Figure 26. The %ADDR Built- in Function

The following explanations refer to the previous example:

• �1� Pointer1 is defined as a pointer field (*) and initialized with the
address of the Field1 field.

• �2� Field2 is a 10 character field and its address is based on the
content of the field Pointer2.

• �3� Using the EVAL operation, we specify that Pointer2 contains
the address of Field1. But Field2 is based on the address in
Pointer2. This means that Field1 and Field2 have the same
address, and as a result, the same content.

38 Moving to ILE RPG

%ELEM(array_name) or

%ELEM(multiple_occurrence_data_structure_name Places into a variable the
number of elements of an array, or the number of occurrences of a
multi-occurrence data structure.

Figure 27 is an example of using %ELEM in an array.

� �
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
C
C dou Index = %ELEM(Name_Array)
C : :
C eval INDEX = Index + 1
C endDO� �

Figure 27. The %ELEM Built- in Function

%SUBST(string:start{:length}) Extracts a portion of a string. Start represents the
starting position of the substring. The length is optional and defines
the length of the substring. If not specified, the length of the substring
is from the start position to the end of the string. %SUBST can also
be used in a definition of a field in Definition specification.

� �
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
C
C EVAL Comment = ′ It′ ′ s a great language′
C EVAL Fcomment = %SUBST(Comment:8)
C* Fcomment = ′ great language′
C� �

Figure 28. The %SUBST Buil t- in Function

%SIZE(name{:*ALL}) Places into a numeric variable the size of a field, literal,
array, data structure, or named constant. If the name is an array or a
multiple occurrence data structure, the variable contains the size of
one element or one occurrence. If *ALL is specified, the size
received is the size of all the elements or occurrences. %SIZE can
also be used in Definition specification.

� �
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
C
C EVAL NumFld = %SIZE(Field1)
C EVAL NumFld = %SIZE(1994)
C EVAL NumFld = %size(Array1:*ALL)
C� �

Figure 29. The %SIZE Built- in Function

%TRIM(string) Returns the string cleared of leading and trailing blanks

%TRIML(string)

 Returns the string cleared of leading blanks

%TRIMR(string) Returns the string cleared of trailing blanks

Chapter 3. RPG IV Functions and Features 39

� �
CL0N01Factor1+++++++Opcode(E)+Extended-factor2+++++++++++++++++++++++++++
C
C EVAL Astring = ′ leading blanks′
C EVAL Fstring = %TRIML(Astring) + ′ removed′
C* Fstring = ′ leading blanks removed′
C� �

Figure 30. The %TRIML Built- in Function

In this example, the built-in %TRIML function moves the string to the left,
clearing all the leading blanks. EVAL statement adds the literal ′removed ′ to the
result of %TRIML and the content of Fstring is: ′ leading blanks removed′.
Astring and Fstring fields should be defined in D or C specifications.

When %TRIM, %TRIML, or %TRIMR are used in Definition specification, the
string parameter must be a literal or a named constant.

Further Reading

See the ILE RPG/400 Reference manual, SC09-1526, for more information
about the calculation specification layouts, the new operation codes, duration
codes, operation extenders, and the new built-in functions.

3.5 Using Date and Time Formats and Operations
RPG IV now fully supports the date and time data types that were introduced in
OS/400 V2R1.1 together with Distributed Relational Database Architecture*
(DRDA). In addition, operation codes as described in 3.1.2, “New Operation
Codes to Process Date and Time Data Types” on page 30 are available for date
and time calculation using the date and time data types as well as testing for
valid content.

The new operation codes for date and time calculations are very powerful, and
make date and time calculations much easier than previous RPG support. In
current applications, subroutines or separate programs may be used to handle
calculation of dates, such as adding or subtracting a number of days to or from a
date, or validating the content.

Many of these routines or programs could depend on a specific method for
defining and storing fields containing dates. The format used may contain two
digits for year only, it may contain four digits for the year, or maybe a century
digit, where a zero defines 20th century and a one defines 21th century.

The new support in RPG IV allows you to define three new data types:

• Date data type - field type D

• Time data type - field type T

• Timestamp data type - field type Z

In DB2 for OS/400, these fields types could be defined since V2R1.1, and note
that the date data type is a type L field in DDS. Prior to RPG IV, character fields
had to be used to read and write those data types, and it was the programmer′s
responsibility to ensure correct content.

40 Moving to ILE RPG

The new RPG IV field types are not numeric or character fields. They are date
fields, time fields, and timestamp fields, and you can only use certain operation
codes with date, time, and timestamp fields.

The compiler tests to see if the content of a date or time field is valid. If it is not
valid, an error message is generated.

Table 13 and Table 14 describe the different date and time formats we can use
in RPG IV. The same reserved words are used in definition (D), input (I),
calculation (C), and output (O) specifications for date and time type fields. We
discuss later in this chapter the rules and overrides for date and time definitions.

Table 13. External Formats for Date Data Type

Name Description Format Sep. Length Example

*MDY Month/Day/Year mm/dd/yy /-.,& 8 01/15/91

*DMY Day/Month/Year dd/mm/yy /-.,& 8 15/01/91

*YMD Year/Month/Day yy/mm/dd /-.,& 8 91/01/15

*JUL Julian yy/ddd /-.,& 6 91/015

*ISO International Standards Org. yyyy-mm-dd - 10 1991-01-15

*USA IBM USA Standard mm/dd/yyyy / 10 01/15/1991

*EUR IBM European Standard dd.mm.yyyy . 10 15.01.1991

*JIS Japanese Industrial Standard yyyy-mm-dd - 10 1991-01-15

Table 14. External Formats for Time Data Type

Name Description Format Sep. Length Example

*HMS Hours:Minutes:Seconds hh:mm:ss :.,& 8 14:00:00

*ISO International Standards Org. hh.mm.ss . 8 14.00.00

*USA IBM USA Standard hh:mm AM : 8 02:00 PM

*EUR IBM European Standard hh.mm.ss . 8 14.00.00

*JIS Japanese Industrial Standard hh:mm:ss 8 : 14:00:00

For data types D (date), T (time), and Z (timestamp), it is not required to specify
length, but you are allowed to do that. In case you specify it, the length must be
according to the format of the date, time, and timestamp field. Optionally, you
can also define a date or time format. The default is *ISO. If the field is
initialized, the constant must be in the format specified in H specs. The literal
should be defined in the following way:

• For date - D′date value′

• For time - T′ time value′

• For timestamp - Z′ t imestamp value ′

3.5.1 Initializing Date and Time Data Type Fields
The control specification defines the default format for internally defined date
fields and literals used in the program. The keyword is DATFMT and if not
specified, the default is *ISO.

The DATFMT is not to be confused with the DATEDIT keyword. The DATEDIT
keyword defines the default format of numeric fields containing a date in the
program and the delimiter used for editing. This includes the RPG reserved

Chapter 3. RPG IV Functions and Features 41

words UDATE and *DATE, as they are numeric fields containing a date. The
default format for DATEDIT is *MDY and / as delimiter.

The control specification also defines the format of internally defined time fields
and literals. The default is *ISO.

In the other RPG IV specifications, you can override the defaults for the date and
time data types.

Note: For formats with a two-digit year (*YMD, *MDY, *DMY, *JUL), the AS/400
system treats any years ranging from 40 through 99 as 1940 through 1999, and 00
through 39 as 2000 through 2039.

Valid dates for *ISO, *USA, *EUR, and *JIS are from year 0001, month 01, day 01
through year 9999, month 12, day 31.

The calendar system used is the Gregorian calendar. If you want to use other
calendar systems, you have to use the date and time APIs. With these, you can
convert a Gregorian date to a Lilian date, and then use the Lilian date to find the
day of the week, or have it converted into the Japanese or Republic of China
calendar, based on era. Refer to 3.5.5, “Using Date and Time APIs” on page 47
for more information about these APIs.

Table 15. Date Formats with Control Specification

Keyword Default Description

DATFMT *ISO Default format for internally defined date fields and literals.

Possible values are *MDY *DMY *YMD *JUL *ISO *USA
*EUR *JIS.

DATEDIT *MDY / Format and delimiter for numeric fields containing a date
including UDATE and *DATE

Possible values for format are *MDY *DMY *YMD, and the
separator character can be any character.

TIMFMT *ISO Default format for internally defined time fields and literals

Possible values are *HMS *ISO *USA *EUR *JIS.

3.5.2 Example of Initializing Date and Time Data Type Fields
Figure 31 shows an example of how the date and time data type fields are
initialized:

� �
�1� H DATMFT(*YMD&) TIMFMT(*HMS&)

�2� D Date1 S D DATFMT(*MDY) INZ(D′94 04 01′)
�3� D Time1 S T TIMFMT(*HMS) INZ(T′13 00 00′)
�4� D NumDate S 6 0 INZ(910401)
�5� D DateHire S D DATFMT(*USA)
�6� D UpdDate S D DATFMT(*ISO)
�7� D UpdTime S T TIMFMT(*USA)
�8� D EndTime S T TIMFMT(*ISO)

� �
Figure 31. Initializing Date and Time Data Type Fields

The following list gives an explanation of the source statements:

42 Moving to ILE RPG

�1� The control (H) specification defines the default format for internally defined
date data types and literals to be *YMD with & (blank) as the delimiter with
the DATFMT keyword.

The TIMFMT keyword defines the default format for time data types and
literals to be *HMS with & (blank) as the delimiter.

�2� This line defines a date data-type field with the external format of *MDY
(mm/dd/yy). It is initialized with the date April 1 1994, and the format of this
constant must be in the format defined by the control specification, and
therefore it is year, month, and date separated by a blank. The length of the
field is implicitly defined. A length can be specified, and must match the
defined format.

�3� The field Time1 is a time data type field with external format *HMS
(hh:mm:ss). The constant used to initialize the field must follow the
definition in the control specification.

�4� NumDate is a numeric field - it is not a date data type field.

�5� DateHire is a date data type field with the format *USA (mm/dd/yyyy)

�6� UpdDate is a date data type field, format is *ISO (yyyy-mm-dd).

�7� UpdTime is a time data type field, format is *USA (hh:mm xM).

�8� EndTime is a time data type field, format is *ISO (hh.mm.ss).

To Initialize a date data-type field with today′s date within a program, you can
use the following method to be independent of the date format in the control (H)
specification.

� �
 * Define data structure with ISO date and subfields for yyyy/mm/dd
D TodayDS DS
D Today D DATFMT(*ISO) Inz
D TodayY 4 OVERLAY(Today:1)
D TodayM 2 OVERLAY(Today:6)
D TodayD 2 OVERLAY(Today:9)
 * Initialize the subfields with year, month, and day
C Move *Year TodayY
C Move *Month TodayM
C Move *Day TodayD� �

Figure 32. Initializing a Date with Today′s Date

This example is using *ISO format, but you can also use similar coding for *YMD
date format if you only want to have the two-digit year. The data structure
contains the field to be used for today′s date, Today. It is initialized to
0001-01-01. The year, month and day fields are overlaying portions of the date
field and then used to initialize the date.

3.5.3 Calculations with Date and Time Data Types
Working with business dates is straightforward. Using the duration operation
codes, you can add or subtract a number of years, months, and days to or from
a date. Leap years are taken into account.

A leap year is a year that is a multiple of four, but not a multiple of one hundred.
However, a year that is a multiple of 400 is a leap year. For example, year 2000
is a leap year, but year 1900 is not.

Chapter 3. RPG IV Functions and Features 43

For time, you can work with hours, minutes, and seconds. It is not possible to
mix the durations for data types. For example, you cannot find the duration in
minutes between two dates.

To find the very last day of a month, you can use the example in Figure 33 The
date wanted is the last day in the month, two months from today, June 6, 1994.

� �
 D PmdayDS DS
 D Pmday D DATFMT(*ISO) Inz(D′1994-06-16′)
 D PmdayY 4 OVERLAY(Pmday:1)
 D PmdayM 2 OVERLAY(Pmday:6)
 D PmdayD 2 OVERLAY(Pmday:9)
* Set date to the first day of the month

 C Move ′ 0 1 ′ PmdayD
* Add the number of months wanted, plus 1

 C AddDur 3:*M Pmday
* Subtract one day from the date

 C Subdur 1:*D Pmday
* Pmday now = ′1994-08-31′� �

Figure 33. Calculating with Date and Time Data Types

A year is not a whole number of days, rather about 365.242 days, or an
approximation of 365.25 days. You could have found the number of days
between the two dates, divided this figure with the 365.25 approximation to get
the age. This method works fine within a century, but is inaccurate when used
over more centuries.

The solution is to define both fields with subfields for month and day. After
subtracting the two dates to find the number of years between them, an
additional test is made. If the person′s birthday is after the day tested for, then
one year is subtracted from the number of years found as shown in Figure 34.

� �
 * A person is born August 24, 1951
D BornDS DS
D Born D DATFMT(*ISO) Inz(D′1951-08-24′)
D BornM 2 OVERLAY(Born:6)
D BornD 2 OVERLAY(Born:9)
 * Today is June 10, 1994
D TodayDS DS
D Today D DATFMT(*ISO) Inz(D′1994-06-10′)
D TodayM 2 OVERLAY(Today:6)
D TodayD 2 OVERLAY(Today:9)
 * Field to hold age of the person
D Age S 3 0

C Today Subdur Born Age:*Y
 * The result of this operation is 43
 * Then test to see if the month and day of birth is after today′ s date
 * and adjust, if it is
C If (BornM >= TodayM) and (BornD > TodayD)
C Sub 1 Age
C End
 * The result in this example is 42� �

Figure 34. Calculating with Date and Time Data Types

44 Moving to ILE RPG

When comparing dates, they do not have to be in the same format. If different
formats are used, the compiler ensures that they are compared in compatible
formats. The example in Figure 35 on page 45 illustrates this:

� �
D Pmday D DATFMT(*ISO)
D Today D DATFMT(*DMY)
 * The following test is valid
C If (Pmday >= Today)� �

Figure 35. Calculating with Date and Time Data Types

The following list contains some important notes to remember when using date
data type fields in calculations:

• Ensure a date is correct before moving it into a date data type field.

• When using TEST(D) or TEST(T) against a character field, the character field
must have delimiters.

• *DATE and UDATE are not date data types and cannot be used with any
comparisons with a date data type or with duration operations.

• Date data types with a two digit year cannot go beyond a century, and years
00 through 39 are between years 2000 and 2039.

• SUBDUR cannot be used to subtract two dates and have a result field that is
a date data type field.

� �
CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..
C
C
C�1�
C OrderDate ADDDUR 23:*Days ShipDate
C�2�
C ShipDate ADDDUR NoYrs:*Y WarntyDate
C�3�
C StartTime ADDDUR 8:*hours EndTime
C
C�4�
C Duedate SUBDUR XX:*Y Loan_Date
C Loan_Date SUBDUR DueDate NumDays::D
C EndTime SUBDUR 8::hours StartTime
C
C�5�
C EXTRCT BirthDate:*Y Year
C EXTRCT StartTime*colon.*M Month
C
C�6�
C TEST DateField 50
C *DMY TEST(D) Delv_Date 53� �

Figure 36. ADDDUR, SUBDUR, EXTRCT and TEST Examples

The following list contains explanations for the previous example:

• �1� Add 23 days to OrderDate and and put the result in ShipDate.

• �2� Add the value in NoYrs to the years portion of ShipDate and put the
result in WarntyDate.

• �3� Add 8 hours to StartTime and put it in EndTime.

Chapter 3. RPG IV Functions and Features 45

• �4� Similar examples with subtract. In the second example the operation
subtracts DueDate from Loan_Date, converts it in dates, and puts it into the
field NumDays.

• �5� Extract the year portion of BirthDate and put it into Year field.

• �6� Test the content of Delv_Date field according to date format *DMY. If the
date is not valid, the indicator 53 is ON. In this example, the extender (D) is
used since the field is a character or numeric field and not a date field.

3.5.4 Date and Time in MOVE Operations
Before moving a numeric or character field into a date data type field, ensure
that the date is valid. If the date is not valid, an error is generated. You can use
the TEST(D) (test date) operation code to check if a character or numeric field
contains a valid date.

� �
 H DATFMT(*YMD&) TIMFMT(*HMS&)

: : :
: : :

 D Date1 S D DATFMT(*MDY) INZ(D′94 04 01′)
 D Time1 S T TIMFMT(*HMS) INZ(T′13 00 00′)
 D NumDate S 6 0 INZ(910401)
 D DateHire S D DATFMT(*USA)
 D UpdDate S D DATFMT(*ISO)
 D UpdTime S T TIMFMT(*USA)

: : :
: : :

�A� C Move Date1 UpdDate
 C* UpdDate now = ′1994-04-01

�B� C MOVE TIME1 UpdTime
 C* UpdTime now = ′01:00 PM

�C� C *YMD Move NumDate DateHire
 C* DateHire now = ′04/01/1991′

�D� C *USA MOVE *DATE UpdDate
�E� C *USA MOVE ′07:00 AM′ EndTime� �

Figure 37. Date and Time Data Types in MOVE Operations

The control and definition specifications for the example in Figure 37 are
discussed in Figure 31 on page 42. The following list explains the MOVE
operations:

�A� This instruction moves a date data type field to another date data type field.
Since the two fields have different formats, a format change is made from
*MDY to *ISO, and converted from two digits to four digits according to the
previously described rules.

�B� The initialization of Time1 in definition specifications must be according to
the format in H specs. RPG converts it to *HMS because of the *HMS
specified in D specs. The UpdTime field is defined with *USA format.
Moving Time1 to UpdTime, RPG converts it to *USA format because of the
UpdTime definition.

Factor 1 in both examples is not used. Factor 1 is optional and is used only
if we need to specify the format of a character or numeric field if it is the
source or target of the operation.

46 Moving to ILE RPG

�C� The numeric field NumDate is moved to DateHire. Since the format of
NumDate is not known by the program, factor 1 is used to specify the correct
format. The numeric field is converted to the format of the DateHire date
field with delimiters inserted. If DateHire is not a valid date, an error is
generated. You can handle an error using PSSR routine.

�D� The numeric field *DATE (the RPG reserved word for representing the job
date with a four-digit year) is moved into the date field UpdDate. The control
(H) specification did not specify DATEDIT, therefore the format for *DATE is
mm/dd/yyyy.

Note: Since the format of *DATE and UDATE is derived at compile time, this
program compiles with DATEDIT different from *MDY, but the program fails
at runtime.

�E� The character literal must be in the format defined in factor 1 and include
the correct delimiters.

The following table shows the usable combinations with DATEDIT in the control
specification, and factor 1 on a MOVE statement with *DATE and UDATE in factor
2, and a date data type field in the result field.

Table 16. Usable Combinations with DATEDIT for MOVE of *DATE and UDATE

DATEDIT in H-spec Factor 1 for *DATE Factor 1 for UDATE

*DMY *EUR *DMY

*MDY (or blank) *USA *MDY

*YMD *ISO (or *JIS) *YMD

3.5.5 Using Date and Time APIs
There are a number of APIs available for calculation or representation in other
calendar systems. These are standard APIs and are also used in the UNIX
world. The calendar used for date and time calculations in these APIs is the
Lilian calendar.

The Lilian calendar starts on October 15, 1582, which defines Lilian day 1.
Therefore, only dates from October 15, 1582, through December 31, 9999, are
valid for Lilian date calculations.

The date and time APIs are bindable APIs. This means that your RPG IV
program cannot be created using default activation group with *YES. You must
use *NO and give the activation group name when creating the program. Please
refer to Chapter 7, “ILE Design Considerations” on page 83 for details on
activation group. You might have to use the operation extender D on the call
bound procedure. It indicates that operational descriptors are included and
required by the bindable APIs.

The following examples show only a small part of the possibilities of the APIs.
For a detailed description, please refer to the System API Reference.

Code fragment number �1� in Figure 38 on page 48 illustrates how to convert a
date into a Lilian date. The CEEDAYS API requires a character field (DateChar)
with a valid date as input parameter and the format of the date.

Chapter 3. RPG IV Functions and Features 47

The statements marked with �2� use the CEEDYWK API with the Lilian date as
input parameter to determine the number for the day of the week.

Since the APIs support character and integer data types and not date or time
data types, code fragment �3� converts a date field to it′s character
representation before calling the API CEEDAYS.

The statements marked with �4� convert a Lilian date into a Japanese era date.
The Japanese era calendar starts counting from day 1 for each emperor.

After converting a date into the corresponding Lilian date, you can convert it into
the Japanese era date. For correct results, the CEEDATE API requires an output
date format to be passed as second parameter of the bound call. Since the
output character string contains DBCS characters between shift-out, shift-in
control characters, the result can only be shown on DBCS capable devices.
However, you can write the result into a data base file to look at it′s hexadecimal
representation.

Using this facility, Japanese companies can run their business applications
using, for example *ISO, or *JIS date formats in their database. When needed,
they can use these APIs to convert to Japanese era dates.

Similar function is available for Republic of China era dates.

The last example marked with �5� shows how to get a character representation
of a Lilian date with the CEEDATE API. Again, the correct output format is
passed to the API. Notice that it only returns English words.

 * Program to show the use of bindable date APIs.
 * Note that it cannot be compiled with default activation group,
 * since the CEE APIs are bindable APIs.
 *
 * Define the date field with date of birth
DDateBorn S D DATFMT(*ISO) INZ(D′1951-08-24′)
 * This field is holding the Lilian date
D LilDate S 9B 0 INZ
 * Field to receive the day of week
D DayOfWeek S 9B 0 INZ
 * Defines the format of the character field communicating with APIs
D Fmt S 35 INZ(′ YYYY-MM-DD′)
 * Character field sending/receiving date
D DateChar S 35 INZ(′1994-08-24′)
 * Defines the format I want back for Japanese date
DFmtJpn C ′<JJJJ> YY.MM.DD′
 * Field to hold Japanese date
D DateJpn S 20
 * Defines the format I want back for date with text
DFmtTxt C ′ Wwwwwwwwwz, Mmmmmmmmmz DD, YYYY′

Figure 38 (Part 1 of 2). Using Date and Time APIs

48 Moving to ILE RPG

�1�
 * Lilian date returned is 150429.
C CallB(D) ′ CEEDAYS′
C PARM DateChar
C Parm Fmt
C PARM LilDate

�2�
 * The number returned is 4, which is a Wednesday.
C CallB(D) ′ CEEDYWK′
C PARM LilDate
C Parm DayOfWeek

�3�to find the Lilian date for the date field DateBorn.
 * The Lilian date returned is 134723.
C *ISO Movel(P) DateBorn DateChar
C CallB(D) ′ CEEDAYS′
C PARM DateChar
C Parm Fmt
C PARM LilDate
�4�
 * The date is era ″Showa″ year 26, month 8, day 24.
 * The field returned contains the following (hex only for DBCS part):
 * 26.08.24
 * 04B4704FF4FF4FF
 * E535AF026B08B24
C Movel(P) FmtJpn Fmt
C CallB(D) ′ CEEDATE′
C PARM LilDate
C Parm Fmt
C PARM DateJpn

�5�
 * The result returned is Friday, August 24, 1951.
C Movel(P) FmtTxt Fmt
C CallB(D) ′ CEEDATE′
C PARM LilDate
C Parm Fmt
C PARM DateChar
C SETON LR

Figure 38 (Part 2 of 2). Using Date and Time APIs

Note: The bindable API names are case-sensitive, and for the date and time
API, you must use all uppercase.

3.5.6 Timestamp
A timestamp has only one format, yyyy-mm-dd-hh.mm.ss.msmsms. The
timestamp data field is read from a database record, and you can use extract
and duration operation codes with a timestamp.

To get a timestamp into your program without using a database file, you can use
the QWCCVTDT API, which is not a bindable API.

Chapter 3. RPG IV Functions and Features 49

� �
H DATFMT(*YMD&) TIMFMT(*HMS&) DATEDIT(*DMY)
 * Define DS to hold result from QWCCVTDT with subfields for each element
 * The format is CYYMMDDHHMMSSMis
DSystimeDS DS
D Systime 16
D SystimeD 6S 0 Overlay(Systime:2)
D SystimeH 6S 0 Overlay(Systime:8)
D SystimeM 3S 0 Overlay(Systime:14)
 * Define DS with timestamp field and subfields to receive values
DTimeDS DS
D TimeSt Z Inz
D TimeStDT D overlay(TimeSt:1) DatFmt(*ISO)
D TimeStHM T overlay(TimeSt:12) Timfmt(*ISO)
D TimeStMS 3S 0 overlay(TimeSt:21)
 * Call QWCCVTDT to get current machine date and time
C Call ′ QWCCVTDT′
C PARM ′ *CURRENT ′ Parm1 10
C PARM Dumm2 10
C PARM ′ *YMD ′ Parm3 10
C PARM Systime 16
C PARM X′0000′ error 4
 * Move fields from current machine date and time to timestamp fields
C *YMD Move SystimeD TimeStDT
C *HMS Move SystimeH TimeStHM
C Move SystimeM TimeStMS
 * Only milliseconds are set in the microsecond part of timestamp� �

Figure 39. Using Timestamp Data Type

Another method for getting a timestamp is to use the bindable API for Get
Current Local Time, CEELOCT.

The program is only slightly different from the previous example, as this API
returns 17 bytes for the timestamp. The difference is that the CEELOCT returns a
full four-digit year, where the QWCCVTDT has a century digit as the first byte.

50 Moving to ILE RPG

� �
 * Define DS to hold result from CEELOCT with subfields for each element
 * Format is YYYYMMDDHHMMSSMis
DSystimeDS DS
D Systime 17
D SystimeD 8S 0 Overlay(Systime:1)
D SystimeH 6S 0 Overlay(Systime:9)
D SystimeM 3S 0 Overlay(Systime:15)
 * Define DS with timestamp field and subfields to receive values
DTimeDS DS
D TimeSt Z Inz
D TimeStDT D Overlay(TimeSt:1) DatFmt(*ISO)
D TimeStHM T Overlay(TimeSt:12) Timfmt(*ISO)
D TimeStMS 3S 0 Overlay(TimeSt:21)
 * This field is holding the Lilian date
D LilDate S 9B 0 INZ
 * Call CEELOCT to get current machine date and time - it also returns
 * Lilian date as well as the Lilian number of seconds
C CallB(D) ′ CEELOCT′
C PARM LilDate
C Parm FLOAT8 8
C PARM SysTime
 * Move fields from current machine date and time to timestamp fields
C *ISO Move SystimeD TimeStDT
C *HMS Move SystimeH TimeStHM
C Move SystimeM TimeStMS
 * Only milliseconds are set in the microsecond part of timestamp� �

Figure 40. Using Timestamp Data Type

If you just want to get the time with an accuracy in seconds, you can, of course,
use the TIME operation code. With the TIME operation code, you get the date as
well, but remember that the format of the date returned is dependent on the
DATFMT job attribute.

When the timestamp data type field is initialized within your program or read
from a database, it is used for duration calculations.

3.6 Example Using Import/Export Data Structure
In this example, we have two RPG modules bound together into a program.
Procedure RPG1 shown in Figure 42 on page 52 performs a static call to the
procedure RPG2 shown in Figure 43 on page 53.

 1. Module RPG1 displays a panel and the user enters the customer number.
The user wants to see details about the customer entered. See Figure 41 on
page 52.

Chapter 3. RPG IV Functions and Features 51

� �
13:12:32 9/06/94

Customer Information

Enter Customer Number: 123456

Customer Name: Peter Smith

Status: A (A=Active N=Inactive)

Discount: 10,00

Debit Limit: 100.000,00

� �
Figure 41. Imported and Exported Data Structure

 2. CUSTNUM is a field received from the display format and contains the
customer number.

 3. Both modules have defined an external defined data structure with the fields.
We want to retrieve the content of them from the data base file and display it
to the screen. In RPG1, the data structure is defined with keyword EXPORT,
and in RPG2 with keyword IMPORT. That means that the storage area for
both data structures is the same. Remember the name and characteristics
of export/import items must be the same in both modules.

� �
+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+..
FDSPFILE CF E WORKSTN

DCUSTDETAIL E DS EXTNAME(CUSTOMER)
D INZ
D EXPORT
DCUSTEXIST S 1 EXPORT

C WRITE KEYLINE
C EXFMT DSPF1
 C DOW *IN03 = *OFF
 C EVAL CUSTEXIST = *BLANKS
 C CALLB ′ RPG2′
 C EVAL *IN10 = CUSTEXIST
 C WRITE DSPF2
 C CLEAR CUSTDETAIL
 C EXFMT DSPF1
 C ENDDO
 C EVAL *INLR = *ON

� �
Figure 42. Example for EXPORT/IMPORT: Exporting Procedure

 4. Module RPG1 uses a bound procedure call to module RPG2. CUSTNUM is a
field received from the display format and contains the customer number
entered by the user. The same field is also a subfield of the export/import
data structure.

 5. Using the CUSTNUM as a key field RPG2 chains the data base file.

 6. If a customer is not found, RPG2 moves the value of indicator 10 to the field
CUSTEXIST. CUSTEXIST is also an EXPORT/IMPORT field in both modules.

52 Moving to ILE RPG

CUSTEXIST is used to send a message to the user that customer was not
found.

 7. If a customer is found, RPG1 displays a record format with the customer
details.

� �
+... 1 ...+... 2 ...+... 3 ...+... 4 ...+... 5 ...+... 6 ...+... 7 ...+..
 Fcustomerf if e k disk

 DCUSTDETAIL E DS EXTNAME(CUSTOMER)
 D import
 DCUSTEXIST S 1 import

 C custnum chain rf1 10
 C EVAL CUSTEXIST = *in10
 C EVAL *INLR = *ON

� �
Figure 43. Example for EXPORT/IMPORT: Importing Procedure

Note:

This code is deliberately written in uppercase and lowercase.

3.7 Example Using Pointers in RPG IV
Pointer indicates the address of a space and not the space itself. We already
use pointers in RPG. The OCCUR in multiple occurrence data structure, the
index in arrays and the parameters passed to a called program are pointers
indicating where the data is. The new EXPORT/IMPORT keyword definitions are
also pointers. We also use pointers to indicate specific address in a user space.
Later in this chapter, after we explain the BASED keyword and the %ADDR built
in function, we have an example of how to use pointer (*).

The examples shown in Figure 44 on page 54 through Figure 47 on page 55
include a command, an ILE CL program, and an RPG IV program. The
command, using the CL and RPG programs, creates an outfile containing
information about the modules that are used in an ILE program. This information
is also available through the DSPPGM command but only for display or print.
The complete source examples are shown in Appendix B, “RPG IV Coding
Examples” on page 179.

A space of 32KB is assigned overlaying the user space that contains the list of
all modules in a specific ILE program. The space starts at pointer value PTR.

Since the user space that is returned contains not only the list of modules but
also a header, a more precise layout with offsets is specified. This is done by
overlaying the SPACE with an array ARR of 32767 separate fields of 1 byte.

What we are only interested in to begin with is:

• The field that contains the address of the begin of the module list
• The field that contains the number of modules in the list

For both fields, we specify the overlay. OFFSET starts at 125 bytes from the
beginning of the user space, and SIZE starts at 133 bytes from the beginning.

Chapter 3. RPG IV Functions and Features 53

� �
DPTR S * Pointer field
DSPACE DS BASED(PTR) Assign start of
 * the userspace
D SP1 32767 First subfield
 * in userspace
 * ARR is used with offset to set the pointer to array Re-align Usrspc
DARR 1 OVERLAY(SP1) with 1 byte

DIM(32767) array
 * Offset is pointing to start of array Offset value for
DOFFSET 9B 0 OVERLAY(SP1:125) start of the list
 * data section in
 * the user space
 * Size has number of module names retrieved Number of list
DSIZE 9B 0 OVERLAY(SP1:133) entries� �

Figure 44. Pointers: Definit ion of Pointers in D-specs

The next step is to get the address of the beginning of the module list:

 1. Field OFFSET contains the offset value of the start of the module list data
section in the array, for example, X′104′. So, the byte we want the address
of is (104 + 1).

 2. The pointer value of that field is moved into pointer field MODPTR.
 3. Automatically the start of the array MODARR is re-aligned to this pointer

value (see the definition of MODARR).

� �
C EVAL MODPTR = %ADDR(ARR(OFFSET + 1))

� �
Figure 45. Pointers: Receive a Pointer

The next step is to overlay a new array with an element length of 508 (as
described in the API manual) and with a number of 500 elements (this number is
arbitrary).

We also need to specify a data structure with the specific layout of the
information of one module in the 508 bytes of an array element.

54 Moving to ILE RPG

� �
DMODPTR S * Pointer field
DMOD_ENTRYS C CONST(500) Initial Array

length
DMODARR S 508 BASED(MODPTR) Re-align the

DIM(MOD_ENTRYS) start of list
 * entries in the
 * user space
DX S 11 0 Array index val
DMOD_INFO DS Re-define of
 * ONE list

entry
D PGM_NAME 10
D PGM_LIB 10
D MOD_NAME 10
D MOD_LIB 10
D SRC_FILE 10
D SRC_LIB 10
D MEMBER 10
D MOD_ATTR 10
D 428 Filler

� �
Figure 46. Pointers: Define Module Information Array

Now we process all of the module list entries and write them into a database file.

� �
*
C DO SIZE Do as many times as
 * list entries avail.
C ADD 1 X Increase index nbr
C EVAL MOD_INFO = MODARR(X) Move array entry to
 * data structure
C WRITE MODLST MOD_INFO Write record
C ENDDO� �

Figure 47. Pointers: Write Module List to a Database File

You will notice that the space of 32K has been addressed multiple times:

• After receiving the USRSPC pointer, it is aligned with SPACE.
• The subfield SP1 starts at the same address.
• And finally, the module list MODARR starts at an address X′105′ bytes from

the beginning of SP1.

This is an example of a program using an overlay technique for user spaces.
There are many more APIs that produce information in a user space. Search in
the API manual for more information about the content of the user space
regarding the header and list layout, and use this example as a base for your
own pointer programs.

Chapter 3. RPG IV Functions and Features 55

56 Moving to ILE RPG

Chapter 4. Conversion Considerations

To take advantage of the enhancements provided with the RPG IV language
definition,you might consider converting your existing RPG application. As you
can appreciate, RPG IV gives you more flexibility and better readability, and as a
result of these advantages, you can improve your development environment and
productivity.

An important point is that the new design of RPG IV opens the door for future
enhancements and functions that were impossible to implement on the previous
compiler. The reason was the restrictions in the layout on the different
specifications statements. Increasing the length for some of the entries,
introducing keywords, and free format operations in the extended calculation
specifications lifted these limitations.

IBM offers you a simple Control Language command to convert your RPG/400 or
RPG III source members to RPG IV source members.

Before you start migrating your RPG source members, you might want to create
a new source file to store the RPG IV sources. The default name for the RPG IV
source file is QRPGLESRC. It is recommended that you use this name because
all the CL commands use this name as the default when they refer to the RPG IV
source file.

When you are creating the target source file using the command CRTSRCPF for
RPG IV members, specify 112 for record length. Twelve characters are for
sequence numbers and date fields. The additional 100 characters receive your
source code. The length of the statement field has been increased to include the
new size of the entries in the specifications layouts. If you leave the default size,
you lose the commenting text entries.

If you are using variant characters in your program, make sure that the CCSID of
the source file is specified correctly. The CCSID of a new source file created on
V3R1 is taken from the default CCDID job attribute, unless a CCSID is specified
on the CRTSRCPF command.

There is also a new source type, RPGLE. The SEU and PDM recognize the new
type as an RPG IV source. If the source type is RPGLE, SEU performs the
appropriate syntax check for RPG IV statements.

In the Work with Members Using PDM panel, there is a new option (15=Create
module). Using this option, if the source type is RPGLE, PDM submits to job
queue to run the command CRTRPGMOD to create an ILE RPG module. Using
option 14, if the source type is RPGLE, PDM submits to job queue the command
CRTBNDRPG to create a bind RPG program with only one module. More about
these commands appears later in this chapter.

RPGLE is also the attribute type for an ILE RPG program and for module objects.

Note: The conversion command from RPG/400 to RPG IV source members
renames automatically the source type to RPGLE.

The following list describes different approaches for your conversion to the RPG
IV language and their advantages and disadvantages:

 Copyright IBM Corp. 1995 57

• Migrate program by program. An application is converted step by step.
OS/400 allows an application to run in a mixed environment with ILE and
non-ILE programs.

Advantages: We do not have to stop running the application.

Disadvantages: We do not gain any of the ILE functions.

We do not have any performance improvement.

We have to deal with two types of source members and
compilers.

• Migrate an entire application, converting RPG/400 to RPG IV without using
any ILE functions and facilities.

Advantages: Only RPG IV source members and compiler to deal with.

Easy to start implementing ILE functions step by step.

Disadvantages: We have to stop running the application until we migrate
all the programs including the CL programs.

We do not gain any of the ILE functions.

We do not have any performance improvement.

• Migrate an entire application, taking advantage of the ILE functions and
facilities.

Advantages: Only RPG IV and ILE CLL source members and compilers
to deal with.

ILE functions and application control implementation.

Performance improvement and development productivity.

Disadvantages: Migrating an application and performing changes using
ILE functions needs a very good knowledge of ILE.

The migration needs more resources and time.

The migration of every program requires two steps. The first step is to convert
the source members from RPG/400 to RPG IV. The second step is to create the
program object. We will see later that to create an ILE program can also be a
two-step procedure.

4.1 CVTRPGSRC Conversion Command and Parameters
The CVTRPGSRC command converts RPG/400 to RPG IV source code. A
conversion report is printed by default. The command maps the old layouts to
the new ones, converts specific functions to keywords, moves data structures
from I specs and arrays from the E specs to the new D specifications. The
CVTRPGSRC command is part of ILE RPG licensed program product.

Please note that the conversion tool does not support conversion from RPG IV
back to RPG/400 layout.

The source program is assumed to be error free. Using CVTRPGSRC does not
remove the unsupported operation codes FREE and DEBUG.

58 Moving to ILE RPG

Source File CCSID

If your source contains variant characters, the from source file has a CCSID
different from the to source file, and the job CCSID is not 65535, then the
source may be converted into an undesired source file CCSID, and may
cause compilation failures or unexpected results. See 5.2, “Source File
CCSID Considerations” on page 71 for more details.

See Figure 48 for a description of parameters in the CVTRPGSRC command.

� �
Convert RPG Source (CVTRPGSRC)

Type choices, press Enter.

From file __________ Name
 Library *LIBL Name, *LIBL, *CURLIB
From member __________ Name, generic*, *ALL
To file QRPGLESRC Name, QRPGLESRC, *NONE
 Library *LIBL Name, *LIBL, *CURLIB
To member *FROMMBR Name, *FROMMBR

Additional Parameters

Expand copy member *NO *NO, *YES
Print conversion report *YES *YES, *NO
Include second level text . . . *NO *NO, *YES
Insert specification template . *NO *NO, *YES
Log file QRNCVTLG Name, QRNCVTLG
 Library *LIBL Name, *LIBL, *CURLIB
Log file member *FIRST Name, *FIRST,*LAST

� �
Figure 48. Command Convert RPG Source.

4.1.1 CVTRPGSRC Parameters
The following list gives an explanation of the parameters in CVTRPGSRC
command:

From file The source file name that contains the RPG/400
source member(s) to be converted. Normally this is
the QRPGSRC source file. This is a required
parameter.

From member Specifies the name of the source member to be
converted. Valid types of source members to convert
are RPG, RPT, RPG38, RPT38, and SQLRPG. The
conversion command does not support conversion of
RPG36 and RPT36 source members. The conversion
tool automatically expands first the RPT and RPT38
source members to RPG and then converts them to
RPG IV. This is necessary since ILE RPG/400 does
not support auto-report source members.

If you specify *ALL, you can convert all of the source
members in a source file. You can also specify a
generic name. This is a required parameter.

Chapter 4. Conversion Considerations 59

To file This is the name of the source file to receive the
converted source member or members. The source
member type is changed to RPGLE. For SQLRPG
source members, the new type is SQLRPGLE. The
default source file name is QRPGLESRC. The source
file must exist and should have a record length of 112
characters. Option *NONE allows you to test whether
there are any problems in the conversion. To create
a conversion report parameter, CVTPRT must be
*YES.

To member The default is *FROMMBR. This is valid only if FROM
and TO files are not the same.

Expand copy member This parameter allows you to decide if you want to
include /COPY members in the conversion result.
The default *NO means do not expand the /COPY
member or members into the converted source.
*YES means expand the /COPY member or members
permanently. See 4.1.2, “/COPY Considerations” on
page 61 for more considerations about /COPY.

Print conversion report The default is *YES creates a conversion report. The
warning messages issued during conversion are
found in Appendix C, “Migration Information” on
page 185. Before converting all your source, it is
recommended that you create this report using
*NONE for To file and *ALL for From member. The
report contains messages such as:

• CALL operation code found. This is useful in case
you want to change the CALL to CALLB operation
code.

• DEBUG operation code is not supported in RPG IV.

• FREE operation code is not supported in RPG IV.

• /COPY compiler directive found. This is also very
useful in case the /COPY refers to data
structures.

For further analyzing, you can use the tool described
in 4.1.4, “Scanning Tool for Migrated Source Code”
on page 64.

Insert specification template If you specify *YES, specification templates are
inserted in the converted source member. The
templates are inserted at the beginning of the
appropriate specification section. The default is *NO.

Log file The log file is used to track the conversion
information. The file must exist before you start
using the CVTRPGSRC command. A default file
exists in library QRPGLE. The name of the file is
QARNCVTLG. The default name in the parameter is
QRNCVTLG. You can create your own file by copying
the file QARNCVTLG to another library using the
command CRTDUPOBJ. The name of the file is the
default name QRNCVTLG or any other name. The

60 Moving to ILE RPG

log file is accessed using QUERY or a user-written
program. You can find the DDS definition for this file
in ILE RPG/400 Programmer′s Guide , SC09-1525.

Note:

The conversion command also converts source from a database file. If the
records of the database file contain sequence numbers, you should remove them
before you start with the conversion. The recommended record length for a
database file with RPG statements to convert is 100 characters.

4.1.2 /COPY Considerations
In case you use /COPY statements in RPG/400 source members, you might
discover errors during compilation and not during conversion. The following list
contains a description of what kinds of problems may occur and
recommendations to resolve them:

• All source members that are copied into programs (using /COPY) during
compilation must be converted before you create the ILE module or ILE
program.

• The conversion tool includes data structures in copy members following the
Input specifications. This problem occurs only if the source member with
/COPY data structures also contains Input specifications. The compilation
fails and gives this message: form type out of sequence. This happens
since data structures are now defined in Definition (D) specifications and D
specs in RPG IV precede input specifications.

There are two techniques to resolve this type of problem:

 1. Using the parameter EXPCPY (Expand copy member) with value *YES
includes all /COPY members in the target source. This seems to be the
easiest work around, but you loose flexibility in maintaining your
applications.

 2. To keep your /COPY members for data structures separate, convert your
sources and parse them with compiler option *NOGEN. If you get the
message: Form type out of sequence, you have to manually move the
data structures to the definition specifications.

• You might experience similar problems using /COPY for definitions in Line
Counter specification and Record Address File in Extension specification. In
RPG IV these definitions are replaced by keywords in File Definition
specifications. As a result of that, when you convert the content of /COPY
members and the file is not part of the member, the conversion aid cannot
determine where to insert the keywords.

• During the conversion, the tool merges stand-alone arrays with data
structure subfields with the same name. If the data structure and the array
are not in the same source member (one of them is in a /COPY member),
the conversion aid cannot merge them and, as a result of that, the
compilation fails with a compile-time error.

• If a /COPY member contains just definitions in Input specification, the
conversion tool cannot determine how to convert them correctly without the
surrounding specifications on the primary source member. In the following
example the /COPY member contains two fields:

Chapter 4. Conversion Considerations 61

I 1 7 FLD1
I 8 15 FLD2

Without the context to the primary source member, the conversion tool
cannot determine if these fields are:

− Data structure subfields to be placed in the definition specifications

− Fields of a program described file to remain in the input specifications

− Externally described subfields in the I specs, or

− Renamed fields of an externally described file.

In those cases, the tool assumes that they are part of a data structure and
moves them to the definition specifications. The original definition is a
comment included in the target source:

The previous example is converted to:

D FLD1 1 7
D FLD2 8 15
I* 1 7 FLD1
I* 8 15 FLD2

If this assumption turns out to be wrong, you have to manually correct the
resulting source.

4.1.3 Conversion Problems
Two of the known RPG IV to RPG II conversion problems that you may have to
correct manually are described below.

4.1.3.1 Combining Arrays with An Externally Described DS Subfield
When combining an array definition with an externally described data structure
subfield, the following situation can occur:

� �
A R RECFMT
A CUSNUM 10
A SUM 10 �1�� �

The externally described data structure TOTAL describes two fields, CUSNUM
and SUM �1�. In the I specifications of your RPG/400 source code, the data
structure is declared as externally described �2�.

� �
...
E SUM 10 1 �3�
IDSNAME E DSTOTAL �2�
...
C CUSNUM DSPLY
C MOVE *ON *INLR
...� �

In addition, your RPG/400 source code contains an array declaration for SUM �3�
in the E specifications. When merging the externally described data structure
with the source code the conversion results in the following source statements:

62 Moving to ILE RPG

� �
...
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++
DSUM S 1 DIM(10) �4�
D DSNAME E DS EXTNAME(TOTAL) �4�
...
C CUSNUM DSPLY
C MOVE *ON *INLR
...� �

The conversion tool is not able to look into the externally described data
structure and treats the array and data structure as separate entities �4�.
Although this piece of converted code is syntactically correct, the compile fails
since it is not allowed to define a stand-alone array and a data structure subfield
with the same name. To solve this problem, use the compile listing and correct
your source:

� �
...
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++
D DSNAME E DS EXTNAME(TOTAL)
D SUM E DIM(10) �5�
...
C CUSNUM DSPLY
C MOVE *ON *INLR
...� �

Now the array �5� is defined as a subfield to the data structure.

4.1.3.2 Renaming and Initializing an Externally Described DS
Subfield
The following example illustrates another incompatibility that cannot be detected
by the conversion aid:

� �
IDsname....NODsExt-file++.............OccrLen+......
ITOTAL E DSCUSTOMER �1�
I SUMFIELD SUM �2�
I I ′9999999′ SUM �3�
C SUM DSPLY
C MOVE *ON *INLR� �

Externally described data structure CUSTOMER �1� defines the subfield
SUMFIELD that needs to be renamed �2� because of the length restrictions and
initialized �3�. The conversion results in the following code and, as you can see,
generates two definitions for the same subfield �4�:

� �
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++
D TOTAL E DS EXTNAME(CUSTOMER)
D SUM E EXTFLD(SUMFIELD) �4�
D SUM E INZ(′9999999′) �4�
C SUM DSPLY
C MOVE *ON *INLR� �

As a result of that, a compile-time error is produced since the field is defined
twice. In order to correct it, you should manually combine the two definition
lines in one field definition with two keywords �5�.

Chapter 4. Conversion Considerations 63

� �
DName+++++++++++ETDsFrom+++To/L+++IDc.Keywords+++++++++++
D TOTAL E DS EXTNAME(CUSTOMER)
D SUM E EXTFLD(SUMFIELD) INZ(′9999999′) �5�
C SUM DSPLY
C MOVE *ON *INLR� �

4.1.4 Scanning Tool for Migrated Source Code
The CVTRPGSRC command provides a conversion report that should be very
useful in order to verify the status of your converted code. However, this is only
spool output. In the GG244358 library, there is a command for scanning a source
file that you can use after the conversion. This library is supplied on a diskette
in the back of this publication. Instructions on how to install the library on your
system are found in Appendix A, “Diskette Install Instructions” on page 177.

The command allows you to specify a search argument, for example, CALL, that
is used to scan the source file and write all the source records that contain the
string in an outfile. The command is called:

� �
Scan Source - TAA (SCNSRC)

 Type choices, press Enter.

 File name > yoursource Name, *CBL, *CL, *CLP...
Library name > yourlib Name, *LIBL, *CURLIB

 Argument to scan for > CALL
 Member name *ALL Name, generic*, *ALL
 Translate source to upper case *NO *YES, *NO
 Print following statement . . . > *NO *YES, *NO
 Library for SCNSRCP file GG244358 Name, *NONE, *LIBL, *CURLIB
 Member to receive output SCNSRCP Name
 Replace data in member *YES *YES, *NO� �

In the source file GG244358/QATTINFO, there is a description of the scan source
command.

Besides using the outfile in your own programs, you can use Query as well. For
that reason, two initial queries are also provided in the library that you might
need to change depending on your situation.

4.2 Source Conversion Example
In this example, we convert an RPG/400 to RPG IV source member. The
program contains only sample code to show how some of the specifications are
changed when converting to RPG IV. It is not intended to be a program that
compiles and runs.

You should enter the CVTRPGSRC command with the following parameters:

CVTRPGSRC FROMFILE(yourlib/QRPGSRC) FROMMBR(PGM1) +
TOFILE(yourlib/QRPGLESRC) INSRTPL(*YES) +
EXPCPY(*YES)

Figure 49 on page 65 shows the source of the RPG/400 version.

64 Moving to ILE RPG

FPAYROLL IF E DISK
 FQPRINT O F 132 OF LPRINTER
�3�LQPRINT 51FL 48OL

 E ARR 15 1 Define Array
�7� * Define a data structure with subfields
�4�I DS

I 1 6 YMD
I 1 2 YY
I 3 4 MM
I 5 6 DD

�4�I DS
I 1 15 ARR
C EXCPTHDG Prt HDG
C* Read a record
C SETOF 010203
C SETOF 040506
C *IN20 DOWEQ′ 0 ′
C* Do calculations

�6�C 01 02 03PAY SUB 200 NET 72 Net pay
�6�C 01 02 03 EXCPTDETAIL Prt detail
�6�C 03 04

COR 05 06 READ PAYREC 20 EOF
C*

�6�C N03N02 EXSR PAYC Calc pay
C ENDDO
C***
C SETON LR Set LR
C RETRN Return
C CALL ′ DUMMY′ Call dummy

�8�C DEBUG debug
�8�C FREE ′ DUMMY′ Free dummy

C* Last record calculations
�6�CLRN03N04 EXCPTTOTAL Prt Total

C/COPY PAYTAX
OQPRINT E 206 HDG
O 25 ′ Heading′
O E 1 DETAIL
O 25 ′ Detail′
O E 1 TOTAL
O 25 ′ Total′

Figure 49. Conversion Example: Before

Figure 50 on page 66 shows the PAYTAX /COPY member.

Chapter 4. Conversion Considerations 65

C PAYC BEGSR
C *LIKE DEFN RATE PAY + 2 Define Pay
C *LIKE DEFN HOURS OTIME Define Otime
C *LIKE DEFN RATE OTPAY + 2 Define OTPay
C* Calculate payment - hours over 35 get additional 75 %
C*
C HOURS IFLE 35 Hours <= 35
C HOURS MULT RATE PAY Total pay
C ELSE -else-
C RATE MULT 35 PAY Full 35 hrs
C HOURS SUB 35 OTIME Overtime hours
C RATE MULT 1.75 OTRATE 94 Find rate

 C OTRATE MULT OTIME OTPAY H Overtime pay
 C ADD OTPAY PAY Total pay
 C END
 C ENDSR

Figure 50. Conversion Example: COPY Member

Besides the new layout for all specifications, note the following about the result
of the conversion:

�1� Parameter INSRTPL(*YES) inserts in the converted source an appropriate
template at the beginning of every specification section.

�2� Parameter EXPCPY(*YES) expands into the converted source member the
/COPY member or members.

�3� Some of the file definitions are converted to keyword definitions.

�4� Data structures from input specification have been moved to definition
specification. Note that data structure definitions precede input
specifications.

�5� The array definition has been moved from Extension (E) specification to
Definition specification. Arrays that are subfields in a data structure are now
defined together with the subfield using the keyword DIM.

�6� Calculation statements with more than one condition indicator have been
split to up to three lines. Each line contains only one condition indicator. AN
is added to the second and third line before the indicator.

�7� Comments preceding moved statements are also moved.

�8� On the Print Conversion report, you receive warning messages because
the program contains the Op-Codes FREE, DEBUG, and CALL. You have to
remove the Op-Codes FREE and DEBUG in order to compile the program.
You might want to change the Op-Code CALL to CALLB in order to call a
bind procedure.

Figure 51 on page 67 shows the PGM1 source member after the conversion.

66 Moving to ILE RPG

�1�F*ilename++IPEASFRlen+LKlen+AIDevice+.Functions+++++...++++++++Comments+
F*

 FPAYROLL IF E DISK
FQPRINT O F 132 PRINTER OFLIND(*INOF) �3�
F FORMLEN(51) �3�
F FORMOFL(48) �3�

�7� * Define a data structure with subfields
�1�D*ame+++++++++++ETDsFrom+++To/L+++IDc.Functions+++++++++++++++++++++++++
�4�D DS

D YMD 1 6
D YY 1 2
D MM 3 4
D DD 5 6

�4�D DS
�5�D ARR 1 15

D DIM(15) Define Array
�1�CL0N01Factor1+++++++Opcode(E)+Factor2+++++++Result++++++++Len++D+HiLoEq..

C EXCEPT HDG Prt HDG
C* Read a record
C SETOFF 010203
C SETOFF 040506
C *IN20 DOWEQ ′ 0 ′
C* Do calculations

�6�C 01
CAN 02
CAN 03PAY SUB 200 NET 7 2 Net pay

�6�C 01
CAN 02
CAN 03 EXCEPT DETAIL Prt detail

�6�C 03
CAN 04
COR 05
CAN 06 READ PAYREC 20 EOF
C*

�6�C N03
CANN02 EXSR PAYC Calc pay
C ENDDO
C***
C SETON LR Set LR
C RETURN Return
C CALL ′ DUMMY′ Call dummy
C DEBUG debug
C FREE ′ DUMMY′ Free dummy
C* Last record calculations

�6�CLRN03
CANN04 EXCEPT TOTAL Prt Total

�2�C*/COPY PAYTAX
C PAYC BEGSR
C *LIKE DEFINE RATE PAY + 2 Define Pay
C *LIKE DEFINE HOURS OTIME Define Otime
C *LIKE DEFINE RATE OTPAY + 2 Define OTPay
C* Calculate payment - hours over 35 get additional 75 %
C*
C HOURS IFLE 35 Hours <= 35
C HOURS MULT RATE PAY Total pay
C ELSE -else-
C RATE MULT 35 PAY Full 35 hrs
C HOURS SUB 35 OTIME Overtime hours
C RATE MULT 1.75 OTRATE 9 4 Find rate
C OTRATE MULT(H) OTIME OTPAY Overtime pay
C ADD OTPAY PAY Total pay
C END
C ENDSR

�1�OFilename++DF..N01N02N03Excnam++++B++A++Sb+Sa+...........................
OQPRINT E HDG 2 06
O 25 ′ Heading′
O E DETAIL 1
O 25 ′ Detail′
O E TOTAL 1
O 25 ′ Total′

Figure 51. Conversion Example: After

Chapter 4. Conversion Considerations 67

4.3 Creation Commands
For the user, the program creation for ILE languages is basically a two step
process. Step one creates an intermediate result that is called a module. Step
two takes one or multiple modules and turns them into a running program.

Many features of the Application Development Tools Set licensed program
product have been enhanced to support RPG IV and ILE. Program Development
Manager (PDM) option 15 allows you to create modules. Option 14 in
conjunction with source type RPGLE invokes CRTBNDRPG and option 26 prompts
you for the CRTPGM command to bind multiple modules into a program. All of
these options are available from the Work with Objects using PDM panel. For a
discussion of the new terms modules, ILE programs, and procedures, refer to
Chapter 7, “ILE Design Considerations” on page 83.

4.3.1 Create RPG Module
The command CRTRPGMOD creates an object of type *MODULE containing
non-running code. An object of type *MODULE can hold one or more procedures
that need to be bound into a program object. User-written procedures are run
using the new syntax for call bound procedure, for example, the CALLB
operation code as described in 3.1.3, “New Operation Code for Static Call” on
page 33 for RPG, or the CALLPRC command for ILE CL.

An interesting parameter not available in the RPG/400 compiler is the FIXNBR
(Fix numeric). The parameter allows you to specify whether zoned decimal data,
which is not valid, is fixed by the compiler upon conversion to packed data. The
values for this parameter are:

*NONE This is the default value. *NONE means that invalid zoned decimal
data is not fixed by the compiler on the conversion to packed data
and results in decimal data error.

*ZONED Invalid zoned decimal data is fixed by the compiler on the conversion
to packed data. Blanks in numeric fields are treated as zeros. Every
invalid digit is replaced by zeros. If the sign is not valid, it is forced
to a positive sign of F.

4.3.2 Create Program
The CRTPGM command binds one or more modules and creates a bound
program object (*PGM). All of the participated modules are bound in one single
program. The modules must be created and exist when you use the command
CRTPGM. The CRTPGM is an OS/400 and not an RPG command. You can bind
together modules created from different languages.

One of the modules must be defined as the Program Entry Procedure Module
(PEP). This module contains the procedure that is called first, using a dynamic
call to this program. The CL command used to call a program is CALL, and the
opcode used in RPG is also CALL.

68 Moving to ILE RPG

4.3.3 Create Bound RPG Program
The CRTBNDRPG command creates first a temporary module from the RPG IV
source member and then creates the program. The source must be an RPG IV
code. The program contains a single module. You call a program using either
the CL CALL command, or the RPG CALL opcode. If you are in PDM and the
source type is RPGLE, you can use option 14 instead of CRTBNDRPG.

Further reading

See the CL Programming manual, (SC41-3721), or the online help, for more
information about the different parameters in the create commands.

Chapter 4. Conversion Considerations 69

70 Moving to ILE RPG

Chapter 5. National Language Support with RPG IV

When businesses are expanding into new markets, there is a requirement to
meet the cultural expectations of the end users in the countries. For
programmers, it is important to be able to support all requirements for all
countries without having to change the programs for each new country or
language.

This chapter discusses the recommended techniques to be used for RPG IV
programs. For more details related to other application parts, such as database,
display, printer, and message files, please refer to International Application
Development.

5.1 Recommended Usage of Characters in RPG IV
Since the alphabetic characters differ from country to country, and they do not
have the same meaning (hexadecimal value) for all countries, it is strongly
recommended that you only use characters in the invariant character set for all
naming and constants within your programs.

Table 17. Invariant Character Set

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m

n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9

+ < = > % & * ″ ′ () . ,

_ - / : ; ?

Characters outside this character set are called variant characters. Note that
the characters $, #, and @ are not part of the invariant character set. In some
countries, they represent uppercase characters. For example, in Denmark and
Norway, the # represents the uppercase character Æ, and its lowercase
equivalent is æ.

Since the compiler translates only the letters a-z to uppercase, the effect of the
conversion could create the following situation: A Danish programmer would
expect that all names could be entered in lowercase Danish. The name
SÆLGER is a valid field or file name for RPG IV, but it cannot be entered as
sælger.

5.2 Source File CCSID Considerations
If you only use invariant characters in the program source, you do not have to
worry about CCSIDs for your source files.

However, if you are using variant characters (except for comments), you have to
be aware of the CCSID tagging of your source files, if not already done.

 Copyright IBM Corp. 1995 71

When creating a source file prior to V3R1, the CCSID of the source file is by
default taken from the job performing the create. If the CCSID of the job is
65535, the source file gets CCSID 65535, which means no conversion. This is
called implicitly tagging.

There is also a keyword on the CRTSRCPF for CCSID. With this you can specify
the CCSID you need for the source file. This is called explicitly tagging.

With V3R1, the default has changed if the job is running with a CCSID of 65535.
In this case, the CCSID of the source file is the default CCSID, which is a new job
attribute in V3R1. The default CCSID in the job is found based upon the
language ID job attribute.

 Important

When a source file that was implicitly tagged with CCSID 65535 is residing on
a system installing V3R1 or restored onto a V3R1 system, the CCSID of that
source file is set to the system value default CCSID. This value is based
upon the system value for language ID. Make sure that your source files
have the CCSID corresponding to the content.

The CCSID of a physical file is changed if it has no logical files created over it.

The RPG IV compiler uses the CCSID of the primary source file for compilations.
Any /COPY source members are converted to the CCSID of the primary source
file.

5.3 Externalizing Constants
To make your programs more flexible for translation, it is important to have all
language-sensitive constants external to the programs.

It is also important to have the formats of cultural dependent data items, such as
dates, externalized and selectable. This is accomplished by providing the
options in an options file where the customer can select the required values at
install or runtime.

Constants are either stored in message files, database files, or any other object
that can hold the necessary information. The programs can then retrieve the
information when needed.

One method to become independent of what the end user wants to see on
displays and printed output is to use decimal numbers within the program to be
used for testing. You supply the relation between the numeric and external
value in a table.

For example, you want to provide a yes or no option with one character. In a
message description, you define the internal value for no as 0, and the yes value
is 1. The program accepts the character value for input, checks it for validity,
and moves the corresponding decimal value to the field used. For output, the
program takes the numeric value and moves it to the output field.

72 Moving to ILE RPG

5.4 Date Fields
Applications should have only one method for storing dates. The format has to
be consistent throughout the application. Otherwise, the end users are
confused.

The most convenient format to use for storing is probably year/month/day. This
format allows comparison and sorting directly with the field. Application
programs can then show the format required by the end user.

Today, many applications use many different methods for storing and working
with dates. If your application is not capable of handling dates from year 2000
and forwards, you should change the application to use the new date data types
over the next few years. New applications are recommended to use the new
date data types. The recommended format for storing in the database is *ISO.

5.5 Sort Sequence
The sequence used by the system and compilers for comparing and ordering is
by default the EBCDIC hexadecimal value in the code page.

Using character data according to their hexadecimal values does not necessarily
provide the correct sequence from a linguistic point of view.

Typical problems are:

• All lowercase characters precede any uppercase character.

• The national characters not included in the English alphabet are not in the
correct position between English characters where they usually fit.

Prior to V2R3, the various components, such as database, query products, and
compilers had different methods for solving the problem for ordering and
comparing data according to cultural needs. Even some of the products, for
example, SQL, did not provide any possibility for influencing the ordering and
comparison of data.

With V2R3, the sort sequence was introduced. The sort sequence support
provides a consistent interface to reference the tables for ordering and
comparing.

RPG IV has the same support. To make the program independent of user
requirements for sort sequences, and to only have one set of programs for all
languages, it is recommended that you use the *JOBRUN parameter for sort
sequence and language ID when creating programs or modules. The program
then uses the job attributes for sort sequence when it is run.

To compile a program or module with the external reference to sort sequence,
you have to specify the ALTSEQ keyword in the control specification:

H Altseq(*EXT)

The *EXT parameter tells the compiler to use the parameters in the create
command for the sort sequence. You would then specify *JOBRUN (default is
*HEX) for the sort sequence. The default is *JOBRUN for the language identifier.

Sort sequence SRTSEQ *JOBRUN
Library

Language identifier LANGID *JOBRUN

Chapter 5. National Language Support with RPG IV 73

Note: When a program reads a database file and performs functions such as
level break, matching record, or other comparisons using key fields that have a
sort sequence applied, the sort sequence used by the program must be
compatible with the sort sequence of the database file. Otherwise, unexpected
results may occur.

5.6 Case Conversion
When using data, it is sometimes necessary to ensure that character data is in
all uppercase. To be able to perform correct casing of the data, you need to
know it is encoded, meaning which CCSID was used for entering the data.

With V3R1 a new convert case API is available. This API has two interfaces, one
for OPM calls and one for ILE bound calls:

• QLGCNVCS for OPM calls

• QlgConvertCase for ILE bound calls

The parameter list used is the same for both. The following example shows how
to use the bound call.

* Program to show the use of the bindable API for case conversion.
* Note that it cannot be compiled with default activation group.
*
* Define the Request Control Block
D ReqCtlDS DS
D Request 9B 0 INZ(1)
D CCSID 9B 0 INZ(277)
D Case 9B 0 INZ(0)
D Reserved 10 INZ(X′00000000000000000000′)
* Defines the input data I want to convert
DInpData S 10 INZ(′ aczæøå′)
* Defines the output data field
DOutData S 10
* Field to hold the length of data
DLgtdata S 9B 0 INZ(%Size(InpData))
* Error code - not used in this program
DErrCode S 9B 0 INZ(0)
* Name of convert API - it is case sensitive.
DCvtCase C ′ QlgConvertCase′

* Convert the data InpData field to upper case using CCSID 277.
* Program name is too long to have in factor 2 - use named constant
C CallB(D) CvtCase
C PARM ReqCtlDS
C Parm InpData
C Parm OutData
C Parm LgtData
C Parm ErrCode
* OutData contains: ACZÆØÅ

The API can also perform uppercase to lowercase conversion using CCSIDs.
Using a different format of the request control block, it is possible to use
conversion tables instead of CCSIDs. This support is similar to the support in
QDCXLATE API.

74 Moving to ILE RPG

For more information on the case conversion API, please refer to the System API
Reference, SC41-3801.

5.7 DBCS Graphic Data Type
RPG IV now supports the graphic data type. The field type is G.

It is important to notice that when defining a graphic data type field, you specify
the number of characters, not the number of bytes.

DField3 S 10G

Field3 is a graphic data type field with 10 DBCS characters. The space occupied
by this field is 20 bytes.

Chapter 5. National Language Support with RPG IV 75

76 Moving to ILE RPG

Chapter 6. CL and ILE CL

ILE CL was added to the V3R1 OS/400 system support to allow application
developers to create ILE CL programs and procedures to eliminate the need to
understand the intricacies of ILE when running CL in the Integrated Language
Environment.

The purpose of this chapter is to discuss the aspects of using CL programs with
RPG IV programs in compatibility mode as well as considerations for moving CL
to ILE CL programs.

6.1 ILE CL Functions
Several new terms used in this section are explained in Chapter 7, “ILE Design
Considerations” on page 83.

The following three new CL commands have been added:

• CRTCLMOD

− Creating a ILE CL module that is then used to create other programs and
service programs.

• CRTBNDCL

− Create a bound ILE CL program. This is similar to creating a CL module
and then specifying only that module on the CRTPGM. This creates a CL
program in one step.

• CALLPRC

− A static call to another module or procedure. This is a call to an RPG,
COBOL, C, or even another CL procedure.

6.1.1 Changes to Existing Interfaces
Commands that display or otherwise use program or module attributes have
minor changes to include the attribute for CL modules and bound ILE programs.

The CL compiler listing for ILE programs and modules is similar to the compiler
listing for the OPM CL compiler. However, the intermediate code generated by
the compiler is not listed.

ILE CL procedures are able to issue static procedure calls to other ILE
procedures in the same program object or in a service program; this is achieved
by using the new CALLPRC command.

A new source type (CLLE) has been added to PDM, SEU, and Programmer′s
menu as well as a new program attribute. For example, if CLP is specified for
the source type, CRTCLPGM is used to create a CL program from the
Programming Development Manager (PDM). If CLLE is used, CRTBNDCL is used
to create an ILE CL program.

Two new special values for where allowed to run have been added to CL
commands. These values *IMOD and *BMOD are used to specify that a
command can run only in an interactive ILE CL program or a batch ILE CL

 Copyright IBM Corp. 1995 77

program. *IPGM and *BPGM indicate that the command is allowed to run in a
program, ILE or OPM.

System/38 environment is not supported for ILE CL. For instance, if a user was
running in S/38 environment, and attempted to compile source in S/38 syntax,
the program does not compile for ILE CL. System/38 environment commands
are allowed if they are specified in native syntax. System/38 environment
commands that are compiler directives, for example, DCLDTAARA, SNDDTAARA,
RCVDTAARA, 38 version of DCLF, are not supported in ILE CL.

Although we code procedures or modules the source for a CL procedure is
denoted with a PGM...ENDPGM such as a CL program is today. There is only
one occurrence of a PGM and ENDPGM in the source for a CL module so
therefore, a CL module is made up of only one procedure. If several CL
modules are bound together, the module specified on the ENTMOD parameter is
used as the main entry point. The name of the CL procedure is the same as the
module name specified on the CRTCLMOD command.

6.1.2 CL Considerations with RPG IV in Compatibility Mode
Since the compatibility mode scenario does not take advantage of the ILE
architecture with activation group, there are only a few items to look for.

Most important is the use of MONMSG for RPG messages. Even with RPG IV
programs created in compatibility mode, the escape messages issued have
changed.

If you monitor for RPG9001 today, you have to exchange this message for
CEE9901, if you still want to keep the CL program monitoring for this message.
You should consider changing the RPG program to handle error situations
instead. For error handling with RPG IV programs, please refer to Chapter 10,
“Exception Handling” on page 161.

Notice that the new command CALLPRC is not valid in a OPM CL program.

6.1.3 ILE CL Considerations
Almost all CL commands are valid for use in ILE CL programs. Following are
the considerations if you are moving your CL programs to ILE CL.

TFRCTL The transfer control command is not valid within ILE CL, and an
ILE CL source containing the TFRCTL command will fail to
compile.

You can use the PRTCMDUSG command to get a listing of CL
programs using the TFRCTL command, or you can use the PDM
scan function to perform the search within the CL program
source.

RCLRSC The RCLRSC command has no function related to non-default
activation groups. RCLACTGRP is a new command to free
resources associated with activation groups.

RTVCLSRC The RTVCLSRC command is not allowed against an ILE CL
module or program object to retrieve the CLLE source.
However, the RTVCLSRC is used within a CLLE module or
program to retrieve the source from an OPM CL program.

78 Moving to ILE RPG

PRTCMDUSG PRTCMDUSG cannot be used against a CLLE module or
program, but is used within CLLE against a CL program object.

SNDPGMMSG The receiving point of SNDPGMMSG *PRV is changed within ILE.
The program message is sent to the program stack entry that
has the next higher control entry procedure.

MONMSG Some of the messages have been changed, and if you monitor
for these messages, you need to change them. The RPG9001
error message is replaced by CEE9901.

CALLPRC This new command is only used for calling ILE procedures, and
only if the program is created using DFTACTGRP(*NO).

Note: There is no previous release support for ILE CL in V3R1M0.

There are a few differences between the create commands for CL and ILE CL
that you should be aware of:

• The Allow RTVCLSRC keyword on the CRTCLPGM command does not exist
for ILE CL module or program creation.

• The GENOPT keyword on the CRTCLPGM command does not exist for ILE CL
module or program creation, and thus no intermediate representation of a
program (IRP) listing is generated.

• The default activation group (DFTACTGRP) keyword must be *NO, and you
must specify an activation group name or *CALLER in the ACTGRP keyword
when you want your program to run outside the default activation group.

• The compiler option *GEN/*NOGEN is supported for CRTCLMOD only.
CRTBNDCL always creates a program object.

6.1.4 The Call Bound Procedure Command
The Call Bound Procedure (CALLPRC) command calls a bound procedure named
on the command, and passes control to it. Optionally, the procedure issuing the
CALLPRC command can pass parameters to the called procedure. The
CALLPRC command is used in compiled ILE CL programs and modules. Upon
return, the return code from the called procedure is placed in the RTNVAL
parameter if specified.

Module: B,I

��──CALLPRC──PRC(──procedure-name──)───�

�─ ──┬ ┬─────────────────────────────────── ────────────────────────────────────�
│ │┌ ┐─────────────────────
└ ┘─PARM(─ ──(1)───� ┴┬ ┬─*OMIT─────────── ─)─

└ ┘─parameter-value─

�─ ───(P) ──┬ ┬────────────────────────────────────── ─────────────────────────────��
│ │┌ ┐─*NONE────────────────
└ ┘─RTNVAL(─ ──┴ ┴─return-variable-name─ ─)─

Notes:
1 A maximum of 300 repetitions

P All parameters preceding this point are specified in positional form.

Figure 52. CALLPRC Command Syntax

Chapter 6. CL and ILE CL 79

Each parameter value passed to the called procedure is a character string
constant, a numeric constant, a logical constant, a floating-point constant, or a
CL program variable. If a floating-point constant is specified, the value is
converted to double-precision format and passed to the called program. If
parameters are passed, the value of the constant or variable is available to the
program that is called. Parameters cannot be passed in any of the following
forms: lists of values, qualified names, expressions, or keyword parameters. Up
to 300 parameters are passed to the called procedure.

Note: Although the CALLPRC command allows up to 300 parameters to be
passed, the number that the called procedure can accept depends on the
language of the called procedure. For example, a CL procedure cannot accept
more than 40 parameters.

If parameters are passed to a procedure using the CALLPRC command, the
values of the parameters are passed in the order that they appear on the
CALLPRC command; this order must match the order in which they appear in
the parameter list in the calling procedure.

Parameters in a called procedure are used in place of its variables. However,
no storage in the called procedure is associated with the variables it receives.
Instead, if a variable is passed, the storage for the variable is in the procedure
where it was originally declared. If a constant is passed, a copy of the constant
is made in the calling procedure, and that copy is passed to the called
procedure.

The result is that if a variable is passed, the called procedure can change its
value and the change is reflected in the calling procedure. If a constant is
passed, and its value is changed by the called procedure, the changed value is
not known to the calling procedure. Therefore, if the calling procedure calls the
same procedure again, the values of constants are set to their original values,
but the variables do not change.

6.1.4.1 Parameter Passing
One of the differences between ILE CL and OPM CL is in the way the situation is
handled when a caller passes either more or fewer parameters than the called
program expects.

In OPM, the caller gets escape message CPF0001 with diagnostic message
CPD0172 in the job log.

This no longer occurs in ILE. If the caller of an ILE CL program specifies more
than the number of parameters expected by the CL procedure, the program
entry procedure (PEP) passes along the expected number of parameters;
parameters after the expected number is ignored. If the caller of an ILE CL
program specifies fewer than the number of parameters specified by the caller, it
also passes enough null pointers so that the CL procedure gets the number of
parameters that it expects.

The CALLPRC command always passes the number of parameters that are
specified on the command. If the called procedure expects fewer than are
passed, the extra ones are ignored. If the called procedure expects more than
are passed, the results are unpredictable; it depends on what the called
procedure tries to do with the missing parameters.

80 Moving to ILE RPG

As a result, callers of ILE CL procedures and programs do not get a parameter
mismatch message if they specify the wrong number of parameters. However, CL
programmers are able to write ILE CL programs and procedures with variable
length parameter lists.

6.2 Changing Source Type from CL to CLLE
Instead of manually changing the source type, you can create a PDM option to
do the change of source type.

From the Work with Members Using PDM screen, use F16=User options to
create user-defined PDM options. The new option is, for example, called CT for
change type. The command to use is CHFPFM, and you can enter this:

� �
Create User-Defined Option

/Type option and command, press Enter.

Option CT Option to create

Command CHGPFM FILE(&L/&F) MBR(&N) SRCTYPE(CLLE)

If you have a source file containing different member types, or you want to
change the type using a generic name, use the Subset Member List panel.

� �
Subset Member List

Type choices, press Enter.

Member *ALL *ALL, name, *generic*

Member type CLP *ALL, type, *generic*, *BLANK

From date 01/01/00 Earliest date to include

To date 12/31/99 Latest date to include

Text *ALL

When you have the subset list you want, type option CT on the first entry in the
list, use F13=Repeat, and press the Enter key to change the CL programs to
CLLE. You do not see the changed member type until you press F5=Refresh.

6.3 Should I Move CL to ILE CL?
The answer to this question depends on the choice of programming language,
and how you want to exploit the Integrated Language Environment in your
application:

• If you are running ILE programs in compatibility mode, then it is
recommended you keep your CL programs and not move them to CLLE.

You may have to modify your CL programs if you monitor for RPG messages
within CL programs.

Chapter 6. CL and ILE CL 81

• If you want to take advantage of the application isolation in ILE, you have to
move your CL programs to ILE CL.

It is not advisable to mix the use of compatibility mode and non-default
activation groups within an application.

With these recommendations, the next sections are looking at the considerations
for using CL with RPG IV programs, and moving CL programs to ILE CL.

82 Moving to ILE RPG

Chapter 7. ILE Design Considerations

This chapter concentrates on aspects of the ILE architecture that must be
addressed from a design perspective. The contents should be read by anyone
involved in either designing migrations from Original Program Model (OPM) to
ILE or designing new ILE applications.

7.1 Overview of ILE Concepts
ILE provides new concepts to support both a runtime environment with fire walls
built around an application, and a development environment supporting the
production of highly modularized, reusable code. These new concepts are
summarized below. For full details of each of these facilities, please refer to the
publication Integrated Language Environment Concepts, SC41-3606.

• Procedures

A procedure is a set of self-contained HLL statements that perform a
particular task and return to the caller. In ILE RPG/400 and ILE CL, there is
one procedure per source member and one procedure per module. The
procedure name is always the same as the containing *MODULE name for
RPG IV and ILE CL. In ILE C/400, there may be multiple procedures (called
functions in C) within a module. Refer to Program Entry Procedure on page
86 for this special form of a procedure.

• Modules and programs

A module object (*MODULE) is the result compilation using the new ILE
compile commands. A module cannot be run. In order to be run, a module
must be bound into a program object (*PGM).

An ILE program object (*PGM) is the result of binding one or more modules
together. You run programs on the system, just as you did in OPM.

• Static binding

In OPM, all calls to programs are dynamic, involving system overhead to
perform authority checking and find the address of the program. Binding is
the process of creating a program by packaging ILE modules and resolving
symbols passed between those modules.

When a dynamic call is made to an ILE *PGM object, the program is
activated. This activation involves the initialization of all static storage
required by variables used by the modules within the object. In the case of
RPG IV, all variables are stored in static storage.

There are two types of static bind available within ILE. Once a program and
any related service programs have been activated, there is no difference in
the system code that is run to perform a bound call by reference or a bound
call by copy.

 1. Bind by copy

This is the process of copying modules directly into a program object
during the binding phase. Thus, the modules specified to be bound by
copy are contained directly within the program object.

 Copyright IBM Corp. 1995 83

 2. Bind by reference

This is the process of making procedures indirectly available to a
program (*PGM) through a service program (*SRVPGM). Modules bound
in a *PGM by reference to a *SRVPGM are not copied into the *PGM
object.

Optional service programs (*SRVPGMs) is associated with the *PGM at
bind time. The activation of these associated service programs involves
the initialization of all static storage in all modules within the service
programs.

An example showing a program that includes both procedures bound by
copy and procedures bound by reference.

*SRVPGM S Multiple
┌──────────┐ Call Entry
│*MODULE X │ Points

*PGM A │ PRC X �┼──────
┌──────────────────────┐ │ │
│ *MODULE A │ *MODULE B│ │──────────│
│──────────────────────│ │*MODULE Y │
│ │ │ │ PRC Y �┼──────
│ CALLB B CALLPRC P2│───────┐ │ │
│ │ │ │ │──────────│

 │ RPG CL │ │ │*MODULE Z │
└──────────────────────┘ │ │ PRC P1 �┼──────

	 └──────�│ PRC P2 �┼──────
│ 	 └──────────┘

Bind by │
Copy Bind by

Reference

Figure 53. Bind by Copy and by Reference

This example shows the result of program A being created using the
CRTPGM command. Procedures A and B (in modules A and B, respectively)
are bound by copy. Procedures X, Y, P1 and P2 are bound by reference as
they are contained in a service program object named S.

• Service programs

Service programs cannot be run through a dynamic call. They act as a
container for related procedures that are used in many different *PGMs.
Thus, in order to easily maintain these popular procedures, they are stored
in one place - a service program.

Since activation of a *SRVPGM causes initialization of all static service
programs, it involves the initialization of all static storage in all modules
within the service programs. Even if your *PGM only uses one module from
a service program, if the service program contains N>1 modules, then the
static storage for all N>1 modules is initialized at activation of your *PGM.

• Binding Language

This is a very simple language that controls which procedures and variables
are available from a service program to other programs or other service
programs.

• Activation groups

An activation group enables partitioning of resources within a job.
Therefore, an activation group is only seen by the job in which it was
created. An activation group consists of static storage needed for variables
belonging to activated programs, open files (open data paths), commitment
control definitions and application programs.

84 Moving to ILE RPG

When a new job is started, the system automatically creates two activation
groups. These are collectively referred to as the default activation group, but
are split into activation group number 1 and number 2. Output from Display
Job (DSPJOB), Option 18 = Display activation groups, is shown in Figure 54
on page 85.

� �
Display activation group

System: RCHASM02
 Job: P23KRZ75D User: QPGMR Number: 014444

 Type options, press Enter.

 ----activation group-----
 Number Name In Use Indicator
 0000000001 *DFTACTGRP Yes
 0000000002 *DFTACTGRP Yes
 0000001230 PDSRVPG No
 0000001224 QLGCASE No

� �
Figure 54. DSPJOB - Activation Groups

Notes:

 1. Activation group number 1 is the system default activation group
reserved for running system functions.

 2. Activation group number 2 is the user default activation group, available
to application programs.

 3. PDSRVPG is the activation group enabling problem determination
support.

 4. QLGCASE is the activation group for monocasing. This activation group
gets created in every job because service program QLGCASE is created
with the activation group named QLGCASE.

All programs (system or user) run in an activation group. The activation
group in which an application program runs is determined at program
creation.

When you create ILE programs and service programs, you specify the
activation group in which your program runs using the ACTGRP keyword.
You can choose one of the following options:

 1. NAMED activation group

An activation group with a name you specified at the time of creating ILE
programs.

 2. *NEW activation group

Every time the program is dynamically called, a new activation group is
created. As soon as the program returns control to its caller, the *NEW
activation group is deleted. Frequent use of this choice provides the
worst performance within your application.

 3. *CALLER activation group

The program is run in the activation group of its calling program.

• ILE Program Activation

Chapter 7. ILE Design Considerations 85

When a dynamic call to an ILE program is issued within a job, the system
performs the following tasks, known as program activation:

 1. Identify what activation group the *PGM should run in.

If the activation group is NAMED and does not exist, then create it. If the
activation group is *NEW, then create a new activation group in which to
run the *PGM (this is very expensive in terms of CPU).

If the *PGM has not been called in this activation group before (always
the case with *NEW activation groups), then initialize all static storage for
all associated modules, whether they are bound by copy or bound by
reference.

 2. Activate all service programs that have been bound to the *PGM.
Identify which activation group the *SRVPGM should run in.

If the activation group is NAMED and does not exist, then create it.

If the *SRVPGM has not been called in this activation group before, then
initialize all static storage for all modules in the service program.

 3. Pass control to the Procedure Entry Point (PEP) in the first procedure
specified in the MODULE list at *PGM creation time.

 4. If the entry procedure is RPG IV without using the logic cycle, then
control passes to the first executable statement in the calculation
specifications after full opens of required files and resolution of passed
parameters, exactly as happened in OPM.

When the program is deactivated and it runs in a *NEW activation group,
then the activation group is deleted and all associated resources are
returned to the system.

• Binding Directory

A list of modules or service programs. The contents of a binding directory
are only used by the binder if unresolved imports exist during either the bind
of modules specified on the MODULE list, or modules exported from service
programs specified on the BNDSRVPGM list.

• Program Entry Procedure (PEP)

A PEP is system generated and the first procedure placed on the call stack
following a dynamic call. This procedure is always given control first,
following a dynamic call. The PEP ensures that the procedure you specified
as the Entry module on the CRTPGM is given control following a dynamic
call.

Service programs never have PEPs on the call stack. This is because any
procedure in a bound service program may be called (multiple entry points
(MEP)); there is no concept of a first procedure to always be run (PEP) in a
service program. (Remember that service programs cannot be run by a
dynamic call.)

The name of the PEP on the call stack depends on the ILE HLL used for the
Entry module (ENTMOD) of the program. These names are:

− _C_pep for ILE C
− _Q_QRNP_PEP for ILE RPG/400
− _CL_PEP for ILE CL

86 Moving to ILE RPG

7.2 ILE Compile and Bind Commands
There are two categories of ILE compile commands provided:

 1. Full-function ILE Compile and Bind Commands

The Create Module and Create Program commands provide access to all of
the features available within ILE. Greater design flexibility is provided as a
result of splitting the compile and bind into two separate commands. The
Create Module commands are used to compile a module object, hence the
command is ILE compiler-dependent. CRTRPGMOD is used to create an
RPG IV module and CRTCLMOD is used to create an ILE CL module. In
order to obtain an executable *PGM object within ILE, it is necessary to
perform a compile of source code into a module object (*MODULE) followed
by a bind of the *MODULE object(s) into a program object (*PGM). Either the
Create Program (CRTPGM) command is used to bind *MODULE objects into
a program, or the CRTBNDxxx command is used to perform a one step
compile-and-bind to create a program.

The Create Service Program (CRTSRVPGM) is used to bind modules into a
service program object. As previously stated, you cannot directly run a
service program; you can only indirectly run procedures in a service
program through bound calls from the *PGM object that was created with
references to the service program.

 2. Restricted ILE Compile and Bind Commands

The Create Bound Program commands CRTBNDRPG and CRTBNDCL
provide access to some but not all of the ILE facilities. Thus, these
commands are designed to be simple to use and, consequently, do not
provide the flexibility of the full-function ILE commands.

Use of these commands enables you to take advantage of RPG IV. If you
elect to run in OPM compatibility mode, then you cannot use the call bound
(CALLB) operation code; the compile part of the process fails with message
RNV5378 Severity 30 ′ CALLB cannot be used when DFTACTGRP(*YES) is
specified for CRTBNDRPG′ . If you specify DFTACTGRP(*YES), then your
program is only run in the default activation group; hence you are unable to
take full advantage of ILE named activation groups and resource scoping.

7.2.1 OPM Compatibility Mode
Compatibility mode is an ILE program attribute that, when enabled, makes an ILE
program behave in a manner compatible with OPM program behavior. This
facility is available for the ILE RPG/400 and ILE CL programming languages; it is
not available for ILE C/400.

The way to enable OPM compatibility mode for an ILE program is to use the
CRTBNDRPG or CRTBNDCL command and specify DFTACTGRP(*YES).

Use this command if you want to migrate all or part of your application from RPG
III to RPG IV, but you do not want to take advantage of ILE bound calls, service
programs or activation groups at this time.

If you enable compatibility mode (specify DFTACTGRP(*YES) on the CRTBNDxxx
command), then the following ILE facilities are NOT available to you:

 1. Bound calls
 2. EXPORT/IMPORT keywords on D Specifications

Chapter 7. ILE Design Considerations 87

 3. Service programs
 4. Use of named or *NEW activation group

7.2.2 Comparison of Compile/Bind Commands
Table 18 shows exactly which ILE facilities are supported by which ILE
commands. It deliberately does not include commands related to service
programs.

Table 18. Comparison of ILE Compile and Bind Commands

Features Available
CRTBNDxxx
DFTACTGRP(*NO)
�1�

CRTBNDxxx
DFTACTGRP(*YES)
�1�

C
R

T
xx

xM
O

D

C
R

T
P

G
M

C
R

T
S

R
V

P
G

M

Purpose Compile Bind Bind Compile and
Bind

Compile and
Bind

Can bound call be used? Yes Yes Yes Yes No

Use of Service Programs n/a Yes Yes No No

Use of Binding Directory n/a Yes Yes Yes No

Use of Non-Default
ACTGRP

(Named, *NEW, *CALLER)

n/a Yes Yes Yes No

Use of Default ACTGRP
Only

n/a No No No Yes

Multiple *MODULES on
MODULE Keyword

n/a Yes Yes n/a n/a

Optimization Yes n/a Yes Yes Yes

Debug Yes n/a Yes Yes Yes

OPM Compatibility Mode n/a No No No Yes

*MODULE retained after
compile

Yes n/a n/a No No

Note:

• �1� The CRTBNDxxx command in this table applies to the CRTBNDRPG and CRTBNDCL
commands.

• n/a = not appl icable

88 Moving to ILE RPG

7.3 Activation Groups
All OPM programs run in the same activation group, the system-provided default
activation group.

Within ILE, activation groups are used to logically partition applications that are
used concurrently within the same OS/400 job. Activation groups exist for the
life of the job that created them. Once the job is terminated, then all activation
groups associated with that job are deleted.

Creation of a new ILE program or service program always involves the
specification of the activation group in which the program runs. Thus, resources
such as the order entry (OE) and accounts receivable applications are separated
such that there is no conflict over files common to both applications,
commitment control scoping, and variables used within programs common to
both applications.

This separation of applications and application resources within a job is
implemented in ILE through the use of activation groups, as shown in Figure 55.

JOB
┌───┐
│ activation group: OE │
│ ┌─ ── ── ── ── ── ── ── ── ── ── ── ── ──┐│
│ │ Shared File A ││
│ ┌───┐ │
│ │ ┌────────�│ A │�──────────┐ ││
│ Default Act Grp │ └─ ─┘ │ │
│ ┌─ ── ── ── ──┐ │ │ 	 │ ││
│ ┌───────────┐ │ │ │ │
│ ││ MENU ││ OE │ ┌────────┐ ┌────────┐ ┌────────┐ ││
│ │ │ �───────� │ OE─1 │�─�│ OE─2 │�─�│ OE─3 │ │
│ ││ 1.Order ││ │ └────────┘ └────────┘ └────────┘ ││
│ │ Entry │ └─ ── ── ── ── ── ── ── ── ── ── ── ── ──┘│
│ ││ ││ │
│ │ 2.Accts │ ┌─ ── ── ── ── ── ── ── ── ──┐ │
│ ││ Rcvble ││ AR ┌────────┐ ┌────────┐ │
│ │ │ �───────�│ │ AR─1 │�─�│ AR─2 │ │ │
│ │└───────────┘│ └────────┘ └────────┘ │
│ └─ ── ── ── ─┘ │ │ │ │ │
│ │ │ │
│ │ │ ┌───┐ │ │ │
│ └───�│ A │�──┘ │
│ │ └───┘ │ │
│ Shared File A │
│ └─ ── ── ── ── ── ── ── ── ──┘ │
│ activation group: AR │
└───┘

Figure 55. Example - ILE RPG/400 Application

Note that there are two open data paths in the job for File A, each of which is
shared at the activation group level. This was, of course, not possible in OPM.
Thus, in ILE we can take advantage of sharing open data paths and ensure
application isolation within a named activation group.

7.3.1 Default activation group
OPM programs and ILE programs created with OPM compatibility mode always
run in the default activation group. Specifically, these programs always run in
default system activation group number 2, which is the user-portion of the default
activation group available for your applications to use.

Chapter 7. ILE Design Considerations 89

7.3.2 User-Named Activation Group
Upon a dynamic call to an ILE program that specifies a named activation group,
if the activation group does not already exist within the job, then it is created.
An important difference between named activation groups and the other types of
activation groups is that a new activation group is only deleted when the
Reclaim Activation Group (RCLACTGRP) command is issued.

Specify the name of an activation group using the ACTGRP keyword on the
CRTPGM or CRTBNDxxx commands.

We recommend that, wherever possible, you design your application to run in a
named activation group whose name is unique to your application. You must
explicitly specify the name of your activation group on the application start-up
program. Thus, all subsequently called programs may be created with activation
group *CALLER, such that they run in the activation group of the program that
dynamically called them (the named activation group).

7.3.3 Activation Group of Caller
We expect that most ILE programs are created to run in the same activation
group as their calling program. In order to specify this, you should use
ACTGRP(*CALLER) on the CRTPGM command. Control of where your program
is run is then determined by the application start-up program or programs that
explicitly specify your application′s activation group name.

You can also specify that an ILE service program be run in the same activation
group as the ILE program to which it is bound by using the default of
ACTGRP(*CALLER) on the CRTSRVPGM command.

7.3.4 System-Named Activation Group (*NEW)
This is the default on the CRTPGM command, and is deliberately not available
on the CRTSRVPGM command. Whenever a program created with
ACTGRP(*NEW) is called dynamically, a new activation group is created, the
program is activated and run, and when the program returns control to its caller
(through RETURN, LR or a hard leave), the activation group is deleted.

 Warning

Avoid using ACTGRP(*NEW), even though it is the default on CRTPGM. Use
of this activation group option is the worst choice for performance.

We recommend that this option is not used within an ILE application. It is
very expensive in terms of system resource to keep creating and deleting
*NEW activation groups.

We recommend that you run ILE programs in a named activation group rather
than allowing them to run in the default activation group.

90 Moving to ILE RPG

7.3.5 Activation Group Recommendations
Application start-up program or programs should be created to run in NAMED
activation group or groups, such that programs subsequently called can safely
specify ACTGRP(*CALLER). Since activation group names can only be changed
by re-creating the program, this approach minimizes your effort in case of a
change.

Do not use ACTGRP(*NEW) unless it is absolutely necessary. Consider changing
the default value to *CALLER, using the Change Command Default
(CHGCMDDFT) command.

Your application design should ensure that ILE programs created with
ACTGRP(*CALLER) are not called from the default activation group. When an ILE
program is run in the default activation group, its files may be closed by the
RCLRSC command. The RCLRSC command may be issued by some other
application running in the default activation group and, therefore, outside the
control of your application.

When an ILE program is run in a named activation group, its files may only be
closed by the RCLACTGRP command, or by the use of the RPG IV SETON LR
operation just as it functions today for OPM.

7.4 Differences Between Default and Non-Default Activation Groups
Any ILE application design must consider whether programs should be allowed
to run in the default activation group or not.

The cause for an ILE program running in the default activation group is ONE of
reasons below:

• The program was created with the ACTGRP(*CALLER) attribute, and its caller
is running in the default activation group.

• The program is running in compatibility mode.

The default activation group is provided for the running of OPM programs and
ILE programs with OPM compatibility mode. You should NOT design new ILE
programs to run in the default activation group; for a new application you should
use a named activation group.

At V3R1, the only way to determine which activation group a program is running
is to use DSPJOB. There are no APIs that provide the activation group name to
the calling procedure.

We now summarize the main differences between running an ILE *PGM created
with ACTGRP(*CALLER) (thus not created with OPM compatibility mode) in the
default activation group versus running it in a non-default activation group (for
example, user-named or *NEW).

 1. exception handling

If you do not handle exceptions in your application, an extra CEE9901
message is generated when you run the *PGM in the default activation
group.

 2. Scoping

Chapter 7. ILE Design Considerations 91

OVRSCOPE and OPNSCOPE on the OVRDBF and OPNDBF commands default
to *ACTGRPDFN. Thus, when you open your files as SHARE(*YES), the file is
opened scoped to the call level in the default activation group; it is opened
scoped to the activation group level in a non-default activation group.

 3. RCLRSC

This command cannot be run in a non-default activation group. It causes
files to be closed for ILE procedures run in the default activation group.

This command also works differently for ILE compatibility mode programs to
ILE non-compatibility mode programs.

 4. Static Storage

All RPG variables are kept in static storage. Once an ILE procedure has
been run in the default activation group, the static storage associated with its
variables are not returned to the system until end-of-job (the program is not
deactivated until end-of-job).

7.5 The Call Stack
The call stack is a list of all OPM program names and ILE procedure names from
which your job is currently running a statement. This is known as the program
stack in OS/400 V2R2 and changed to the call stack in OS/400 V2R3.

The only way to run an ILE program is to dynamically call it; within an ILE
program there may be 1-many bound procedures. For a dynamic call to an ILE
program, we see a PEP on the call stack. For a bound call to an ILE procedure,
we see the procedure name on the call stack. A dynamic call to an OPM
program causes the program name to appear on the call stack. In Figure 56 we
use the DSPJOB command, Option 11 to review the call stack.

� �
Display Call Stack

System: RCHASM02
 Job: P23KRZ75D User: QSECOFR Number: 014850

 Type options, press Enter.
5=Display details

Request Program or
Opt Level Procedure Library Statement Instruction

QCMD QSYS 0353
QUICMENU QSYS 00C1

1 QUIMNDRV QSYS 0457
2 QUIMGFLW QSYS 0486
3 QUICMD QSYS 03E5

_QRNP_PEP_ ... ITSCID04 �1�
CSR1 ITSCID04 �2� 0000000002
DJ1 ITSCID04 �3� 0000000200

Bottom
F3=Exit F10=Update stack �4�F11=Display activation group F12=Cancel
F16=Job menu F17=Top F18=Bottom� �

Figure 56. DSPJOB - Call Stack: Init ial Screen

Notes:

92 Moving to ILE RPG

�1� A dynamic call was issued to an ILE program; hence there is a
program entry procedure (PEP) on the call stack. In this example, the
PEP is ILE RPG/400 (_QRNP_PEP) so we know that the called program
was an ILE RPG/400 program.

Dynamic calls to ILE programs always results in a PEP being placed on
the call stack corresponding to the ILE HLL used for the module specified
on the ENTMOD keyword of the CRTPGM command.

�2� The name of the ILE RPG/400 procedure specified as the PEP is CSR1,
thus procedure CSR1 is called after the PEP.

�3� Procedure CSR1 performed a bound call to procedure DJ1. We know
that CSR1 is an ILE procedure from the next screen Figure 57.

At this point we still do not know either the name of the ILE program whose RPG
PEP is on the call stack, or what activation group this program is running in.

We take F11 �4� from the DSPJOB Option 11 (Call Stack) screen in order to see
the activation group attribute of our ILE program.

� �
Display Call Stack

System: RCHASM02
 Job: P23KRZ75D User: QSECOFR Number: 014857

 Type options, press Enter.
5=Display details

Request Program or ---activation group---
Opt Level Procedure Number Name

QCMD 0000000001 *DFTACTGRP
QUICMENU 0000000001 *DFTACTGRP

1 QUIMNDRV 0000000001 *DFTACTGRP
2 QUIMGFLW 0000000001 *DFTACTGRP
3 QUICMD 0000000001 *DFTACTGRP

_QRNP_PEP_ ... 0000000120 NEXTONE �1�
CSR1 0000000120 NEXTONE
DJ1 0000000120 NEXTONE

Bottom
F3=Exit F10=Update stack �2�F11=Display module F12=Cancel F16=Job menu
F17=Top F18=Bottom� �

Figure 57. DSPJOB - Call Stack: Activation Groups

Note: �1� The activation group in which our ILE RPG/400 program is running is
NEXTONE.

We still, however, do not know the name of our ILE program; therefore we must
take �2� F11=Display Module to see the program name specified against the
HLL-specific PEP.

Chapter 7. ILE Design Considerations 93

� �
Display Call Stack

System: RCHASM02
 Job: P23KRZ75D User: QSECOFR Number: 014857

 Type options, press Enter.
5=Display details

Request Program or ILE ILE Control
Opt Level Procedure Module program Boundary

QCMD
QUICMENU

1 QUIMNDRV
2 QUIMGFLW
3 QUICMD

_QRNP_PEP_ ... CSR1 �1� CSR1 Yes �4�
CSR1 CSR1 �2� CSR1 No
DJ1 DJ1 �3� CSR1 No

F3=Exit F10=Update stack F11=Display statement ID F12=Cancel
F16=Job menu F17=Top F18=Bottom� �

Figure 58. DSPJOB - Call Stack: Modules

Notes:

�1� We can now see that it was ILE program CSR1 that was dynamically
called.

�2� For ILE RPG/400 and ILE CL, this procedure name is always the same
as the module name. For ILE C/400, there are many procedures in one
module.

�3� Notice that there is no PEP to identify the HLL of procedure DJ1 as it
was executed by a call bound.

�4� Notice the control boundary that resulted from calling the program
CSR1 that was created to run in activation group NEXTONE.

7.6 Control Boundary

Please refer to �4� in Figure 56 on page 92 to see an example of a system
screen using this new term.

A control boundary is a call stack entry used as the point to which control is
transferred when an unmonitored error occurs, or an HLL termination verb is
used.

A control boundary acts as a delimiter for:

• A run unit in ILE languages
• ILE exception message percolation

A dynamic call to an ILE program causes a PEP for that program to appear on
the call stack. A procedure is a control boundary if one of the following is true:

 1. The caller was an OPM program

94 Moving to ILE RPG

 2. The caller was running in a different activation group

If a procedure is a control boundary and it is also a PEP, then it belongs to an
ILE *PGM.

If a procedure is a control boundary and it is not a PEP, then it belongs to an ILE
*SRVPGM.

There are two types of control boundaries:

 1. Hard control boundary

If a control boundary is the first control boundary in an activation group, then
it is a hard control boundary.

It is not possible to have a hard control boundary in the default activation
group; they only occur in non-default activation groups.

 2. Soft control boundary

A control boundary that is not the first control boundary in an activation
group is called a soft control boundary. This type of control boundary can
occur in any activation group.

7.6.1 Control Boundary Example

Which procedures are control boundaries in this example?

AG01 AG_SP01
Dyn. ┌──────────────────┐ ┌─────────────────────┐
Call │ ┌───────────┐ │ │ │
─────� P│ PEP─CL │ │ │ │

│ G│───────────│ │ │ │
│ M│ CLP1 │ │ │ ┌───────────┐ │
│ 0│───────────│ │ Bound Call │ │ │S │
│ 1│ RPGP1 ─┼──┼───────────────┼� │ │R │
│ │ │ │ ┌───────┼─ │ RPGP2 │V │
│ └───────────┘ │ Dyn. │ │ │ │P │
│ │ Call │ │ │───────────│G │
│ ┌──────────�┬──┼───────┘ │ │ │M │
│ P│ PEP─RPG │ │ │ │ │0 │
│ G│───────────│ │ │ │ RPGP4 │1 │
│ M│ RPGP3 │ │Bound ┌───────┼� │ │ │
│ 0│───────────│ │Call │ │ └───────────┘ │
│ 2│ CLP2 ─┼──┼───────┘ │ │
│ └──┬────────┘ │ │ │
│ � Dyn. Call │ └─────────────────────┘
│ ┌───────────┐ │
│ P│ PEP─RPG │ │
│ G│───────────│ │
│ M│ RPGP5 │ │
│ 0│───────────│ │
│ 3│ RPGP6 │ │
│ └───────────┘ │
│ │
└──────────────────┘

Figure 59. Control Boundary Example

 1. The program entry procedure PEP-CL of program PGM01

The PGM01 PEP-CL procedure is a control boundary as this is the first
program in a named activation group. The PEP for PGM01 is invoked
through a dynamic call to PGM01; remember that even though a dynamic
call to program PGM01 has been issued, it is actually the PEP that is placed

Chapter 7. ILE Design Considerations 95

on the call stack. Since program PGM01 was created with CL module CLP1
containing the entry point (ENTMOD), control is now passed from PEP_CL to
procedure CLP1.

 2. Procedure RPGP2 in service program SRVPGM01 is a control boundary
because the (static) caller of this procedure is running in a different
activation group.

 3. Procedure PEP-RPG in program PGM02 is a control boundary because its
caller is running in a different activation group.

 4. When procedure CLP2 in program PGM02 calls procedure PEP_RPG for
program PGM03 (dynamic call), then the PEP-RPG for program PGM03 is not
a control boundary since program PGM03 is running in the same activation
group as the calling program.

Note: A dynamic call to an ILE *PGM object always results in a PEP for that
program being added to the call stack. Contrast this with a static call to a
bound procedure, where it is simply the called procedure name that is
placed on the call stack (with no PEP).

7.7 ILE Static Call Syntax
An ILE static call is also known as a bound call as it is always used to call a
bound procedure. The command or method to call a bound procedure is ILE
HLL dependent.

The following table summarizes the dynamic and static call semantics for the
V3R1 ILE languages.

Table 19. Dynamic and Static Call Syntax

HLL ILE Static Call OPM or ILE Dynamic Call

RPG CALLB CALL

CL CALLPRC CALL

COBOL CALL LINKAGE CALL

C Function call: procnam() #PRAGMA LINKAGE (pgmnam,OS)

Note:

 1. The CALLB operation code is not allowed in ILE RPG/400 compatibi l i ty mode programs.

 2. The CALLPRC command is not al lowed in ILE CL compatibi l i ty mode programs.

7.8 Binding Considerations
A binding directory is a list of module and service program names in a source
member to be specified in the BNDDIR parameter on the Create Program
command (CRTPGM). These names are only used if they contain an export that
satisfies an unresolved import during the binding process.

The binder looks at the modules in a binding directory as strictly optional. It is
very likely you want to create service programs binding together modules
without any reference to each other. It is important you know that the binder
picks up a module from a binding directory only if it provides an export for some
currently unresolved imports. Even if you have specified through the binder

96 Moving to ILE RPG

language that your service program is exporting a symbol from a module that is
in the binding directory, this module is not picked up, unless some module in the
service program makes an explicit reference to one of its exports.

As a result of this behavior to create a service program whose modules are
completely independent from each other, you have to specify them explicitly in
the MODULE parameter of the CRTSRVPGM command.

7.8.1 Exports and Imports
In OPM, when we needed to pass variables from one program to another
program the only choice was to pass parameters; this involves system overhead
to both pass the arguments to the called program and receive the parameters in
the called program.

When a dynamic call (for example, CALL in RPG) is used to an ILE or OPM
program, the only way to exchange variables is to pass parameters.

In ILE RPG/400, a new, more efficient method is available, exporting a variable
from one RPG procedure and importing it into another.

This new export/import facility in RPG IV is enabled through the use of the
EXPORT or IMPORT keyword on a definition specification against the variable
you want to exchange.

Throughout this section, we refer to the CRTPGM command when referencing
the bind process. While there are other commands providing bind capability, we
concentrate on this command because it provides the most flexibility.

What is an export?

An export is an procedure name or variable name in one module that is eligible
to be used by a procedure in a different module. Thus, the module exporting the
variable or procedure is the module that defines it.

What is an import?

An import is a procedure name or variable name used in a module (declared)
that does not exist in that module (is not defined in it). The import must,
therefore, exist in a different module (within the same *PGM or in an attached
*SRVPGM) in order for the program to be created. Thus, the import must be
satisfied by a corresponding export (with the definition) in order for the binder
(CRTPGM) to create the program object.

It is the binder′s job to build a list of exports and then use that list to satisfy
imports. This list of exports is built using resources you specified on the
CRTPGM command. This export list is built from resources in the following
order:

 1. Modules specified on the MODULE keyword
 2. Modules used from the binding directory
 3. Service programs

ILE Exports

There are 2 types of exports within ILE:

Chapter 7. ILE Design Considerations 97

 1. Implicit export

All procedures within a *PGM are automatically available (exported) to all
other procedures within the same *PGM. Thus, you do not have to code
anything special to make an RPG IV procedure available for use in another
RPG IV procedure within the same *PGM. Clearly, if during the bind process,
the binder determines that you are trying to call a procedure (CALLB in RPG
IV) that does not exist within the set of procedures comprising your *PGM,
you receive a message saying there is an unresolved import request. The
system tried to find an implicit procedure export within the *PGM to match
the import procedure specified on the CALLB, but none existed.

 2. Explicit export

In RPG IV, you can make both variables and procedures that are defined in a
*SRVPGM available for use in either a *PGM, or in another *SRVPGM by:

a. Coding EXPORT on all variables you want to export
(variables must be an internal export before they are candidates for
being an external export)

b. Using binding source and coding EXPORT against the variables or
procedures you want to export.

7.8.1.1 ILE Program (*PGM) Binding
An ILE program typically contains more than one procedure. It may or may not
have been created with references to service programs. The procedures directly
available within a *PGM object are those procedures that are bound by copy into
the program. These are:

• In modules coded on the MODULE keyword of the CRTPGM command.
• In modules specified in a binding directory that were used at program

creation. The binding directory is specified using the BNDDIR keyword of the
CRTPGM command.

In this instance, these modules are only included in the program because
they satisfied an export for an import that was not satisfied from the modules
named on the MODULE keyword.

Procedures indirectly available to a *PGM object are those that are bound by
reference and, therefore, are contained in a *SRVPGM that is attached to the
program.

Modules contained within a service program are bound to the *PGM object by
reference. Procedures and variables in service program modules can only be
used in the *PGM if you have made them available from the service program,
that is, exported them from the service program using binding source or (not
recommended) EXPORT(*ALL).

The binder tries to resolve exports and imports within modules bound by copy
BEFORE resolving them from modules bound by reference (in a *SRVPGM).

Procedure Export/Import

All procedures (bound by copy) into a *PGM object are automatically available
(exported) for other procedures (bound by copy) in the same *PGM object to use
(import) using bound calls (for example, through CALLB in RPG IV).

You cannot export a procedure name from a *PGM to a *SRVPGM.

98 Moving to ILE RPG

Variable Export/Import

You can exchange variables between RPG IV procedures (bound by copy) in the
same *PGM object using the EXPORT keyword in the calling procedure (for
example, procedure using RPG IV CALLB) and the IMPORT keyword in the called
procedure.

The way to pass a variable to or from an ILE CL procedure in a *PGM is by
passing parameters.

You cannot export a variable from a *PGM to a *SRVPGM or to a different *PGM;
you can, however, export a variable from a *SRVPGM to a *PGM. In order to
pass a variable defined in an ILE *PGM to a different ILE *PGM or *SRVPGM, you
must pass parameters (for example, use RPG IV *PLIST).

7.8.1.2 ILE Service Program (*SRVPGM) Considerations
Procedure Export/Import

All procedures (bound by copy) into a *SRVPGM object are automatically
available (exported) for other procedures (bound by copy) in the same *SRVPGM
object to use (import) using bound calls (for example, through CALLB in RPG IV).

You can export a procedure or data from a *SRVPGM by using binding language
in a source member for the export specification (or using EXPORT(*ALL), which
we do not recommend).

Variable Export/Import

You can exchange variables between RPG IV procedures in the same *SRVPGM
object using the EXPORT keyword in the calling RPG IV procedure (for example,
a procedure using RPG IV CALLB) and the IMPORT keyword in the called RPG IV
procedure.

You can export a variable outside a *SRVPGM by specifying it as EXPORT in the
binding source (or using EXPORT(*ALL) which we do not recommend).

The way to pass a variable to or from an ILE CL procedure in a *PGM is by
passing parameters.

7.8.2 RPG Initialization Considerations for an ILE *PGM or *SRVPGM
ILE RPG/400 variables are initialized:

 1. Upon a dynamic call to a program that is not already activated in the
activation group

 2. Upon the first bound call to an ILE RPG/400 procedure in the activation group

EXPORT Variables

If you have coded EXPORT against a data item in the RPG IV definition
specification, then that field is only initialized by ILE upon a dynamic call to the
ILE program in which it is defined. Unless the activation group is ended, this
field never is reinitialized by the system, even if you SETON LR in the procedure
in which it is defined. This means that even after LR, the field contents remains
unchanged if the program is called again in the same activation group.

Chapter 7. ILE Design Considerations 99

You are responsible for coding any re-initialization of RPG EXPORT fields in your
application.

7.8.2.1 RPG IV Export and Import Example
Figure 60 on page 101 shows an example for exporting and importing data and
procedures. Additionally you can see the capability of creating an interface to
the service program SPGM01 through binding language.

Working Through the Example

To create the service program SRVPGM01, we could use the command:

CRTSRVPGM SRVPGM(SPGM01) MODULE(SP1 SP2 SP3 SP4 SP5)
EXPORT(*SRCFILE) SRCMBR(SPGM01)

where the binding source for member SPGM01 of binding source file QSRVSRC
is:

STRPGMEXP
EXPORT SYMBOL(Y)
EXPORT SYMBOL(SP4)
ENDPGMEXP

These few statements define the so-called public interface to service program
SPGM01.

100 Moving to ILE RPG

Service
Program: PGM01 Program: SPGM01
┌──────────────┐ ┌────────────┐
│P1 │ │SP1 │
│┌────────────┐│ │┌──────────┐│
┌┼┼�IMPORT X ││ ││ EXPORT X ││
│││ ││ ││ IMPORT A�┼┼─┐
││└────────────┘│ │└──────────┘│ │
││ │ │ │ │
││P2 │ │SP2 │ │
││┌────────────┐│ │┌──────────┐│ │
┌┼┼┼�CALLB ′ P4′ ││ ┌─┼┼─EXPORT Y ││ │
││││ ││ │ ││ EXPORT C─┼┼┐│
│││└────────────┘│ │ │└──────────┘│││
│││ │ │ │ │││
│││P3 │ │ │SP3 │││
│││┌────────────┐│ │ │┌──────────┐│││
││││ IMPORT Y�──┼┼─┐ Binding Language │ ││ IMPORT C�┼┼┘│
││││ ││ │ ┌──────────────┐ │ ││ X ││ │
│└┼┼─EXPORT X ││ └─┼─Export Y�────┼───┘ │└──────────┘│ │
│ │└────────────┘│ │ │ ┌─┤SP4 │ │
│ │ │ │ │ │ │ │ │
└─┤P4 │ │ │ │ │┌──────────┐│ │
│┌────────────┐│ ┌─┼─Export SP4�──┼───┘ ││ EXPORT A─┼┼─┘
││ Y ││ │ │ │ │└──────────┘│
││ ││ │ └──────────────┘ │SP5 │
││CALLB ′ SP4′ �┼┼─┘ │┌──────────┐│
│└────────────┘│ ││ Big ││
└──────────────┘ ││ Arrays ││

││ in Here ││
│└──────────┘│
└────────────┘

Figure 60. Export and Import Relationship Example

To create program PGM01, we would use the command:

CRTPGM PGM(PGM01) MODULE(P1 P2 P3 P4) BNDSRVPGM(SPGM01) ACTGRP(NOT_NEW)

We will work through this example, starting with the service program SPGM01.
Remember that it is the binder (CRTPGM) that resolves all the imports and
exports between modules.

• Procedure SP1

Variable X is exported. Since there is no IMPORT X coded in other modules
in the *SRVPGM and we cannot import variables from a *PGM object, we
conclude that this variable has been specified as export for future use. Thus,
at some point we will add a module to the service program that needs to
import X from procedure SP1. Note that this variable X has nothing to do
with the variable X coded in program PGM01 or the variable X coded in
procedure SP3.

Variable A is imported. At bind time, the binder first checks for exports
within the *SRVPGM to satisfy this import. It finds that variable A is exported
(defined) in procedure SP4.

Chapter 7. ILE Design Considerations 101

• Procedure SP2

Variable Y is exported. While there are no local imports within the service
program needing this export, there is an EXPORT Y coded in the binding
source for this *SRVPGM; thus we know that this variable is exported to a
*PGM that is bound to this service program.

Variable C is exported and is satisfied by an import in procedure SP3.

• Procedure SP3

Variable C is imported from procedure SP2.

Note that this procedure uses a variable X. This is shown without the use of
EXPORT to denote that it is private to procedure SP2. In C programming
language, this is known as a local automatic variable, since this X is known
only within the procedure that defines it.

• Procedure SP4

Variable A is exported and is satisfied by an import in procedure SP1.

• Procedure SP5

This procedure is included in SPGM01 for future use. Currently, it is not
referred to by any other procedures in the *SRVPGM nor is it exported to
PGM01 using the binding source.

We have indicated that there are large arrays inside SP5. While this
procedure is not referenced anywhere, when we call program PGM01, the
static storage used for these arrays in SP5 is still initialized. This
initialization uses CPU resources and is unnecessary in this example. Thus,
we could improve the performance of PGM01 by removing procedure SP5
from SPGM01. We have deliberately included SP5 to illustrate a common
mistake in ILE. We do NOT recommend that you code your application this
way.

• We have binding source to control what variables and procedures from
SPGM01 are used by other *PGMs and *SRVPGMs. In this example, only
variable Y in procedure SP2 and procedure SP4 is used outside SPGM01.

We can now work our way through the ILE program PGM01:

• Procedure P1

Variable X is imported from procedure P3.

• Procedure P2

A bound call is made to procedure P4. Since this procedure is bound by
copy to PGM01, we do not bother to look in the service program.

• Procedure P3

This procedure imports variable Y. While there is a Y in procedure P4, the
binder ignores it as it does not have an export coded against it. Since there
is no EXPORT Y coded in PGM01, the binder now searches the binding
source for the service program SPGM01. Since Y is specified in the binding
source and EXPORT Y is specified in procedure SP2 in SPGM01, we have
now found an export in SPGM01 for our import of Y in PGM01.

Variable X is exported to procedure P1 in PGM01. Note that we cannot
export variables or procedures from a *PGM to a *SRVPGM.

• Procedure P4 has an import (bound call) to procedure SP4.

102 Moving to ILE RPG

Note that there is a variable Y used in this procedure. Since it does not
have an EXPORT or IMPORT coded against it, it does not have anything to
do with any other instances of variable Y outside P4.

The binder first checks whether there is a procedure SP4 bound by copy into
program PGM01. None is found. Next, procedures in SPGM01 bound by
reference and exported using binding source are searched. We find SP4 is
exported from SPGM01 in the binding source, thus we have satisfied this
import.

7.8.3 Unresolved References
When you develop a large modular application, you might need to test it even if
all the functions have not been implemented. This is accomplished by using the
*UNRSLVREF value for the creation option parameter. The program or service
program is created even if there are symbols that have not been resolved. Any
runtime reference to those symbols causes an MCH3203 error to occur.

Once the missing symbols are available, you must re-create the program to
eliminate the unresolved references. Only the binder listing and the job log of
the job where the bind has been run can provide information about references
(unresolved or resolved) in your programs.

7.8.3.1 Circular References
In some cases, you might have circular references among service programs, for
example, if program X exports symbol A and imports symbol B and, at the same
time, service program Y imports A and exports B. If possible, you should
combine the modules in larger service programs to avoid service programs
referencing each other. This recommendation suits both, performance and a
consistent application design.

If you cannot avoid circular references, you have to create your service program
by using a special option on the CRTSRVPGM. The unresolved reference
(*UNRSLVREF) value for the OPTION parameter provides a way to create your
service program without resolving imported procedures or variables. The
service program is created with its public interface, that is the exported
procedures and variables are available for referencing. You would then create
your other service programs and resolve their references. Once those service
programs are created, you can re-create the one that has unresolved references.

Given programs X and Y referencing each other with symbols A and B, you
would use the binder source language to specify that service program X exports
symbol A and creates it with *UNRSLVREF:

CRTSRVPGM SRVPGM(X) MODULE(X)
EXPORT(*SRCFILE) SRCFILE(QSRVSRC) SRCMBR(YOURNAME)
OPTION(*UNRSLVREF)

Now you can create service program Y, using the binder language to notify that
you are exporting symbol B:

CRTSRVPGM SRVPGM(Y) MODULE(Y)
EXPORT(*SRCFILE) SRCFILE(QSRVSRC) SRCMBR(YOURNAME)

You can now re-create service program X, resolving the imports provided by
service program Y:

Chapter 7. ILE Design Considerations 103

CRTSRVPGM SRVPGM(X) MODULE(X) BNDSRVPGM(Y)
EXPORT(*SRCFILE) SRCFILE(QSRVSRC) SRCMBR(YOURNAME)

Remember that calling an entry point in either X or Y causes the activation of the
other service program, even if it is not strictly needed, with a performance
drawback.

The double creation process only takes place once.

7.8.4 Service Program Signature
The Integrated Language Environment Binder supports the creation of two types
of bound program objects; programs (*PGM objects) and service programs
(*SRVPGM objects). As described in the Integrated Language Environment
Concepts manual, SC41-3606, service programs differ in a couple of significant
ways from regular programs, one of those differences being that only service
programs have signatures. A service program signature is fairly analogous to
the level check values that are associated with *FILE objects. The intent of both
mechanisms is to provide a way of detecting when the user of an object is out of
synchronization with the level of the object being used.

A system-generated signature is 16 bytes long and is stored as part of the
service program object. With OS/400 Version 3 Release 1 the keywords
LVLCHK(*YES |*NO) and SIGNATURE(*GEN | ′string ′) have been added to the
STRPGMEXP command. This allows you to optionally perform a level check and
to specify a signature string.

A service program has one current signature and may contain zero or more
previous signatures. When the binder creates a bound program that references
(or imports) a variable or procedure that is defined (or exported) by a service
program, the binder creates a record in the bound program, saving the name
and library and current signature of the service program. Before a program is
run, it must go through an activation step. Generally, the activation step is done
transparently as part of the machine processing when a program is called (for
example, the CL CALL command). During activation of an ILE bound program,
any service programs needed by the bound program are also activated. When
activating the service program, the signature in the program is compared with
the signature or signatures in the service program. If the signature of the
program matches any of the signatures in the service program, activation
continues. If no signature match is found, a signature mismatch exception is
signalled, and program activation ends (that means the bound program does not
run).

The developer of a service program has to exercise great care when changing
any service program exports, since the algorithm used to generate the signature
is sensitive to the names of the exported data and procedures, including the
order of the names. For example, adding a new EXPORT would cause the
signature to change; as would deleting an EXPORT, changing the EXPORT name,
or changing the order of EXPORT statements. Sometimes the signature would
change even though the service program was being changed upward compatibly
(for example, by just adding a new exported procedure). The developer of a
changed service program needs to know all of the program and service program
objects that are bound to the service program. Those depending program and
service program objects have to be re-bound with the updated service program
in order to avoid signature mismatch conditions at activation time.

104 Moving to ILE RPG

7.8.5 Service Program Recommendations
The following list explains some recommendations you should consider when
developing service programs:

• Use binder control source statements (that is, STRPGMEXP, EXPORT, and
ENDPGMEXP) instead EXPORT(*ALL) on the CRTSRVPGM command.

• If you retain previous signatures to ensure upward compatibility for
applications bound to a service program, keep the following rules for
system-generated signatures in mind:

− The order in which the modules are processed.

− The order in which the symbols are exported from the copied modules
determine the signature for service programs.

• Avoid a service program signature change through program fixes.

• Add new exports at the end of the binder source (that is just before the
ENDPGMEXP statement).

• Avoid reordering or removing existing EXPORT statements in your binder
source.

7.8.6 Updating Programs without Re-binding
An ILE program is generally made of many different modules bound together and
very likely the application developer does not ship all the modules objects to the
customer. When a module is changed, re-binding the entire application might be
very cumbersome. That is why OS/400 provides the way to update a program or
a service program without any need to re-bind starting from the modules. Two
commands, UPDPGM and UPDSRVPGM, allow you to substitute an old module
for a new one.

The use of these two commands is particularly suitable in two situations:

• You want to update a specific part of a complex program without reshipping
the entire program or all the modules.

• You want to debug a specific module at the customer site and debug
information is not in the production version of the application.

The system allows you to replace a module with any other module of the same
name, unless you introduce new unresolved references. If the new module has
new imports, the system tries to resolve them and eventually aborts the update if
the imports cannot be found. You can even replace a module with a newer
version having fewer imports. It might happen that some modules in the
program (or service program) result in not being referenced. We call these
modules ″marooned″ modules. With the OPTION(*TRIM) on both update
commands, you get rid of the marooned modules.

If you replace a module with another having fewer exports, the re-creation does
not fail if the missing exports are not needed for re-binding, or if they are not
referenced by the EXPORT list in a service program re-creation. However, if you
specify EXPORT(*ALL) for a service program, the signature changes.

If the replacing module has more exports, EXPORT(*ALL) again changes the
signature of a service program. Pay attention to the situation where the new
exports are duplicate procedures; that is, they are already defined in some other
module. If the module being replaced is positioned before the module with the

Chapter 7. ILE Design Considerations 105

old exports, the new exports win and very likely the behavior of your application
changes.

7.9 Resource Scoping
The default in OPM for database and device file resources is that they are
available to the call stack level that created them. If we take explicit action, say
against a database file by use of the command:

OVRDBF FILE(X)..SHARE(*YES)

or we have created file X with SHARE(*YES), then any programs that open file X
after the override has been issued uses the same ODP. We could also say that
the ODP for file X exists at the call level and is visible to any program called
after that call level. The override has been used with the file open to change the
scoping of the file open.

The scope of a resource determines:

• Its visibility, meaning, whether other procedures or programs running in the
job can use it. If a resource is not seen, then it is not used.

• Its existence, meaning, when the resource is cleaned-up or deleted.

Additional information on resource scoping and overrides is found in the
publication Data Management, SC41-3710.

7.9.1 Overrides and File Opens
When opening a file overridden with share open data path SHARE(*YES), the
system tries to find an existing ODP:

 1. At any call level if you are in the default activation group.
 2. In the same activation group if you are in a non-default activation group.
 3. At the job level.

You can directly influence where the ODP is created by using the OPNSCOPE
keyword on the OVRDBF...SHARE(*YES) command. Thus, an ODP that is opened
scoped to activation group level is not seen or used by a program in a different
activation group.

Warning - Job Level Scoping - Use Carefully!

This is the most inflexible choice and should not be used within an ILE
application. If an AS/400 system runs applications from multiple vendors,
and these applications are accessible within the same OS/400 job, then job
level scoping should not be used.

Consider banning the use of OVRDBF...OVRSCOPE(*JOB) SHARE(*YES) within
your organization. If coded, this may adversely affect any other applications
that run concurrent with yours within a job.

106 Moving to ILE RPG

7.9.1.1 File Open Scope
The scope of a file′s Open Data Path (ODP) affects which programs are eligible
to use the ODP. It does not directly cause these eligible programs to use the
ODP. You must use OVRDBF...SHARE(*YES) to cause eligible programs to share
the same ODP.

The default scope capability on OPNxxxF command is:

OPNxxxF ... OPNSCOPE(*ACTGRPDFN)

Possible OPNSCOPE values are:

*ACTGRP
*ACTGRPDFN
*JOB

Use of OPNSCOPE(*ACTGRPDFN) means ″it depends″:

• When running in the default activation group,
then the ODP is scoped to the call level.

• When running in a non-default activation group,
then the ODP is scoped to the activation group level.

7.9.1.2 Override Scope
The scope of an override affects which programs see the override and thus use
it before they open any files.

The default scope capability on the OVRxxxF command:

OVRxxxF ... OVRSCOPE(*ACTGRPDFN)

Possible OVRSCOPE values are:

*CALLLVL

*ACTGRPDFN

*JOB

Use of OVRSCOPE(*ACTGRPDFN) means ″it depends″:

• When running in the default activation group,
then the override is scoped to the call level.

• When running in a non-default activation group,
then the override is scoped to the activation group level.

Thus, when running in a non-default activation group, you would scope the file
open to the activation group and make it available to all other programs within
the activation group using:

OVRDBF SHARE(*YES)
OPNDBF FILE(myfile) OPTION(option)

Notice the coding for ILE mirrors the coding for OPM; if you use the defaults,
then the system automatically scopes to the activation group level for ILE.

Chapter 7. ILE Design Considerations 107

V3R1 OVRxxxF Default Change

The override scope defaults have changed between OS/400 V3R1 and V2R3.
This is particularly important for developers using ILE C/400 at V2R3, and for
people migrating to ILE at V3R1.

V3R1 : OVRxxxF ... OVRSCOPE(*ACTGRPDFN)
V2R3 : OVRxxxF ... OVRSCOPE(*CALLLVL)

The possible override scope values are:

V3R1 : OVRxxxF ... OVRSCOPE = *CALLLVL or *ACTGRPDFN or *JOB
V2R3 : OVRxxxF ... OVRSCOPE = *CALLLVL or *JOB

7.9.1.3 Override Rules
There is only one override per call, activation group or job level applied to the
file.

If multiple overrides of the same type (call/activation group/job) are issued for
the same file at the SAME call stack level, then only the last one is used; any
others issued at the same level are completely replaced.

Call level overrides are merged together in last-in-first-out sequence from the
call stack.

Follow the six basic rules to determine how a file is opened:

 1. Identify the ACTGRP that you are running.

Ignore this step if you are running in the default ACTGRP.

 2. Identify the highest call stack entry (lowest numeric) for the ACTGRP in
which you are running (the oldest procedure that is on the call stack for this
ACTGRP). Assume the call stack number you identified is N.

Ignore this step if you are running in the default ACTGRP.

 3. Process (merge) all *CALLLVL overrides at a call stack level that is lower
than or equal (numerically greater than or equal) to call level N irrespective
of ACTGRP.

Ignore this step if you are running in the default ACTGRP.

 4. Process any activation group level override for the activation group in which
the open occurred.

Ignore this step if you are running in the default ACTGRP.

 5. Process (merge) any remaining *CALLLVL overrides at higher call stack
levels (less numerically) than call level N.

 6. Process *JOB level overrides.

7.9.2 Override Example
The example in Figure 61 on page 109 is deliberately complex in order to
represent most situations that could occur. We do not, however, expect most ILE
applications to apply all of the override options available against one file.

108 Moving to ILE RPG

The sequence of how overrides are applied to an object is:

Call OPM/ ACTGRP
Level ILE Number Operation Executed

2 OPM *DFTAG OVRPRTF FILE(YYY) FOLD(*YES) OVRSCOPE(*CALLLVL)
3 ILE 000008 OVRPRTF FILE(ZZZ) TOFILE(YYY) DEV(P1)

LPI(6) OVRSCOPE(*CALLLVL)
4 OPM *DFTAG OVRPRTF FILE(ZZZ) CPI(12) OVRSCOPE(*CALLLVL)
5 ILE 000021 OVRPRTF FILE(YYY) DEV(P2) OVRSCOPE(*JOB)
6 ILE 000021 OVRPRTF FILE(ZZZ) LPI(12) OVRSCOPE(*ACTGRPDFN)
7 ILE 000008 OVRPRTF FILE(ZZZ) LPI(9) OVRSCOPE(*CALLLVL)
8 ILE 000008 OVRPRTF FILE(ZZZ) DUPLEX(*NO)

OVRSCOPE(*ACTGRPDFN)
9 ILE 000008 OVRPRTF FILE(YYY) LPI(5) OVRSCOPE(*ACTGRPDFN)

 10 ILE 000008 OPEN FILE(ZZZ)

Figure 61. Override Example

7.9.2.1 Override Example Solution
What is the result of the open all call level 10?

The open results in the following:

FILE(YYY) DEV(P2) LPI(5) FOLD(*YES) CPI(12)

Here is the step-by-step solution to the example:

 1. At level 10, we are opening file ZZZ. So we first look for an override at level
10 for file ZZZ. There are none.

 2. Move to the next lower call level and again look for an override. The
override at level 09 is not for file ZZZ, so we ignore it and continue.

 3. At level 8, we find an override and it is for file ZZZ. However, it is an
activation group override (determined by OVRSCOPE). Therefore, we wait
until we process all overrides with call levels greater than or equal to the
call level of the oldest procedure in the activation group in which the open is
occurring. In this case, the activation group the open is in, is 000008, and the
oldest procedure for activation group 000008 is at call level 3. So, we wait
until we process all call level overrides greater than or equal to level 3
before we process this one. Continue on.

 4. At level 7, we find an override for ZZZ, and it is a call level override, so we
process it. We pick up the attribute LPI(9) for file ZZZ. Continue on to the
next lower level.

 5. At level 6, we see another override for ZZZ. We do not process it because it
is an activation group level override for a different activation group. We
ignore this override completely.

 6. At level 5, there is an override, but not for ZZZ. Move on to level 4.

 7. At level 4, we find a call level override for ZZZ, so we process it. Now we
pick up CPI(12) in addition to LPI(9). Continue on.

 8. At level 3, we again find a call level override for file ZZZ, so we process it.
Notice that this involves file redirection. This means that we are no longer
opening file ZZZ, but instead we are opening file YYY. We also pick up

Chapter 7. ILE Design Considerations 109

DEV(P1) and we replace LPI(9) with LPI(6). Remember, the lower the call
level, the higher the priority. Continue on.

 9. It is now time to process any activation group level overrides, because we
have processed all call level overrides greater than or equal to the oldest
program or procedure in the activation group. Due to the file re-direction,
we are looking for any activation group level overrides for file YYY. At level
9, there was an activation group level override issued, specifying LPI(5). So
at this point we have FILE(YYY) LPI(5) CPI(12) DEV(P1). Now we continue
with call level overrides.

10. At level 2, we find a call level override for YYY, so we process it. We pick up
FOLD(*YES). Continue on to level 1.

11. There are no overrides for call level 1, so we are finished with call level
processing. All we have left is the job level.

12. At level 5, we see a job level override and it is for YYY, so we process it.
Job level has the highest priority of any override, so we replace DEV(P1) with
DEV(P2).

13. FINISHED...... The final result is:

• CPI(12) from level 4

• FILE(YYY) from level 3

• LPI(5) from the AG level override issued at call level 9

• FOLD(*YES) from level 2

• DEV(P2) from the job level override issued at call level 5

7.10 Transparency
With the ILE, a new facility called transparency was added to certain system
facilities. This new facility is best explained by an example.

The ILE CL source (type CLLE) shown in Figure 62 was used to create ILE *PGM
EX1C. This source is contained in file QDESIGN in library GG244358. To install
library GG244358, refer to Appendix A, “Diskette Install Instructions” on
page 177.

/* CL program to highlight transparency +
- performs an override SHARE(*YES) on file PF01 +
- DSPJOB does not show the override (transparency off) +
- DSPOVR does show the override (transparency on) */

OVRDBF FILE(PF01) SHARE(*YES)
OPNDBF FILE(PF01) OPTION(*INP)
DSPJOB
DSPOVR
CLOF OPNID(PF01)
DLTOVR FILE(*ALL)

Figure 62. Transparency Example

Since we only have one module, we used the command:

CRTBNDCL PGM(EX1C) DFTACTGRP(*NO) ACTGRP(APP_EX1C)

110 Moving to ILE RPG

If you want to try this example, you should create a physical file (CRTPF) called
PF01 in QTEMP. Note that there is only one QTEMP library in a job, thus it now
acts as a repository for all applications that run in the same job. When the
program EX1C is called, we first see the DSPJOB screen and take option 15
Display File Overrides.

� �
Display All File Overrides

 Job . . : P23KRZ75D User . . : QSECOFR Number . . : 014859
 Call level : *

 Type options, press Enter.
5=Display override details

 Opt File Level Type Keyword Specifications

(No file overrides)� �
Figure 63. DSPJOB - Display File Overrides

There are no overrides shown because the system program used to show
overrides from DSPJOB does not use transparency. Since this system program
runs in the default activation group, it only looks in the default activation group
for any overrides. It cannot look in a user activation group, because it has not
been told to look outside the activation group in which it is running (be
transparent) to fulfill the request.

If you want to see all the overrides, you must use the DSPOVR command that
has transparency turned on. You should also take F11-All File Overrides option,
available only when overrides exist, in order to see if there are any other
overrides that might overlay yours (such as one at the job level).

� �
Display All File Overrides

 Call level : *

 Type options, press Enter.
5=Display override details

 Opt File Level Type Keyword Specifications
PF01 *ACTGRP DB SHARE(*YES)

� �

In order to set up an interactive test environment, it is often necessary to
manually enter the File Override or File Open commands and then call
programs. The additional consideration in the ILE environment is that if your
program runs in a named activation group, then you must ensure that you
access an IBM command processing routine that has transparency. Please be
aware that the QCMD routine used to interactively enter CL commands for OPM
application testing does not have transparency. Thus, all commands entered
following a call to QCMD are run in the default activation group. The list below
has been created to help you perform better problem determination.

Chapter 7. ILE Design Considerations 111

• What activation group is the procedure in? Use SYSREQ Option 3 (DSPJOB)
to determine the activation group you are currently in; look at the call stack
entries.

If your program was created with ACTGRP(*CALLER), be careful that it is not
running in the default activation group by mistake and thus behaving
differently to how it behaves in a non-default activation group.

• If your program works (does not issue errors) but does not work as
designed, or if it runs in a named activation group, you must issue a
RCLACTGRP command to delete the named activation group and deactivate
any programs associated with that activation group.

Problem scenario:

Program PGM01 runs in activation group AG_PGM01. It does not issue
errors, but you run it and find it does not function as designed. You
recompile PGM01, with the changes and then call PGM01 again. The
changes you made are not reflected.

The compile has changed the pointer for program PGM01 in activation group
AG_PGM01 to point to program PGM01 in QRPLOBJ. Clearly, you must use
RCLACTGRP before retesting the recompiled program.

In summary, if you cannot recall the exact sequence of steps already taken and
you want to retest, you should issue a RCLACTGRP from outside the test
activation group (ensuring that you have returned back up the call stack to be
outside the test activation group rather than performing a call and thus leaving
one or many test activation group procedure or procedures on the call stack.

7.11 Ending an ILE Program
We will now review the RPG program termination options available within ILE.
Also shown in Table 20 is the effect that the Reclaim Resource command has on
ILE programs. In order to end a program or exit the application (leaving it active
for later use), the end program operations of RETURN or SETON LR are used,
just as they were in OPM.

Table 20. ILE Program Termination

Default AG

OPM *PGM

Default AG

ILE Compatibility
Mode *PGM

Default AG

ILE *PGM (Not
Comp. Mode)

Non-Default AG

ILE *PGM

RETURN Static storage stil l
assigned

Files left open

Static storage stil l
assigned

Files left open

Static storage stil l
assigned

Files left open

Static storage stil l
assigned

Files left open

SETON LR Static storage
returned to
system

Files closed

Static storage
returned to
system

Files closed

Static storage stil l
assigned but
flagged for
re-init ial ization

Files closed

Static storage stil l
assigned but
flagged for
re-init ial ization

Files closed

RCLRSC Static storage
returned to
system

Files closed

Static storage
returned to
system

Files closed

Static storage stil l
assigned but
flagged for
re-init ial ization

Files closed

n/a

112 Moving to ILE RPG

Note: n/a = not appl icable

7.12 Ending an Application
In ILE, there is a distinct difference between exiting an application and ending an
application. Exiting an application means that you return control up the call
stack to a point outside the application′s activation group or groups, leaving the
application activation group or groups, and all associated resources still ready to
go.

Ending an application means that you are not using that application again in the
job; thus you want to totally close down all activation group or groups associated
with the application, closing down all its files and deactivating all its programs.

Note that there is no difference between ending and exiting an application
running in a *NEW activation group; the activation group is deleted as soon as a
control returns up the call stack to the caller of the application. Please refer to
the section 7.3.5, “Activation Group Recommendations” on page 91 for further
details.

Before examining how to end an application in ILE, we will first review how
applications are typically ended in OPM.

7.12.1 OPM RPG Application Example
The OPM Order Entry application in Figure 64 on page 114 consists of three
programs, OE-1 that calls OE-2, that calls OE-3. Without ILE run unit support,
when the user decides to end the Order Entry application, OE-2 must call OE-3 to
tell OE-3 to SETON LR, such that OE-3 ends. OE-3 then ends and returns control
to program OE-2. Since it was within program OE-2 that ending the application
was initiated, program OE-2 now ends with LR on and returns control to program
OE-1, instructing program OE-1 to end with LR on. Program OE-1 then ends with
LR on and returns control to the menu program.

Note that since ending the application was initiated within program OE-2, it was
necessary to perform an extra dynamic call to program OE-3 in order to close
down this program.

The way described would be the proper way to clean up resources used by an
application.

Chapter 7. ILE Design Considerations 113

JOB
┌───┐
│ │
│ │
│ │
│ User Runs User Ends │
│ OE Appln. OE Appln. │
│ │ │ │
│ │ │ │
│ ┌───────────┐ � � │
│ │ MENU │ ──────────� ┌────────┐──�┌────────┐──�┌────────┐ │
│ │ │ �────────── │ OE─1 │�──│ OE─2 │�──│ OE─3 │ │
│ │ 1.Order │ └────────┘ └────────┘ └────────┘ │
│ │ Entry │ │
│ │ │ │
│ │ 2.Accts │ │
│ │ Rcvble │ ──────────� ┌────────┐──�┌────────┐ │
│ │ │ �────────── │ AR─1 │�──│ AR─2 │ │
│ └───────────┘ └────────┘ └────────┘ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
│ │
└───┘

Figure 64. Example - Ending an OPM RPG Application

In some cases, there has been misuse or inefficient use of the RCLRSC
command to clean up dangling programs retrospectively, since the application is
not designed to perform clean-up.

Some applications have adopted an approach of using RPG RETURN
everywhere, and then simply using RCLRSC at a higher call stack level. This
lack of attention to ending an application can cause performance problems, not
just in the job issuing the RCLRSC but for all jobs using files closed by the
RCLRSC command.

7.12.2 ILE RPG/400 Application Example
Figure 65 on page 115 shows an application control benefit available in ILE that
is similar to run unit control. It is one way to use activation groups to help make
application ″clean up″ easier.

You recall that an activation group is a kind of ″sub job″ with its own overrides,
file opens and commit cycles.

A run unit concept has been a part of the COBOL language standard and of
COBOL/400 in the past. With ILE, other ILE languages can also benefit from the
run unit concept.

114 Moving to ILE RPG

JOB
┌───┐
│ activation group: OE │
│ ┌─ ── ── ── ── ── ── ── ── ── ── ── ── ──┐│
│ │ ││
│ │
│ │ User ends ││
│ Default Act Grp OE Appln. │
│ ┌─ ── ── ── ──┐ │ │ ││
│ ┌───────────┐ � │
│ ││ MENU ││ OE │ ┌────────┐ ┌────────┐�──┌────────┐ ││
│ │ │ ────────� │ OE-1 │──�│ OE-2 │──�│ OE-3 │ │
│ ││ 1.Order ││ │ └────────┘ └────┬───┘ └────────┘ ││
│ │ Entry │ └─ ── ── ── ── ── ── ┼─ ── ── ── ── ── ──┘│
│ ││ ││�─────────────────────────────┘ │
│ │ 2.Accts │ ┌─ ── ── ── ── ── ── ── ── ──┐ │
│ ││ Rcvble ││ AR ┌────────┐ ┌────────┐ │
│ │ │ �───────�│ │ AR-1 │�─�│ AR-2 │ │ │
│ │└───────────┘│ └────────┘ └────────┘ │
│ └─ ── ── ── ─┘ │ │ │
│ │
│ │ │ │
│ │
│ │ │ │
│ │
│ └─ ── ── ── ── ── ── ── ── ──┘ │
│ activation group: AR │
└───┘

Figure 65. Example - Ending an ILE RPG/400 Application

From the menu, a user chooses to run the Order Entry (OE) application.

With run unit support, the order entry application is set up as its own run unit by
specifying that it run in its own activation group (OE). Then when the user
chooses to exit the application from OE-2, the OE-2 program can run an
operation that exits the entire OE application, closing up files and cleaning
program activations for the entire run unit. This simplifies the coding required
for application exit operations. This new operation might be compared to the LR
in an RPG program, except that this new operation (in RPG, the CEETREC
bindable API enables a normal run unit termination) acts as a ″giant LR″ --
ending not only the program, but also the application.

The mechanism used to define the boundaries of a run unit is called a control
boundary within an activation group. A control boundary serves as a delimiter
for an application run unit, such that the boundary of the application run unit is
then defined. Please refer to 7.6, “Control Boundary” on page 94 for more
details on control boundaries.

All the programs in an application are created specifying the option that they run
in a specific Activation Group. Thus a run unit spans an entire activation group
if there is only one control boundary in the activation group.

7.12.3 Ways of Ending an ILE Application
We assume that you have coded your ILE application to run in a named
activation group. There are three ways of ending an ILE RPG/400 application.

• End application normally and exit to caller of application.

Use the end run unit normally bindable API, CEETREC.

• Use RETURN, SETON LR or a mixture of both in all programs on the call
stack, such that control is returned to the caller of the application.

You should issue the RCLACTGRP ACTGRP(name) command to delete the
application′s activation group.

Chapter 7. ILE Design Considerations 115

• Exit the application, signalling that ending the application was abnormal, and
return to the caller of the application.

Use the end run unit abnormally bindable API, CEE4ABN if an exception your
application considers fatal has occurred.

You may have to issue a RCLACTGRP ACTGRP(name) to delete the
application′s activation group.

Once your application running in activation group APP_ag1 has ended, you
should clean up the activation group using the RCLACTGRP ACTGRP(APP_ag1)
command. This will (providing there are no programs/procedures on the call
stack for the activation group):

• Close all open files scoped to the activation group.
• Return static storage to the system for all programs and procedures called

within the activation group, thus deactivating these programs.
• Delete the activation group.

When ending an ILE application running under commitment control, it is
necessary to ensure that any uncommitted database changes are correctly
handled, activated programs are ended, and the activation group is deleted. You
should not consider following these steps if the activation group is needed later
in the same job.

Table 21 (Page 1 of 2). Effect on Resources, Depending on the Way of Ending a
Procedure at a Stack Level Closest to a Hard- or Soft Control Boundary

AG Ending a
procedure

HCB SCB

AG PGM File AG PGM File

*NEW Return Gone Gone Close - - -

LR Gone Gone Close - - -

Hard Leave Gone Gone Close - - -

Named Return Stays Stays Open Stays Stays Open

LR Stays Re-init Close Stays Re-init Close

Hard Leave Gone Gone Close Stays Stays Open

Hard Leave +
RCLACTGRP

- - - Gone Gone Close

116 Moving to ILE RPG

In order to directly view the effects of the ILE end options, please refer to
example 7.12.3.3, “Example - Ending ILE Applications and Procedures” on
page 118.

Issue a HARD LEAVE

When a procedure issues a hard leave, if the nearest control boundary is a
HARD CONTROL BOUNDARY (thus there is only one control boundary in the
activation group), this will:

• Close all open files scoped to the activation group.
• Return static storage to the system for all programs and procedures called

within the activation group.
• Delete the activation group.

Issue a RCLACTGRP

This is the ILE equivalent to the OPM RCLRSC command. It should not be
overused as it is a heavy resource-user since it performs work similar to
RCLRSC. If you specify RCLACTGRP *ELIGIBLE, then all ILE activation group or
groups in the job that do not have procedures on the call stack is deleted.

We recommend that you control clean-up in your application by using
RCLACTGRP ACTGRP(myactgrp) to clean up individual named activation groups,
rather than using the ACTGRP(*ELIGIBLE).

End of Job

This is the heaviest resource consumer and should be avoided, where possible.

Table 21 (Page 2 of 2). Effect on Resources, Depending on the Way of Ending a
Procedure at a Stack Level Closest to a Hard- or Soft Control Boundary

AG Ending a
procedure

HCB SCB

AG PGM File AG PGM File

*DFT Return - - - - Stays Open

LR - - - - Re-init Close

Hard Leave - - - - Stays Open

Hard Leave +
RCLRSC

- - - - Re-init Close

Explanation:

This table applies to ILE mode programs only. When run in the default activation
group (*DFT) and ending with Hard Leave + RCLRSC , this means that after return in
an OPM call stack, a RCLRSC is used. When run in a named activation group and
ending with Hard Leave + RCLACTGRP , this means that after return in the previous
activation group, a RCLACTGRP ACTGRP(named) is used.

Gone Activation group is deleted or program is no longer active
Close File is closed
Stays Activation group is stil l active, program is stil l active
Open File is still open
Re-init Program is still active, but static storage is initialized upon next call

entrance

Chapter 7. ILE Design Considerations 117

7.12.3.1 CEETREC - Normal Termination
This bindable API functions the same as a STOP RUN in COBOL in that the run
unit in which the API is called is ended. If the nearest control boundary is also
the first control boundary in a named activation group (a HARD CONTROL
BOUNDARY) and this API is called, then static storage and ODPs for this
activation group is freed and then the activation group is deleted.

Note that this API causes a NORMAL ending of a run unit. Thus, if the
application runs under commitment control, the activation group deletes any
pending database changes that are committed.

Calling this bindable API is simple as it is a bound call with optional variables.
Thus, in RPG IV a call involves:

C callb ′ CEETREC′

For more information on this and other bindable CEE APIs provided with the ILE
refer to the publication System API Reference, SC41-3801.

7.12.3.2 CEE4ABN - ABNormal Termination
The abnormal termination functions nearly the same as the normal, except that:

• Uncommitted changes are rolled back.
• A CEE9901 Application error exception message is sent to the caller of

EVERY control boundary until either the message is handled or the
application is ended.

•

C callb ′ CEE4ABN′

Note:

Message CEE9901 and other CEE messages are found in message file QCEEMSG
in library QSYS.

7.12.3.3 Example - Ending ILE Applications and Procedures
Purpose

This example clearly demonstrates how the different end ILE application options
work in practice.

You are able to cause procedures ET02, ET04 and ET06 to end with one of the
following options:

 1. RETURN - end procedure
 2. SETON LR - end procedure
 3. Normal End Run-Unit (CEETREC) - end run unit
 4. Abnormal End Run-Unit (CEE4ABN) - end run unit

How to Run the Example

The library GG244358 is shipped on diskette with this publication. Restore this
library using the instructions in Appendix A, “Diskette Install Instructions” on
page 177. This library contains all source and program code for this ILE
example. Please see member DESEX1 in source file GG244358/QDESIGN for the
commands used to create the ILE modules and ILE programs in this example.

118 Moving to ILE RPG

Run the example by entering the commands:

ADDLIBLE GG244358
RCLACTGRP *ELIGIBLE
CALL ET01
DSPJOB

We suggest that you use the same end option (for example, return) in each of
the three ILE procedures ET02, ET04 and ET06.

Notice that when you use return in all of the procedures, both activation groups
END and AG01 are still present in the job (all programs activated in these
activation groups are still there, with their static storage assigned; there is no
way to see this on the system) and all files are still open.

If you use the end run unit option in all of the procedures, then all programs are
deactivated, all files are closed and the activation groups are deleted.

We now suggest you use a combination of RETURN and CEETREC (NORMAL end
of run unit).

Purpose of Example

To illustrate what happens when you take different ILE procedure end options,
please use the DSPJOB command to review activation groups, open files and the
program call stack.

When control returns from program ET01, please ensure you issue the DSPJOB
command to see whether activation groups END and AG01 are still present in the
job or not.

Diagrammatically, the programs and procedures that you are calling are now
shown in Figure 66 on page 120.

Chapter 7. ILE Design Considerations 119

┌Default AG─ ─┐ ┌AG=END── ── ─┐ ┌AG=AG01── ── ┐

│ │ │ ┌ET01─*PGM┐ │ │ │
CALL │ ┌HCB──┐ │

│ ├───────┼─┼─�ET01 │ │ │ │ │
│ │ │ │

│ │ │ │ └─┬───┘ │ │ │ │
│ │CALLB│

│ │ │ │ │ │ │ │ ┌ET03─*PGM┐ │
│ ┌─�───┐ │ CALL │ ┌HCB──┐ │

│ │ │ │ │ET02 ├─┼─┼───────┼─┼─�ET03 │ │ │
│ │ *│ │ │ │ │

│ │ │ │ └─────┘ │ │ │ │ └─┬───┘ │ │
└─────────┘ │ │CALLB│

│ │ │ ┌ET05─*PGM┐ │ │ │ │ │ │
│ ┌SCB──┐ │ CALL │ ┌─�───┐ │

│ │ │ │ │ET05 �─┼─┼───────┼─┼─┤ET05 │ │ │
│ │ │ │ │ │ *│ │

│ │ │ │ └─┬───┘ │ │ │ │ └─────┘ │ │
│ │CALLB│ └─────────┘

│ │ │ │ │ │ │ │ │
│ ┌─�───┐ │

│ │ │ │ │ET06 │ │ │ │ │
│ │ *│ │

│ │ │ │ └─────┘ │ │ │ │
└─────────┘

└─ ── ── ── ──┘ └─ ── ── ── ──┘ └─ ── ── ── ──┘

Figure 66. Example - Ending an ILE Application

Notes:

 1. * Indicates the procedure in which you can choose how to end:

• RETURN - end procedure
• SETON LR - end procedure
• Normal end run unit (CEETREC) - end run unit
• Abnormal end run unit (CEE4ABN) - end run unit

 2. HCB - Hard Control Boundary

 3. SCB - Soft Control Boundary

What is in the example?

Program ET01 consists of procedures ET01 and ET02, and is created to run in
activation group END.

Program ET03 consists of procedures ET03 and ET04, and is created to run in
activation group AG01. This program is dynamically called from procedure ET02
in program ET01.

Program ET05 consists of procedures ET05 and ET06, and is created to run in
activation group END. This program is dynamically called from procedure ET04
in program ET03.

Note that procedures ET01 and ET03 are hard control boundaries in activation
groups END and AG01 respectively. Procedure ET05 is a soft control boundary.
It is the presence of this soft control boundary in activation group END that
prevents the activation group END from being deleted when a hard leave is
issued from procedure ET06.

120 Moving to ILE RPG

Each of the procedures in these programs uses RPG display to keep track of
what is happening; ILE CL procedure DLY issues a Delay Job of three seconds
for you to note the RPG DSPLY output. ILE CL procedure DJ issues a Display
Job for you to review the call stack (option 11), open files (option 14) and
activation groups (option 18). Finally, procedure ETEND is called from
procedures ET02, ET04 and ET06 enabling you to specify the end option.
Procedures ETEND, DJ and DLY are deliberately NOT shown on the diagram, in
order to keep the diagram simple. Please review the source in file
GG244358/QDESIGN to see the exact statements that are being run.

If you use the end run unit abnormal (CEE4ABN) option, we recommend that you
review the job log in order to better understand the ILE errors that are being
placed.

7.12.4 Use of RCLRSC
This command is only run to clean up resources assigned to the default
activation group. It is not used to clean up resources in either a user-named or
*NEW activation group as it cannot see these resources.

When this command is run against OPM programs and ILE compatibility mode
programs, then the programs′ ODPs are deleted and all static storage attributed
to these programs is freed.

When this command is, however, run against ILE procedures activated in the
default activation group (for example, created with
CRTPGM...ACTGRP(*CALLER)) and called by another program or procedure
running, ODPs are deleted and all associated static storage is marked for
refresh upon the next call to the procedure.

Chapter 7. ILE Design Considerations 121

122 Moving to ILE RPG

Chapter 8. Development Environment

Today, change is intrinsic to most software engineering endeavors. Applications
consist of many components, some of which are based on previous versions and
all of which may be undergoing constant revision. The problems of application
development are further complicated by the interdependences that exist between
components. Changing just one component may result in changes to several
other components that depend on it.

To build and maintain high-quality applications efficiently, application
development organizations must have a consistent and systematic approach to
manage changes they are making to their applications. They are looking for
standard methods and procedures and, where possible, automation to improve
productivity and reduce backlogs.

Development organizations need to be able to organize and manage all the
components of an application as a unit. They also need to be able to control the
baseline or master version of an application. They often want to control multiple
versions of components or of entire applications. And they want to be able to
make quick fixes to the code they are developing. They need a mechanism that
allows for shared access to components, and they want the means to plan and
manage their entire development process. They must reduce the time they
spend in maintaining applications so that they have more time to develop new
applications.

8.1 Application Development Manager/400
The Application Development Manager/400 product answers many of the needs
of today′s application developers. It provides a team of application developers,
working in an AS/400 environment, with a mechanism for efficiently and
effectively managing their development environment and its application objects
throughout the life of the application.

Benefits

• A standard development process

A development team can define the application that suits its organization
and methods.

• Increased productivity

This product organizes both the developers writing the code and the code to
be written. As developers write their code and compile and test it, they work
efficiently and productively in a well-organized development environment
where changes to their code are managed.

• Flexibility and versatility

The structure defined at the beginning of a project does not restrict the
development team. This structure is changed and refined at any time, as the
demands of the project change. Developers are added to or removed from
the project, and code is shared and reused.

 Copyright IBM Corp. 1995 123

• Support for several versions of an application

Developers can create and maintain multiple versions of an application in
both the Application Development Manager/400 development environment
and in a production environment. They can easily identify which versions of
source and objects belong to a particular version of the application.

• An automated build process

Developers can rely on the powerful build process to build, or compile, the
source code for an application more quickly. They no longer have to analyze
the relationships between pieces of code; the build process does this for
them automatically.

• Data security and integrity

The structure that the Application Development Manager/400 environment
provides ensures the integrity and security of production, test, and
development versions of the code. Developers are able to work with the
different versions of the code. And they work in an environment where they
are assured that they cannot overwrite one another′s changes.

• An audit trail

A project log records what has changed in the application, the commands
used to change the hierarchy or components it contains, who issued the
commands, and when the activity took place.

• Notification about the status of any component of the application

Developers receive messages that tell them that a part they are requesting
is already being changed, that it exists in another branch of the project
hierarchy, and that a change made in one version may also have to be made
in the other version. This is useful when fixes to a production version of a
part have to be propagated to the follow-up version of the part. The person
doing this work needs to know where the part is in the hierarchy and who
has checked it out to a development group.

• Ability to package applications

The Application Development Manager/400 product provides a mechanism
that automates the packaging of applications through the use of functions of
the SystemView System Manager/400 licensed program. For more details on
how this is achieved, see the Redbook, Software Life Cycle Management with
SystemView Sytem Manager/400, GG24-4187.

8.1.1.1 Who is using Application Development Manager/400?
The two main types of users for this product are:

• The project administrator

The person who creates a project is automatically authorized to work on the
project as the project administrator. This person defines the phases, such
as development and testing, through which components of an application go
before they are actually placed in a production environment. This person
takes the following actions:

− Maintain the project hierarchy, divided into groups.
− Enroll and remove developers from the project and grant them authority

to the different groups.

124 Moving to ILE RPG

• The developer

The application developer is any member of the development team who has
been given access to the application by the project administrator.
Application developers usually only have update access to specific groups.
They do the following tasks:

− Create or change source code (parts) of the application in a development
group. Parts to be modified are copied from the application group
already under control of Application Development Manager/400.

− Compile parts and applications using the build process that automates
much of this work.

− Test the application (or parts), either within the control of ADM/400 or
outside by moving the code to another test environment.

In this chapter, we discuss more in detail what actions should be taken for a
successful implementation of the Integrated Language Environment concept. We
have chosen the Application Development Manager/400 product as the base for
our development environment.

The Application Development Manager/400 Introduction and Planning Guide,
GC09-1807, gives more detailed information on the usage of this product.

8.1.2 Naming Conventions
Since there are so many objects (parts) involved in the development process of
ILE applications, some naming conventions are very helpful to identify relations
and dependencies between the different parts. Let us first start with a list of
typical part types involved:

• Source
• Module
• Program
• Service program
• Binding source
• Binding directory
• Build option

The build option (BLDOPT) is a very important part, since it can influence the
creation of other parts. Application Development Manager/400 takes by default
the normal create commands from the system; the next level of control occurs
when you create a QDFT BLDOPT part in which you describe your defaults for a
certain project or group. And for complete control, you can make a BLDOPT
part with the same name as the source part that you want to build (create). This
overrules all other BLDOPT create definitions.

Creating a PGM requires a build option part with the same name as the entry
point module.

Figure 67 on page 126 shows an example of how this is used as documentation
as well.

Chapter 8. Development Environment 125

CRTPGM PGM(MYPROGRAM) MODULE(MODULE1 +
MODULE2 +
MODULE3) +

TEXT(′ My new program′) +
BNDSRVPGM(SRVPGM01) +

ACTGRP(MLGILE) +
USRPRF(*USER) +
REPLACE(*YES) +

AUT(*EXCLUDE)

Figure 67. Example of a Bui ld Option for Documentation

Figure 67 shows you what program is built, which modules were used, what
service programs are bound, and the activation group it is run in. Remember
that without the use of &ADM, you have to document this somewhere else;
otherwise you are losing control in the change management process.

If you are not using Application Development Manager/400 and you need to
re-create the program, all information needed for a re-create is available in the
program description itself, but this information is not available in an outfile (only
interactive or as *print). If you use the example of the pointer program in 3.7,
“Example Using Pointers in RPG IV” on page 53 you can store that information
in an outfile, and generate your own CRTPGM.

Note: The UPDPGM and UPDSRVPGM commands are not supported in
Application Development Manager/400.

8.1.3 Relationships

What are the relations between some of the parts that are mentioned before?

Type Creates Has a create-relation with
===
SOURCE MODULE

MODULE PGM Binding directory
Other modules
Entry module (PEP)
Service program

MODULE SRVPGM Binding source
Binding directory
Other modules
Service program

Figure 68. Create Relations

In Application Development Manager/400, the same table should be constructed
as follows:

126 Moving to ILE RPG

Create Part Triggered by Has a create-relation with
==
MODULE SOURCE

PGM MODULE Binding directory
Other modules
Entry module (PEP) (E-module)
Service program

SRVPGM BNDSRC Binding source
Binding directory
Other modules
Service program

Figure 69. Trigger Relations

So a naming convention that fits the Application Development Manager/400
environment could look like:

Create Part Involved parts Remarks
===
MODULE=modulename SOURCE =modulename Required

BLDOPT =QDFT Optional Project default

PGM =E-modulename MODULE =E-modulename Required
MODULE =modulename Optional
SRVPGM =servicepgm Optional
BNDDIR =binddirname Optional
BLDOPT =E-modulename Required

Contains the CRTPGM with
MODULE
TEXT
ENTMOD
BNDSRVPGM
BNDDIR
ACTGRP

SRVPGM=servicepgm BNDSRC =servicepgm Required
BNDDIR =binddirname Optional
MODULE =modulename Optional
BLDOPT =servicepgm Required

Figure 70. Part Naming Rules

Using this kind of naming convention is probably not taking care of everything,
for example, if you are using the E-module (Entry module) also as a non-entry
module in other program binds, the naming convention is broken. But you need
to think about using some kind of a naming convention in your environment,
since there are so many more objects (parts) involved today in an OPM
environment.

8.2 Introduction of the Walk-Through Scenarios
We use a modified version of the mailing list application as described in the
Application Development by Example, SC41-9825, manual as the base application
for this chapter of the Redbook. The source code was first migrated into ILE and
enhanced to reflect some of the typical scenarios needed for this ILE example.

Chapter 8. Development Environment 127

A description of the mailing list application is found in D.2, “Mailing List
Application Description” on page 194. Figure 71 on page 128 shows the menu
interface for the mailing application that we are creating.

We recommend access to an AS/400 system while going through this scenario.

� �
Mailing List Menu

System: RCHASM02
 Select one of the following

1. Inquire into Mailing List Master
2. Maintain Mailing List Master
3. Submit mailing by account number
4. Submit special analysis report
5. Query Mailing List file

 Selection
 ===>

 F3=Exit� �
Figure 71. Mailing Application Menu

The migration is done using the CVTRPGSRC command. A full description of
this kind of process is found in Chapter 4, “Conversion Considerations” on
page 57. All the sources are located in the library GG244358 supplied with this
publication. In Appendix A, “Diskette Install Instructions” on page 177 you will
find the instructions on how to install this library on your system.

The CVTPART command in Application Development Manager/400 also provides
the capability of converting an RPGSRC part to a RPGLESRC part. The same is
true for CL sources as well.

8.2.1.1 Scenarios

• 8.2.2, “Setup of the Application Development Manager/400 Environment” on
page 129

We will first create the Application Development Manager/400 environment to
work with. This includes the definition of a project and the definition of
groups to work with.

All the migrated source parts are imported into this environment and then
we will build the initial application. This application is the same as the
application described in the appendix D.2, “Mailing List Application
Description” on page 194.

For the most part, this is done by running a program. The last part of this
scenario is done manually to show the aspects of building (binding)
programs.

• 8.2.3, “Enhance the Mailing Application (Service Programs)” on page 132

This scenario introduces the use of service programs and guides you in
creating and changing the necessary sources. Furthermore, it shows the
capabilities of Application Development Manager/400 in knowing what should
be rebuilt, since it has stored all the relations from the previous build
processes.

128 Moving to ILE RPG

• 8.2.4, “Enhance a Service Program (Signature Implications)” on page 138

We continue with the service programs by merging them. Since not every
procedure in a service program is used by the program that uses that
service program, we can merge the two service procedures into one service
program.

We discuss and show the implications of the signature checking.

• 8.2.5, “Import/Export Variables in ILE” on page 140

We start with the setup of the Application Development Manager/400
environment to work with and discuss the needs for this implementation.

8.2.2 Setup of the Application Development Manager/400 Environment

Project = MLGI

┌─────────────┐
│ PRD │ Production level
│ │
│ │

┌──────� PRD │
│ └──────┬──────┘

 │ │
 │ │
 │ ┌──────�──────┐

Promote │ DEV │ Development level
code │ │

 │ │ │
 └──────� PRD │

└─────────────┘

Figure 72. Project Structure

 1. Create the project as shown in Figure 72 to work with all the necessary
groups.

Call the following program to create the project and groups and import all
the source members:

CALL GG244358/CRTADMENV

A complete description of the program is in D.1.1, “ADM Setup” on page 189

 2. Build the application by:

• Starting ADM/400 with the command STRPDM
• Take option 4, type MLGI and press the Enter key
• Take option 12 to work with project MLGI
• Take option 12 to work with group PRD
• Take option 14 and build the parts by prompting for the BLDPART

command (F4)

Chapter 8. Development Environment 129

� �
Build Part (BLDPART)

 Type choices, press Enter.

 Project PRJ > MLGI____

 Group GRP > PRD_____

 Type TYPE > *ALL____
 Part PART > *ALL____
 Language LANG *ALL____
 Search path SCHPTH *DFT____
 Scope of build SCOPE *NORMAL
 Force build FORCE *NO
 Build mode BLDMODE *COND
 Save list SAVLST *NO
 Perform bind step BINDSTEP *YES
 Part list PARTL *NONE� �

Figure 73. Building the Initial Application

The build report should look like this:

5763PW1 V3R1M0 Application Development Manager/400 - Build Report 12/18/94

Project : MLGI 15:04:16
Group : PRD
Type : *ALL
Part : *ALL
Search path : *DFT
Scope of build : *NORMAL
Force build : *NO
Build mode : *COND
Save list : *NO
Perform Bind Step : *YES
Search path part used : *DFT
Search path used : MLGI PRD

5763PW1 V3R1M0 Application Development Manager/400 - Build Outputs 12/18/94 15:04:16
DDSSRC-PF FILE BLDOPT

Part Group Created Part Group Reason for Building
---------- -------------- ---------- ---------- -------- --------------------------------------
MLGREFP PRD MLGREFP *DFT *NONE Source part has not been built before.
MLGMSTP PRD MLGMSTP *DFT *NONE Source part has not been built before.

DDSSRC-LF FILE BLDOPT
Part Group Created Part Group Reason for Building
---------- -------------- ---------- ---------- -------- --------------------------------------
MLGMSTL PRD MLGMSTL *DFT *NONE Source part has not been built before.
MLGMSTL2 PRD MLGMSTL2 *DFT *NONE Source part has not been built before.
MLGMSTL3 PRD MLGMSTL3 *DFT *NONE Source part has not been built before.
MLGNAML PRD MLGNAML *DFT *NONE Source part has not been built before.
Figure 74 (Part 1 of 2). Build Report Init ial Application

130 Moving to ILE RPG

DDSSRC-DSPF FILE BLDOPT
Part Group Created Part Group Reason for Building
---------- -------------- ---------- ---------- -------- --------------------------------------
MLGINQD PRD MLGINQD *DFT *NONE Source part has not been built before.
MLGMNUD PRD MLGMNUD *DFT *NONE Source part has not been built before.
MLGMTND PRD MLGMTND *DFT *NONE Source part has not been built before.
MLGNAMD PRD MLGNAMD *DFT *NONE Source part has not been built before.

RPGLESRC OBJECT BLDOPT
Part Group Created Part Group Reason for Building
---------- -------------- ---------- ---------- -------- --------------------------------------
MLGINQR PRD MLGINQR QDFT PRD Source part has not been built before.
MLGLBLR PRD MLGLBLR QDFT PRD Source part has not been built before.
MLGLBLR2 PRD MLGLBLR2 QDFT PRD Source part has not been built before.
MLGMTNR PRD MLGMTNR QDFT PRD Source part has not been built before.
MLGNAMR PRD MLGNAMR QDFT PRD Source part has not been built before.
MLGRPTR PRD MLGRPTR QDFT PRD Source part has not been built before.

CLLESRC OBJECT BLDOPT
Part Group Created Part Group Reason for Building
---------- -------------- ---------- ---------- -------- --------------------------------------
MLGMNUC PRD MLGMNUC QDFT PRD Source part has not been built before.
MLGMTNC PRD MLGMTNC QDFT PRD Source part has not been built before.
MLGRPTC PRD MLGRPTC QDFT PRD Source part has not been built before.
MLGRPTC2 PRD MLGRPTC2 QDFT PRD Source part has not been built before.

* * * * * E N D O F B U I L D R E P O R T * * * * *

Figure 74 (Part 2 of 2). Build Report Init ial Application

 3. All modules are created; use F5 to refresh your screen.

So far it looks similar to building a non-ILE application; instead of the
modules, we would have created programs. In order to achieve our
objective of the application structure as shown in Figure 75, we need to
decide which modules are part of what program. For the build process, this
is documented in the build option (BLDOPT) part for a program.

┌──MLGMNUC───┐
│┌──┐│
││ CALL CALL SBMJOB SBMJOB CMD││
│└────┬──────────────┬───────────────┬─────────────┬────────────┬─┘│
└─────┼──────────────┼───────────────┼─────────────┼────────────┼──┘

 � � � � │
┌─MLGINQR─────┐┌─MLGMTNC─────┐┌─MLGRPTC─────┐┌─MLGRPTC2────┐ │
│ ││ ││ ││ │ │
│┌───────────┐││┌───────────┐││┌───────────┐││┌───────────┐│ �
││ MLGINQR ││││ MLGMTNC ││││ MLGRPTC ││││ MLGRPTC2 ││ STRQRY
│├───────────┘││├───────────┘││├──── ──────┘││├──── ──────┘│
││┌──────────┐│││┌──────────┐│││┌──────────┐│││┌──────────┐│
│├� MLGLBLR2 │││├� MLGMTNR │││└� MLGRPTR │││└� MLGRPTR ││
││└──────────┘│││└──────────┘││ └──────────┘││ └──────────┘│
││┌──────────┐│││┌──────────┐││ ││ │
│└� MLGNAMR │││└� MLGNAMR │││ ││ │
│ └──────────┘││ └──────────┘││ ││ │
└─────────────┘└─────────────┘└─────────────┘└─────────────┘

Figure 75. Initial Program Structure

 4. Create all the BLDOPTs for the programs to be built.

You can use the default BLDOPT PGMDFTBLD to make a copy from and then
change the content of the BLDOPT. Or you can use:

CALL GG244358/CPYBLDOPT

Chapter 8. Development Environment 131

to have them all copied in as a part and have some data copied into the
MLGMSTP file (account master file) as well.

Manually you can copy the data with the CPYF command:

� �
Copy File (CPYF)

 Type choices, press Enter.

 From file MLGMSTP Name
Library GG244358 Name, *LIBL, *CURLIB

 To file MLGMSTP Name, *PRINT
Library MLGI.PRD Name, *LIBL, *CURLIB

 From member *FIRST Name, generic*, *FIRST,
 To member or label *FIRST Name, *FIRST, *FROMMBR
 Replace or add records *REPLACE *NONE, *ADD, *REPLACE
 Create file *NO *NO, *YES
 Print format *CHAR *CHAR, *HEX

� �
Use F5 to refresh the screen and display the build options with option=5 and
see whether you agree on their content.

 5. Use option 14 against the MODULEs, for which you need to bind a program:

a. MLGINQR
b. MLGMNUC

 c. MLGMTNC
d. MLGRPTC
e. MLGRPTC2

All programs are created according to the specifications in the CRTPGM
command in the build option (BLDOPT) of the same name as the program.

 6. Use option 45 to Add project library list, which sets the correct l ibrary list for
the job.

 7. Run the application with opt ion=16 for the MLGMNUC program, and play
around with it.

 8. Leave the development environment by F3=Exi t and another F3=Exit .

8.2.3 Enhance the Mailing Application (Service Programs)
We enhance the mailing application by using service programs. Instead of
implementing procedures MLGNAMR and MLGRPTR within the individual
programs, we move them to service programs and make them available to the
application through a bind by reference. At the end, the application structure
should look like Figure 76 on page 133.

132 Moving to ILE RPG

┌──MLGMNUC───┐
│┌──┐│
││ CALL CALL SBMJOB SBMJOB CMD││
│└────┬──────────────┬───────────────┬─────────────┬────────────┬─┘│
└─────┼──────────────┼───────────────┼─────────────┼────────────┼──┘

 � � � � │
┌─MLGINQR─────┐┌─MLGMTNC─────┐┌─MLGRPTC─────┐┌─MLGRPTC2────┐ │
│ ││ ││ ││ │ │
│┌───────────┐││┌───────────┐││┌───────────┐││┌───────────┐│ �
││ MLGINQR ││││ MLGMTNC ││││ MLGRPTC ││││ MLGRPTC2 ││ STRQRY
│├───────────┘││├───────────┘││└────┬──────┘││└────┬──────┘│
││┌──────────┐│││┌──────────┐││ │ ││ │ │
│├� MLGLBLR2 │││├� MLGMTNR │││ │ ││ │ │
││└──────────┘│││└──────────┘││ │ ││ │ │
└┼────────────┘└┼────────────┘└─────┼───────┘└─────┼───────┘
� � � �

 ┌─MLGSRV01──────────────┐ ┌─MLGSRV02──────────────┐
 │ ┌─────────┐ │ │ ┌─────────┐ │

│ │ MLGNAMR │ │ │ │ MLGRPTR │ │
│ └─────────┘ │ │ └─────────┘ │

 └───────────────────────┘ └───────────────────────┘

Figure 76. Program Structure Scenario-2

Start the development environment with STRPDM, select option=4 and enter
project MLGI. Use option 12 to work with the project MLGI and select option 12
again for the Group DEV. Make sure that the Scan hierarchy on the defaults
screen (F18) is set to Y. The screen you look at now is shown in Figure 77:

� �
Work with Parts Using PDM

 Project MLGI
 Specified group DEV
 Position to Position to type . . .

 Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 6=Print
8=Display information 13=Change information 14=Build

Opt Part Type Language Group
MLGMNUC CLLESRC CLLE PRD
MLGMTNC CLLESRC CLLE PRD
MLGRPTC CLLESRC CLLE PRD

More ...

� �
Figure 77. Working with Application Parts

Our base to work from is now the development group.

 1. Create parts, with F6=Create

Chapter 8. Development Environment 133

� �
Create Part (CRTPART)

 Type choices, press Enter.

 Project > MLGI Name
 Group > DEV Name
 Type > BLDOPT Name, BLDOPT, BNDDIR...
 Part > MLGSRV01 Name, *GENERATE
 Language *DFT *DFT, name, *NONE, BND,
 Prompt create command *NO *NO, *YES
 Promote code *GRP *GRP, *NONE
 Source file *TYPE *TYPE, name
 Part list > *NONE *NONE, name
 Text description *BLANK� �

Figure 78. Create a new Part Command

Create the following parts:

• MLGSRV01 BLDOPT
• MLGSRV02 BLDOPT
• MLGSRV01 BNDSRC
• MLGSRV02 BNDSRC

Scroll to the parts just created. Use option=2 (Change) to enter the
information needed for the different parts just created. You can copy the
information from members in the following files in library GG244358:

• File-QMLGBLDOP2 (for build options)

 Member = MLGSRV01
MLGSRV02

When entering the build options, notice that the BLDOPT is already
created completely with all available commands enclosed in comment
statements. Delete the complete source and copy the build option as
previously directed.

• File-QMLGBNDSR2 (for binding source)

 Member = MLGSRV01
MLGSRV02

 2. Create the service programs using option 14 against the BNDSRC parts.

 3. Make sure that all parts are checked in when you start, or run the command:

CHKINPART PRJ(MLGI) GRP(PRD) TYPE(*ALL) PART(*ALL)

 4. Check out the following parts from the PRD group:

• MLGINQR BLDOPT
• MLGMTNC BLDOPT
• MLGRPTC BLDOPT
• MLGRPTC2 BLDOPT

by using option=28 against them.

 5. Use F17 to subset the list shown, and include only the DEV parts.

134 Moving to ILE RPG

� �
Subset Part List

Type choices, press Enter.

Part *ALL *ALL, name
generic

Type *ALL *ALL, type
generic

Language *ALL *ALL, *NONE
language

 Group dev �───────────────────── *ALL, name

From date 01/01/00 Earliest date

To date 12/31/99 Latest date

Text *ALL

� �
Figure 79. Subsetting Parts List

 6. Change the BLDOPT parts just checked out; use opt ion=2.

Remove the modules that become part of the service program from the
module list on the MODULE parameter of the CRTPGM command in all the
build options parts and add the service program to it. Copy the example of
the changed code from the GG244358/QMLGBLDOP2 source file with the
same member name as the BLDOPT part you just checked out.

� �
Create Program (CRTPGM)

 Type choices, press Enter.

 Label
 Program PGM > &ZE

Library > &O
 Module MODULE > &ZE

Library > *LIBL
> MLGNAMR �──────REMOVE

*LIBL
+ for more values > MLGLBLR2

*LIBL
 Text ′ description′ TEXT *ENTMODTXT� �

Figure 80. Example of Changing a BLDOPT of the CRTPGM Command

 7. Re-create the following programs to reflect the changes made.

Use the subset part list F17 to show only type MODULE in all groups

Chapter 8. Development Environment 135

� �
Work with Parts Using PDM

 Project MLGI
 Specified group DEV
 Position to Position to type . . .

 Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 6=Print
8=Display information 13=Change information 14=Build

Opt Part Type Language Group
14 MLGINQR MODULE RPGLE PRD
14 MLGMTNC MODULE CLLE PRD
14 MLGRPTC MODULE CLLE PRD
14 MLGRPTC2 MODULE CLLE PRD

More ...� �
Change the Subset part list to show all the newly created programs in DEV.
Notice that even when they are triggered against the MODULE in the PRD
group, the program is created in the DEV group (under normal development
conditions the developer only has read access in the PRD, and would not
even be able to create or destroy programs in the PRD group by accident).

 8. By using opt ion=45, make sure that your library list is in the correct order
for the test.

Run the MLGMNUC program with option=16, or use CALL MLGMNUC,
select option 1 and enter a valid search identification.

You can check with the use of SYSREQ and option 3, the call stack of your
job, and verify that the MLGNAMR procedure is now a part of the MLGSRV01
service program.

� �
Display Call Stack Detail

System:
 Job: P23LAWTXD User: ITSCID23 Number: 016002

 Request level :
 Program : MLGSRV01

Library : MLGI.DEV
 ILE Module : MLGNAMR

Library : MLGI.PRD
 Procedure : MLGNAMR

� �
Figure 81. Display Call Stack Detail

Exit the application.

 9. Promote all tested changes to the production environment

Before promoting, we discuss another feature of Application Development
Manager/400: the archive function. It is possible for every promote of a part
to ask for archiving of the part. It certainly is not always necessary to
archive on all levels of development, but you better do it on the last (product
ready) level.

The archived part is stored in a source file with the same name as the part.
The source file is created in a library that the name is constructed as
follows: Short Projectname, Underscore, Short Groupname, as in our example
MLGI_PRD.

136 Moving to ILE RPG

You can archive a maximum of five versions; the names are assigned as
archive1 through archive5 . You should normally retrieve them by using SEU
in change mode of the part that you want the previous version of.

The default for the promote (option 30) is ARCHIVE(*NO). So we create a
special user-defined option called PA (promote archive) as follows:

• F16 - Get the user-defined options

• F6 - Create a new user-defined option

• Enter PA and the command PRMPART and press F4.

� �
Promote Part (PRMPART)

 Type choices, press Enter.

 Project > &ZP
 Group > &ZG
 Type > &ZT Name, *ALL, BLDOPT,
 Part > &N Name, *ALL
 Extended promote > *YES *NO, *YES
 PARTL processing option > *PART *LIST, *PART, *BOTH
 Part list *NONE *NONE, name
 Archive > *YES *NO, *YES� �

Figure 82. Defining a User Option for Promote Part

Using the PA option, we promote the following parts to the next level. Keep
in mind you cannot promote program objects. If you promote a source part
and have specified the Extended promote (*YES), a search is started to see if
there are any created parts from this source that are promoted at the same
time. (Language sources for programs and binding source for service
programs)

� �
Work with Parts Using PDM

 Project MLGI
 Specified group DEV
 Position to Position to type .

 Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 6=Prin
8=Display information 13=Change information 14=Buil

Opt Part Type Language Group
PA MLGSRV01 BNDSRC BND DEV
PA MLGSRV02 BNDSRC BND DEV
PA MLGINQR BLDOPT *NONE DEV
PA MLGMTNC BLDOPT *NONE DEV
PA MLGRPTC BLDOPT *NONE DEV
PA MLGRPTC2 BLDOPT *NONE DEV
PA MLGSRV01 BLDOPT *NONE DEV
PA MLGSRV02 BLDOPT *NONE DEV� �

Figure 83. Promoting and Archiving Parts

Use F5 to refresh. Notice that the service programs are promoted too.

Build all necessary parts after the promotion in the PRD group. Use the
command:

Chapter 8. Development Environment 137

 BLDPART PRJ(MLGI) GRP(PRD) TYPE(*ALL) PART(*ALL)

Check the Build report to see if all is built correctly. Although you specified
TYPE(*ALL) PART(*ALL), only the necessary parts are created. Application
Development Manager/400 checks in its relation directory to determine what
parts need to be built.

10. Delete all parts from the DEV group that are no longer needed.

11. Run the CALL MLGMNUC to check if all is still functioning well.

8.2.4 Enhance a Service Program (Signature Implications)
We enhance service program MLGSRV01 to also include the function of
MLGSRV02. At the end, the application structure should look like this:

┌──MLGMNUC───┐
│┌──┐│
││ CALL CALL SBMJOB SBMJOD CMD││
│└────┬──────────────┬───────────────┬─────────────┬────────────┬─┘│
└─────┼──────────────┼───────────────┼─────────────┼────────────┼──┘

 � � � � │
┌─MLGINQR─────┐┌─MLGMTNC─────┐┌─MLGRPTC─────┐┌─MLGRPTC2────┐ │
│ ││ ││ ││ │ │
│┌───────────┐││┌───────────┐││┌───────────┐││┌───────────┐│ �
││ MLGINQR ││││ MLGMTNC ││││ MLGRPTC ││││ MLGRPTC2 ││ STRQRY
│├───────────┘││├───────────┘││└────┬──────┘││└────┬──────┘│
││┌──────────┐│││┌──────────┐││ │ ││ │ │
│├� MLGLBLR2 │││├� MLGMTNR │││ │ ││ │ │
││└──────────┘│││└──────────┘││ │ ││ │ │
└┼────────────┘└┼────────────┘└─────┼───────┘└─────┼───────┘
� � � �
┌─MLGSRV01──┐
│ ┌─────────┐ ┌──────────┐ │
│ │ MLGNAMR │ │ MLGRPTR │ │
│ └─────────┘ └──────────┘ │
└───┘

Figure 84. Program Structure Scenario-3

 1. Make sure that the Subset part list includes all parts from PRD.

 2. Check out the MLGSRV01 part for BNDSRC and BLDOPT from Group PRD.

 3. Update both parts reflecting the change for adding module MLGRPTR.

BNDSRC part
/* Version for enhancement scenario - 3 */
strpgmexp
export symbol(mlgnamr)
export symbol(mlgrptr)�─────────────added line
endpgmexp

BLDOPT part added ┌─────┬─────added
� �

CRTSRVPGM SRVPGM(&ZE) MODULE(*LIBL/MLGNAMR MLGRPTR) +
EXPORT(*SRCFILE) SRCFILE(&L/&F) +
SRCMBR(&ZN) ACTGRP(*CALLER) USRPRF(*USER) +
REPLACE(*YES) AUT(*EXCLUDE)

Figure 85. BNDSRC and BLDOPT Updates for Scenario-3

 4. Create the service program MLGSRV01, by putting option 14 against the
MLGSRV01 BNDSRC part in the DEV group.

138 Moving to ILE RPG

 5. Run the following command:

RCLACTGRP *ELIGIBLE

The reclaim of the activation group is necessary, because the old service
program MLGSRV01 is still active in the activation group MLGILE. Without
ending that activation group, this old version is used instead of the new one.

To run the modified application, perform the following:

• Option=45 to set the library list

• Option=16 RUN MLGMNUC program

• Select menu option=1

You receive a message MCH4431, stating a program signature violation.

For more information on signature violation in a service program see 7.8.4,
“Service Program Signature” on page 104. Resolve the problem by
changing the binding language in the BNDSRC. Use the
GG244358/QMLGBNDSR3 source file member MLGSRV01 to copy the
information from. It shows how you can maintain the old signature
(*previous) as well as a new (*current) signature.

You can also use the SCOPE(*EXTENDED) on the build part for the service
program, which investigates, based on the changed signature, which
programs needs to be rebuilt.

 6. Re-create the service program, using opt ion=14 against the MLGSRV01
BNDSRC

 7. Run the following:

RCLACTGRP *ELIGIBLE
option=16 RUN MLGMNUC program

It should work correctly now, since it can still use the *previous signature.

 8. Promote the two changed parts with the ″PA″ option.

The MLGSRV01 service program is promoted automatically.

 9. Re-build in PRD

Since you have promoted all the changed parts, nothing needs to be rebuilt.
Try the BLDPART PRJ(MLGI) GRP(PRD) TYPE(*ALL) PART(*ALL) command.
Check the build report, which shows that no relations are *STALE (parts are
out of sync), and nothing had to be build.

10. Finally, we have to change the parts that use MLGSRV02, to re-direct them to
service program MLGSRV01.

In order to achieve our goal we have to checkout the BLDOPT parts for:

28 MLGRPTC BLDOPT *NONE PRD
28 MLGRPTC2 BLDOPT *NONE PRD

Change the name of the BNDSRVPGM into (MLGSRV01) for both build
options.

11. Rebuild the parts:

Chapter 8. Development Environment 139

� �
Work with Parts Using PDM

 Project MLGI
 Specified group DEV
 Position to Position to type

 Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 6=Print 7=Rename
8=Display information 13=Change information 14=Build 16=Run .

Opt Part Type Language Group
MLGNAMR MODULE RPGLE PRD

14 MLGRPTC MODULE CLLE PRD �───────
14 MLGRPTC2 MODULE CLLE PRD �───────� �

12. Check whether the rebuild was successful, using the DSPPGM (option=5) on
one of the created programs, for example, MLGRPTC; the used service
program should now be MLGSRV01.

13. Promote the BLDOPT parts with PA.

14. Delete the programs in the DEV group.

15. Build the parts in group PRD by using:

BLDPART PRJ(MLGI) GRP(PRD) TYPE(*ALL) PART(*ALL)

16. Delete all parts of MLGSRV02.

The parts have become obsolete since the function is now included in
MLGSRV01. Decide what should happen to the archived parts, by default
they are NOT deleted.

You should realize that if you want to keep a copy of the last version, you
need to make a copy yourself into the archive file before deletion.

� �
Work with Parts Using PDM RC

 Project MLGI
 Specified group DEV
 Position to Position to type

 Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 6=Print 7=Rename
8=Display information 13=Change information 14=Build 16=Run ...

Opt Part Type Language Group
4 MLGSRV02 BNDSRC BND PRD �───────────
4 MLGSRV02 BLDOPT *NONE PRD �───────────
4 MLGSRV02 SRVPGM RPGLE PRD �───────────� �

8.2.5 Import/Export Variables in ILE
This final scenario handles the import and export capabilities within the ILE
language and the use of part lists for the implementation in Application
Development Manager/400.

The objective is to eliminate all parameter list passing between modules and
service program in the MLGINQR and MLGMTNC program, and replace it by
using import/export variables.

140 Moving to ILE RPG

┌───┐
│ │
│ │
│ ┌─MLGINQR────────┐ ┌─MLGSRV01───────┐ │
│ │ │ Binding source │ │ │
│ │ ┌─MLGINQR────┐ │ ┌───────────┐ │ ┌─MLGNAMR────┐ │ │
│ │ │ │ │ │ │ │ │ │ │ │
│ │ │searchfld(I)�─┼─────┤ searchfld �───────┼─┤(E)searchfld│ │ │
│ │ │ │ │ │ │ │ │ │ │ │
│ │ │ pgmend(I)�─┼─────┤ pgmend �───────┼─┤(E)pgmend │ │ │
│ │ │ │ │ │ │ │ │ │ │ │
│ │ │ account(I)�─┼┬────┤ account �───────┼─┤(E)account │ │ │
│ │ └────────────┘ ││ └───────────┘ │ └────────────┘ │ │
│ │ ││ │ │ │
│ │ ││ │ │ │
│ │ ┌─MLGLBLR2───┐ ││ │ ┌─MLGRPTR────┐ │ │
│ │ │ │ ││ │ │ │ │ │
│ │ │ account(I)�─┼┘ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │
│ │ └────────────┘ │ │ └────────────┘ │ │
│ └────────────────┘ └────────────────┘ │
│ │
├───┤
│ Legend: (I) = Import definition │
│ (E) = Export definition │
└───┘

Figure 86. Relation Between Import/Export Variables and the Binding Language

As shown in Figure 86, the variables are resolved at create program time. The
procedure that has the (E) export is the owner of the storage of the variable; the
(I) import shares that storage space.

Note: It is not to say that this is the preferred way of passing information
between programs, since CL procedures cannot exchange information
using import and export variables, but between ILE procedures in general,
this is the fastest way of exchanging information.

For the Application Development Manager/400 we introduce the usage of the
part list. The PARTL (part list) part is used:

• As a list containing all the parts that take part in the change process

• As a list of all the parts that were created as a result of the BLDPART of the
parts in the previous list

• As a list of all the parts that were promoted

 1. For that reason, we create three PARTL parts in the PRD group.

Check if you are in the PRD specified group; if not, change to it and then
create the PARTL parts (F6=Create):

SCENARIO4 PARTL <-- List with parts to work on
SCENARIO4C PARTL <-- Output list of Created parts
SCENARIO4P PARTL <-- Output list of Promote process

Chapter 8. Development Environment 141

� �
Create Part (CRTPART)

 Type choices, press Enter.

 Project PRJ > MLGI
 Group GRP > PRD
 Type TYPE > PARTL <---
 Part PART > SCENARIO4 <---
 Language LANG *DFT
 Prompt create command PRMPT *NO
 Promote code PRMCODE *GRP
 Source file SRCFILE *TYPE
 Part list PARTL > *NONE
 Text description TEXT *BLANK� �

 2. Use option 2 to change the content of the SCENARIO4 PARTL with:

MLGINQR RPGLESRC
MLGLBLR2 RPGLESRC
MLGMTNR RPGLESRC
MLGNAMR RPGLESRC
MLGSRV01 BNDSRC
PARTL SCENARIO4C
PARTL SCENARIO4P

Or use the CPYF command

CPYF FROMFILE(GG244358/MYPARTL) TOFILE(MLGI.PRD/SCENARIO4)
MBROPT(*REPLACE)

 3. Change to the specified DEV group.

Now check out SCENARIO4 PARTL to the DEV group, with option=28.

 4. Check out all of the other parts that are in the change process.

All of the parts are mentioned in the part list SCENARIO4. You can check
them out one by one, or you can use a user-defined option and a program
mentioned in D.1.3, “Check out PARTL parts” on page 193 that can
automatically check out all parts from the SCENARIO4 part list.

Create a user option with F16, called ″XP;″ the command should be:

″XP″ call gg244358/chkoutprtl (&l &n &zt &zn &zp &zg)

Run the ″XP″ option against the SCENARIO4 part list.

Ensure that all parts in the PRD group are checked in (otherwise you run into
errors):

CHKINPART PRJ(MLGI) GRP(PRD) TYPE(*ALL) PART(*ALL)

Ensure they are all checked in. Now run the ″XP″ option. All parts should
now be checked out to the DEV group.

 5. Now the process of changing the application can begin.

 6. Change MLGINQR

Since some of the fields that were exchanged through a parameter list might
have a different name in both procedures, we use a data structure to rename
the storage position to a common name for the exchange of information
(import/export).

142 Moving to ILE RPG

0004.00 *=Changed ==
0005.00 * Fields to be used for the scenario of Import/Export
0006.00 Daccount ds import
0007.00 d acct 5p 0
0008.00 Dsearchfld ds import
0009.00 d search 10
0010.00 dpgmend s 1 import
0011.00 *===

The parameter list fields have been commented out.

0021.00 C CALLB ′ MLGNAMR′
0022.00 *=Changed ===
0023.00 C* PARM SEARCH
0024.00 C* PARM ACCT
0025.00 C* PARM PGMEND
0026.00 *==

Figure 87. Source Changes for MLGINQR

You will find a changed source to replace this one in the file
GG244358/QMLGSRC4 member MLGINQR

 7. Change MLGLBLR2

0008.00 *=Changed ===
0009.00 * Field to be used for the scenario of Import/Export
0010.00 Daccount s 5p 0 import
0011.00 *==
0012.00 IMLGMSTR 01
0013.00 *=Changed ===
0014.00 C* *ENTRY PLIST
0015.00 C* PARM ACCT 5 0
0016.00 * Fieldname ACCT changed into ″account″
0017.00 C account CHAIN MLGMSTP 99
0018.00 *==

Figure 88. Source Changes for MLGLBLR2

Copy from GG244358/QMLGSRC4 member MLGLBLR2.

 8. Change MLGMTNR

Copy from GG244358/QMLGSRC4 member MLGMTNR.

 9. Change MLGNAMR

The variables used by MLGNAMR are export, which means that MLGNAMR
is the owner of that storage. You can have ONLY one export of a variable
and multiple imports. Exporting between a service program and a program
procedure requires that the service program is the owner (export) of the
variable.

Chapter 8. Development Environment 143

0008.00 *=Changed ==
0009.00 * Fields to be used for the scenario of Import/Export
0010.00 Daccount ds export
0011.00 d mlacct 5p 0
0012.00 Dsearchfld ds export
0013.00 d search 10
0014.00 dpgmend s 1 export

* Add a search *ALL possibility
0015.00 c if search = ′ *ALL ′
0016.00 c eval search = ′ ′
0017.00 c endif

* All lines commented out
0018.00 C* *ENTRY PLIST
0019.00 C* PARM SEARCH
0020.00 C* PARM MLACCT
0021.00 C* PARM PGMEND 1
0022.00 *===

Figure 89. Source Changes for MLGNAMR

Copy from GG244358/QMLGSRC4 member MLGNAMR.

By the way, we also enhanced the search program by allowing *ALL as a
search name, which starts the subfile display at the beginning of the data
file.

10. Change the binding language source MLGSRV01.

0001.00 /* Version from enhancement scenario - 4 */
0002.00 strpgmexp pgmlvl(*current)
0003.00 export symbol(mlgnamr)
0004.00 export symbol(mlgrptr)
0005.00 export symbol(searchfld) �───────── added
0006.00 export symbol(account) �───────── variables
0007.00 export symbol(pgmend) �─────────
0008.00 endpgmexp

Figure 90. Binding Source Changes for MLGSRV01

Copy from GG244358/QMLGBNDSR4 member MLGSRV01.

11. Use the part list to build all of the parts (option=14 + F4 prompt).

� �
Build Part (BLDPART)

Type choices, press Enter.

Project PRJ > MLGI
Group GRP > DEV
Type TYPE > PARTL
Part PART > SCENARIO4
Language LANG *ALL
Search path SCHPTH > *DFT
Scope of build SCOPE � *EXTENDED �──────
Force build FORCE *NO
Build mode BLDMODE *COND
Save list SAVLST *NO
Perform bind step BINDSTEP *YES
Part list PARTL � SCENARIO4C �──────� �

You can use the PARTL to built a subset of parts. All parts in the part list
are subject to be built, although the rule still applies that parts are only built
if it is really necessary.

144 Moving to ILE RPG

Specify SCENARIO4C on the PARTL of the BLDPART command to store all of
the information regarding the created parts in this build process. Specify
SCOPE(*EXTENDED) to make sure that all of the related parts are rebuilt. If
you do not specify the extended scope, the MLGMTNC part is not rebuilt.

This SCENARIO4C part list is used to determine which objects eventually
need to be shipped to the production library from the PRD group, in order to
have an up-to-date application. Publication Software Life Cycle Management
with SystemView Sytem Manager/400 explains in detail how to use the part
list in the distribution of changed objects as PTFs.

Displaying the SCENARIO4C part list, using option=5, you get this:

� �
Display Physical File Member

 File : SCENARIO4C Library :
 Member : QALYPRTL Record :
 Control Column :
 Find
 *...+....1....+....2....+....3....+....4....+....5....+....6..
 MODULE MLGINQR Mailing list inquiry
 MODULE MLGLBLR2 Mailing list label printing ONE LABEL
 MODULE MLGMTNR Mailing list master maintenance
 MODULE MLGNAMR Mailing list name search
 SRVPGM MLGSRV01
 PGM MLGINQR Mailing list inquiry
 PGM MLGMTNC Mailing list maintenance

****** END OF DATA ******

� �
Figure 91. All Created Parts Using the PARTL

12. Check that the application works well, before you start the promote process:

 Option=45 for setting the library list
 Option=16 against MLGMNUC program or CALL MLGMNUC
 Try the new added *ALL search value

13. Promote all the parts from the part list using option=30 as in Figure 92:

� �
Work with Parts Using PDM RCHASM02

 Project MLGI
 Specified group DEV
 Position to Position to type

 Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 6=Print 7=Rename
8=Display information 13=Change information 14=Build 16=Run ...

Opt Part Type Language Group
30 SCENARIO4 PARTL *NONE DEV

SCENARIO4C PARTL *NONE DEV
SCENARIO4P PARTL *NONE DEV� �

Figure 92. Promoting Parts

Use F4 to prompt.

Chapter 8. Development Environment 145

� �
Promote Part (PRMPART)

Type choices, press Enter.

Project PRJ > MLGI
Group GRP > DEV
Type TYPE > PARTL
Part PART > SCENARIO4
Extended promote EXTEND � *YES �───────
PARTL processing option PARTLOPT � *BOTH �───────
Part list PARTL � SCENARIO4P �───────
Archive ARCHIVE � *YES �───────

� �
Change the EXTEND, PARTLOPT, PARTL and the ARCHIVE parameters.

Display Physical File Member
 File : SCENARIO4P Library : MLGI.DEV
 Member : QALYPRTL Record : 1
 Control Column : 1
 Find
 *...+....1....+....2....+....3....+....4....+....5....+....6....+....7...
 PARTL SCENARIO4
 BNDSRC MLGSRV01 Mailing Service program 01
 SRVPGM MLGSRV01
 PGM MLGINQR Mailing list inquiry
 RPGLESRC MLGINQR Mailing list inquiry
 MODULE MLGINQR Mailing list inquiry
RPGLESRC MLGLBLR2 Mailing list label printing ONE LABEL
 MODULE MLGLBLR2 Mailing list label printing ONE LABEL
 RPGLESRC MLGMTNR Mailing list master maintenance
 MODULE MLGMTNR Mailing list master maintenance
 RPGLESRC MLGNAMR Mailing list name search
 MODULE MLGNAMR Mailing list name search

****** END OF DATA ******

Figure 93. Content of the Promote Part List after the Promote

You notice in Figure 93 that the MLGMTNC program is not promoted; in
general program and module objects cannot be promoted. Specify option
EXTEND(*YES) to promote those objects with the source. Since the source is
not in the DEV group, MLGMTNC was rebuilt but not based on a source
(change), but based on a changed service program and a changed module in
MLGMTNC. So this program still needs to be re-created in the PRD group.

14. Promote the two remaining PARTL parts SCENARIO4C and SCENARIO4P:

� �
Work with Parts Using PDM RCHASM0

Project MLGI
Specified group DEV
Position to Position to type

Type options, press Enter.
2=Change 3=Copy 4=Delete 5=Display 6=Print 7=Rename
8=Display information 13=Change information 14=Build 16=Run ...

Opt Part Type Language Group
30 SCENARIO4C PARTL *NONE DEV
30 SCENARIO4P PARTL *NONE DEV� �

Use F4 prompt.

146 Moving to ILE RPG

� �
Promote Part (PRMPART)

 Type choices, press Enter.

 Project PRJ > MLGI
 Group GRP > DEV
 Type TYPE > PARTL
 Part PART > SCENARIO4C and SCENARIO4P
 Extended promote EXTEND *NO
 PARTL processing option PARTLOPT *PART �────────
 Part list PARTL > *NONE
 Archive ARCHIVE *NO� �

15. And finally delete part MLGMTNC from the DEV group.

16. Rebuild whatever is necessary in the PRD group.

Use the part list SCENARIO4 to re-create all objects that did not make it
through the promote process, such as MLGMTNC. Switch to the specified
group PRD and use option 14 against the PARTL SCENARIO4 and prompt:

� �
Build Part (BLDPART)

 Type choices, press Enter.

 Project PRJ > MLGI
 Group GRP > PRD
 Type TYPE > PARTL
 Part PART > SCENARIO4
 Language LANG *ALL
 Search path SCHPTH > *DFT
 Scope of build SCOPE � *EXTENDED �──────────
 Force build FORCE *NO
 Build mode BLDMODE *COND
 Save list SAVLST *NO
 Perform bind step BINDSTEP *YES
 Part list PARTL � SCENARIO4C �──────────� �

As expected, nothing is added to the SCENARIO4C part list, since only the
same objects are built here. The MLGMTNC part is not added, because the
process checks that a part is only added if it does not exist yet.

8.2.5.1 Conclusion
The mechanism of the part list is very important for controlling the change,
rebuild and distribution process. It also gives instant documentation on the parts
that have been worked on, parts that needed to be rebuilt, and finally the parts
that needs to be promoted.

8.3 Use Binding Directories in Application Development Manager/400
If you are binding several modules into a PGM or SRVPGM, there are a few
different ways you can reference modules:

 1. Specify modules on the MODULE parameter of the CRTPGM or CRTSRVPGM
command in the BLDOPT part.

 2. Reference a service program on the BNDSRVPGM parameter of either the
CRTPGM or CRTSRVPGM command.

 3. Reference modules, service programs and binding directories, through bind
directory parts (BNDDIR).

If you want to build the relationship between PGM and MODULE parts, then
method 1 and 2 mentioned previously are recommended. These methods result

Chapter 8. Development Environment 147

in the proper build relationship information, and the PGM or SRVPGM is rebuilt,
if any of the modules change.

Method 3 creates a build relationship between a binding directory and a
program, resulting in a massive rebuild when the content of that binding
directory changes (add or delete of a module) and NOT a rebuild when a module
within that service program changes.

8.4 How to Manage Without Application Development Manager/400
If you have gone through the scenarios, you might have a better understanding
of what making changes in an modularized environment requires. For those who
do not have access on their machine to the Application Development
Manager/400 product, we have prepared a setup in the conventional way as well.
The application according to the Figure 75 on page 131 is completely created for
you when you run:

CALL CRTMLGAPP (′ my_mlglib′)

Follow all the scenarios to enhance and change the application without
Application Development Manager/400, and look what effort it costs to get it right
the first time. Imagine what it could look like in a development environment of a
couple of thousand parts.

Documentation is more critical to the final result (quality of the application) than
ever. So think about Application Development Manager/400 and how your
application parts relate to each other while you develop, rather then worry about
them.

8.5 Copyright Your Software
You might have wondered when using the DSPPGM command, why the copyright
information is usually empty for your programs. The answer is: So far only the C
language has implemented the use of a copyright statement during the compile
of a module. When a program is created, the copyright information from the
program entry module (PEP) is used for the program.

When you want to create a program with a copyright statement, here is an
example of how to fix it.

 1. Create a C-module that has only one function, namely to call dynamically the
mailing menu program (MLGMNUC).

Look at the source MAILING in source file GG244358/QMLGSRC. Use this to
create the C-module. (The C-module is already in the library).

 2. Create the program MAILING as follows:

148 Moving to ILE RPG

� �
Create Program (CRTPGM)

 Type choices, press Enter.

 Program PGM > MAILING
Library > *CURLIB

 Module MODULE > MAILING
Library > *LIBL

+ for more values > MLGMNUC
> *LIBL

 Text ′ description′ TEXT *ENTMODTXT

Additional Parameters

 Activation group ACTGRP > MLGILE� �
 3. Use the DSPGM command and look at the copyright information.

 4. CALL MAILING and see that it still functions as before.

If you have used the Application Development Manager/400 exercise:

• Import the MAILING *MODULE as a module part
• Create a build option for MAILING, binding the modules MAILING and

MLGMNUC for activation group MLGILE
• Run option=14 against the imported module

Chapter 8. Development Environment 149

150 Moving to ILE RPG

Chapter 9. Performance

Anyone involved in ILE application design should read this chapter in conjunction
with the Integrated Language Environment Concepts and Chapter 7, “ILE Design
Considerations” on page 83 before migrating any part of an OPM application to
ILE, or designing a new ILE application. An additional source for information is
the language section of the V31 Performance Capabilities Reference, ZC41-8166,
an IBM internal document. Please contact your IBM representative for the latest
edition.

For this project, we have tried to gather as much performance information as
possible to help you to identify critical areas in your application development
process. The results we have obtained might not always apply to a real world
environment and we ask you to verify this information before using it.

9.1 Compile Time
The new internal structuring of programs to allow the ease of binding and
debugging means that compiling an entire application or program takes longer
than it did with RPG/400 compiler. On the average, with default options, the ILE
RPG/400 compilation takes greater than two times as long as the OPM RPG/400
compiler.

With RPG IV and modular application building, you find that you do not have to
recompile entire programs or applications for each code change. The modular
design associated with the ILE generally has smaller source units. In ILE,
programs are built by binding module objects. Changes to the module objects
are then rebound to the program object. So, you do not need to recompile the
entire program object. When you build smaller functions,
compiling/binding/testing are done quickly. As shown in Chapter 8,
“Development Environment” on page 123, ADM/400 helps you in building only
those components of an application that are affected by changes.

The following list intends to give some suggestions in managing and improving
compile-time performance:

• Design modular applications

Modular programming offers faster application development and a better
ability to reuse code. Programs are developed in smaller, more
self-contained procedures. These procedures are coded as separate
functions, and then bound together to build an application. By building
applications that combine smaller and less complex components, you can
compile and maintain your programs faster and easier.

• Use sufficient working memory

See 9.1.1.4, “Working Memory Requirements for Compile Time” on page 153.

• Use OPTION(*NOGEN) for initial compiles

*NOGEN compiles the module or program but does not complete the build of
a program object. It is used to fix and edit compile errors.

• Use the value of DBGVIEW adequate for your purpose

Requesting debug information requires more compile time. For example,
DBGVIEW(*LIST) results in a slower compilation time than DBGVIEW(*STMT).

 Copyright IBM Corp. 1995 151

If the level of debug information you need is that provided by
DBGVIEW(*STMT), selecting *LIST would unnecessarily slow down
compilation time.

• Use OPTIMIZE(*BASIC) instead of OPTIMIZE(*NONE)

9.1.1 Compile Options
Options on the create commands allow you to influence the compile time. Some
of those are:

• OPTIMIZE

• DBGVIEW

• OPTION(*NOGEN)

• OUTPUT(*NONE)

RPG IV compile and bind time takes significantly longer than OPM compile time
and the compiler needs more memory than OPM RPG. Thus, a sufficient
memory pool improves compile time.

9.1.1.1 Effect of Debug Options
Requesting debug information requires more compile time and creates bigger
objects. Tests show that the compile times for the DBGVIEW options increases
in performance cost in the following order:

• DBGVIEW(*NONE)

• DBGVIEW(*STMT)

• DBGVIEW(*SOURCE)

• DBGVIEW(*LIST)

• DBGVIEW(*ALL)

Do not ship production level code with debug data; if you have used the defaults,
then source level statement debug data DGBVIEW(*STMT) is included in your
programs. Once testing is completed, we recommend that you remove debug
data from your ILE programs using:

CHGPGM PGM(ilepgm) RMVOBS(*DBGDTA)

Warning - Giving away source code

Do not ship production code with DBGVIEW(*LIST); this option causes a
complete copy of the source code to be placed in the program object, and
can easily be viewed using the DMPOBJ command.

9.1.1.2 Effect of OPTION(*NOGEN)
Use of *NOGEN in RPG IV performs significantly better than compiling with the
*GEN option. Use *NOGEN to do the early compiles of programs to remove edit
or compile errors.

152 Moving to ILE RPG

9.1.1.3 Effect of Optimize Options
We recommend that you compile your ILE programs with OPTIMIZE(*BASIC)
rather than the default of OPTIMIZE(*NONE). Use of OPTIMIZE(*BASIC) has
minimal impact on compile time but it results in improved runtime performance.

OPTIMIZE(*FULL) takes significantly more time than OPTIMIZE(*NONE) to
compile, and does not significantly improve performance over
OPTIMIZE(*BASIC).

9.1.1.4 Working Memory Requirements for Compile Time
Working memory size is the amount of memory required to do a task
satisfactorily. Think of working memory size this way: given infinite memory, the
compiler runs at its natural speed. If you restrict memory, the compiler has to
swap pages to DASD, making it run slower. The more memory is restricted, the
more time the compiler spends swapping memory pages.

A phenomenon of ILE compilation is that compile time processing requires more
working memory than OPM program compiles. The ILE compilers and
translators, in general, produce more internal tables for binding and debug
information than OPM compilers and translators used. If memory is restricted,
compiles may be orders of magnitude slower than OPM. Increasing memory
size adds a gain in elapsed time of compilation.

9.2 Program Object Size Comparisons
Binding and debugging ILE programs requires more information about data and
more internal tables. More information is needed to manage how modules of
different ILE languages are bound into a program or service program. This
results in larger program object size.

The disk storage requirements for RPG IV programs has increased 1.5 to 3 times
relative to OPM RPG/400.

Conclusions/Recommendations: Here are several options to consider to reduce
storage requirements for your program objects:

• Remove debug date

After creating your module, program or service program, you can reduce the
object size by using the Remove observable info option on the CHGMOD,
CHGPGM and CHGSRVPGM commands with special value *DBGDTA to
remove the code generated into the object for debugging.

• Compress observability

The Program option on the CPROBJ command allows you to compress only
the observable parts (*OBS) and the creation templates of an object.

• Remove the observability and creation template.

The CHGMOD (Change Module), CHGPGM (Change Program) and
CHGSRVPGM (Change Service Program) commands allow you to delete the
observability and the creation template to decrease the program size.

Note: Use care when deleting the observability or the creation template.
Removing observability prevents the program from being debugged;
removing the creation template prevents programs from being
retranslated. Be sure to keep your source code, or an offline copy of

Chapter 9. Performance 153

the program with observability, to ensure that migration to future
releases.

• Use of ILE modular design techniques

Using service programs as a means of reusing code, reduce the overall
storage requirements for your application.

• Selecting debug options on the compile command

Generating DBGVIEW data may increase program object size from 20% to
200%, depending on the DBGVIEW options used.

If DBGVIEW(*LIST), the listing view compile option is chosen, the compile
listing used for debugging is stored with the object, thus greatly increasing
the program object. Carefully weigh the advantage of having a compiler
listing stored with your object against the additional storage requirements.
Consider using DGBVIEW(*SOURCE). It may give you similar capabilities in
debug, but results in a smaller program object size.

Under the assumption that you want to keep observability and creation templates
for your programs a combination of CHGPGM ... RMVOBS(*DBGDTA) and
CPROBJ ..., PGMOPT(*OBS) seems to be the best solution to reduce storage
requirements. To achieve best results you might want to use the CHGMOD ...
RMVOBS(*DBGDTA) before binding the modules into a program or service
program.

9.2.1 Object Size Conversion Project
We converted 1,480 AS/400 RPG III programs to ILE RPG/400 using the
CVTRPGSRC command. The CRTBNDRPG DFTACTGRP(*NO) ACTGRP(QILE)
command was used to compile and bind the programs. The figures in this
section are all based on the sample of 1,480 OPM RPG programs comprising a
commercial application. ILE RPG programs are an average of 3.18 times bigger
than OPM RPG programs. The static storage allocated to ILE RPG IV procedures
remains allocated irrespective of whether LR is used. (Compare this with OPM,
where LR returns static storage to the system.)

An ILE application requires more memory than an OPM application.

Table 22. Storage Requirements for ILE programs

Program Options Size - Bytes Migrates to
RISC

OPM Default Compile 137,089,024 Yes

OPM Compressed Observability 89,225,728 Yes

OPM No Observability�1�

Compressed Observability to No Observability

88,467,960 No

OPM No Observability �2�

Full (Uncompressed) Observability to No
Observabil i ty

40,250,368 No

ILE Default Compile
DBGVIEW(*STMT)

436,343,296 Yes

ILE No Debug, Full Observability 328,303,616 Yes

ILE No Debug, Compressed Observability 149,104,128 Yes

ILE No Debug, No Observability 103,565,824 No

154 Moving to ILE RPG

Notes:

 1. �1�This figure results from removing observability from programs that
already had compressed observability.

 2. �2�This figure results from removing observability from programs that
already had full, uncompressed observability.

Table 23. Size Ratio ILE to OPM programs

ILE to OPM Comparison ILE to OPM
Size Ratio

ILE Default Compile
to OPM Default Compile

3.18

ILE No Debug, Compressed Observability
to OPM Compressed Observability

1.67

ILE No Observability (from Compressed Observability)
to OPM No Observability

1.17

ILE No Observability (from full Observability)
to OPM No Observability

2.57

9.3 Runtime Performance
Runtime performance between the RPG IV compiler and the OPM RPG/400
compiler are basically the same. Using OPTIMIZE(*BASIC) costs less at compile
time then OPTIMIZE(*NONE), and may result in a small performance boost.
Since most RPG applications are I/O intensive, they show little performance
improvement with full optimization, OPTMIZE(*FULL).

9.3.1 Working Memory Size for Runtime
Working memory size for runtime of ILE RPG/400 should be increased. However,
if you run an OPM RPG/400 application in a pool barely big enough, and you
switch to ILE, runtime might get dramatically worse.

If memory size is restricted, performance is degraded. For an ILE RPG/400
program, restricted memory size degrades performance more dramatically than
OPM RPG/400.

9.3.2 Choice of Tools
There is a choice of tools available to assist with ILE procedure-level analysis.
Each of these tools clearly indicates the program/module/procedure information
relevant for both system routines and ILE application code.

• Display Job (DSPJOB)

• Sample Address Monitor (SAM)

• Timing and Paging Statistics PRPQ (TPST)

The Print Trace Summary command in this PRPQ summarizes job trace data,
providing you with a list of program or procedure flow within traced data.
The report from this command has a summary of which programs called
which other programs. Thus, this is used to help spot candidates for static
binding.

• Job Trace

Chapter 9. Performance 155

Job trace detail report shows the sequence of work performed in a job by
system routines, ILE procedures, ILE programs and OPM programs. Job
trace summary reports reflect counts for OPM program initializes only.

DSPJOB - Warning

Note that DSPJOB - Display Override facility shows ONLY the overrides
inside the default activation group. It does not show any ILE named or *NEW
activation group overrides.

9.3.3 Considerations
Often, performance and its impact are secondary issues in an application
development project. They should be issues from the design phase on through
the life cycle of application. The following section gives you some food for
thoughts when designing an application to take advantage of the ILE concepts.

9.3.3.1 Activation Groups
Since activation groups are one of the most resource intensive components of
the Integrated Language Environment, we start right here.

Named Activation Groups: Create application start-up programs (such as menu
driver control programs) to run in a named activation group. For very large
applications with multiple functional subsets, consider running each functional
subset in a separate named activation group such that you have independent
resource scoping for each subset. Create the majority of your programs with
ACTGRP(*CALLER), and ensure that they are only called by the application
start-up programs.

When a dynamic call is made to an ILE *PGM created to run in a named
activation group, assuming that this is the first call to the program issued in the
job, the system:

 1. Creates the activation group (if not already created).

 2. Activates the program and all associated service programs (if some service
programs created with ACTGRP(*CALLER) needed by your program have
already been activated by a different program in the same activation group,
then they are not activated again).

 3. Places a PEP on the call stack for this program.

 4. Allocates and initializes static storage for all modules bound by copy in the
*PGM.

Allocate and initialize static storage for all modules bound by reference
through *SRVPGMs. Note that if any of these service programs created with
ACTGRP(*CALLER) have previously been activated in this activation group,
then they are NOT initialized again.

This step is known as the ILE initialization of static storage. It is the ONLY
time when variables coded as EXPORT in RPG IV data specifications are
initialized by the system.

 5. Passes control to the procedure specified as the ENTMOD on the CRTPGM
command.

 6. Opens specified files.

156 Moving to ILE RPG

Note that only files that are not already open as shared at activation group
level, or as shared at job level are opened.

 7. Runs the procedure specified on the ENTMOD.

Note that the first bound call to any ILE RPG IV procedure causes RPG
initialization of all variables excluding those specified as EXPORT in the data
specifications. After the first bound call to a procedure is issued in the
activation group, static storage is only reinitialized if you have coded LR.

*NEW Activation Groups: Use this option to isolate programs that are called
very infrequently (for example, once or twice) within an application for the
duration of the job.

Consider that since service programs are likely to be heavily used, there is no
facility to specify ACTGRP(*NEW) on the CRTSRVPGM command. This is
deliberate, as use of ACTGRP(*NEW) on a frequently used ILE program delivers
poor performance. The cause is not immediately apparent.

In OPM RPG, you recall that ending a program with RETRN rather than SETON
LR delivers much better performance upon subsequent calls to the program,
since the resources (variables and database files) are left in a ready-to-use state
requiring little system effort when the program is reentered.

When a dynamic call is made to an ILE *PGM created with ACTGRP(*NEW), the
system must:

 1. Create a new activation group in the job.

 2. Activate the program and all associated service programs (created with
ACTGRP(*CALLER)). Any service programs created with ACTGRP(name) are
only activated if they are not already active.

 3. Place a PEP on the call stack for this program.

 4. Allocate and initialize static storage for all modules bound by copy in the
*PGM.

Allocate and initialize static storage for all modules bound by reference
through *SRVPGMs.

This step is known as the ILE initialization of static storage. It is the ONLY
time when variables coded as EXPORT in RPG IV Data Specifications are
initialized by the system.

 5. Pass control to the procedure specified as the ENTMOD on the CRTPGM
command.

 6. Open specified files

 7. Run the procedure specified as the ENTMOD.

Note that the first bound call to any ILE RPG IV procedures causes RPG
initialization of all variables excluding those specified as EXPORT in the data
specifications. After the first bound call to a procedure is issued in the
activation group, static storage is only reinitialized if you have coded LR.

 8. Start activation group closedown involving:

• Closing open files
• De-allocating static storage for activated programs
• Deactivating all activated programs

 9. Delete the activation group.

Chapter 9. Performance 157

The cost of creating or deleting a new activation group is approximately .238 D45
CPU seconds. Thus ACTGRP(*NEW) should be used only in very special
circumstances as a D45 is able to process four ACTGRP(*NEW) requests per
CPU second.

ACTGRP Recommendation

We recommend that you use the Change Command Default command
(CHGCMDDFT) on the CRTPGM command to change from ACTGRP(*NEW) to
another value, such as ACTGRP(*CALLER).

Note that ADM implicitly provides you with this capability, as part of the
method of building a program object. Please refer to Chapter 7, “ILE Design
Considerations” on page 83 for further information.

Use of RCLACTGRP: The RCLACTGRP command is provided to enable you to
clean up all resources assigned to your application′s activation group or groups.
Avoid the use of RCLACTGRP ACTGRP(*ELIGIBLE) in production application
code; this command deletes all activation groups in the job that do not have
procedures currently on the call stack irrespective of whether they are related to
your application or another application. Consider using a call to the bindable
API, CEETREC, from within the activation group to end an application (and delete
the activation group) rather than issuing RCLACTGRP ACTGRP(named) from
outside the activation group.

Database Files: This section assumes that you are running your ILE application
in a named activation group.

Use shared open data paths. Open a file once in an activation group and share
the file buffer with all the programs in the activation group. This is easy to code,
just as it was for OPM; you simply specify:

OVRDBF FILE(db_file) SHARE(*YES)

The recommended method of opening the file is to use one or more file opener
driver programs. The file opener program contains:

OPNDBF FILE(db_file) OPNOPT(*---)

ILE Bound Calls vs. OPM Dynamic Calls: We used a very simple RPG code to
test the performance of an RPG IV bound call (CALLB) against a dynamic call.
Prior to taking the test data, the OPM program was called once and ended with
RETRN; the ILE program was called once, run in a named activation group, and
ended with RETURN. The OPM program issued 1000 CALLs to another OPM
program. The ILE program issued 1000 CALLBs to an ILE procedure.

The ILE bound call to an RPG IV procedure proved to be 4.06 times faster than
an OPM dynamic call. Note that, if the OPM program had ended in LR rather
than RETRN, then the ILE CALLB with return was 59.8 times faster.

We recommend that where a dynamic call to a program is repeated multiple
times in the same process, you consider replacing it with an ILE bound
procedure call using return.

An RPG subroutine call using EXSR is still much faster than both a static call
(CALLB) and a dynamic call (CALL). Do NOT replace subroutine calls through
EXSR with static bound calls using CALLB and expect a performance

158 Moving to ILE RPG

improvement as a result of this change. You may, however, want to weigh the
cost (in terms of working set size) of having multiple copies of the same code in
different program objects versus having one copy of that code in a service
program.

Error Handling: For best performance, handle errors in your RPG or CL
procedures using INFSR and PSSR in RPG IV and MONMSG in CL. System
exception handling is much more expensive in ILE than in OPM due to the ILE
error handling philosophy of percolation and promotion.

Export and Import: For bound procedure calls, if your variables have the same
name in both the caller and the one being called, use RPG IV EXPORT and
IMPORT rather than passing parameters. Passing parameters requires that
system programs be called to check that the number and type of variables
passed matches those received. ILE EXPORT/IMPORT involves a pointer to the
address of the variable being setup in the procedure importing the procedure at
bind time, and not at runtime while reducing the amount of static storage at the
same time.

Service Programs: Package related, frequently used, ILE procedures into the
same service program.

Avoid packaging many procedures into the same service program. Remember
that the static storage in all of the procedures in service programs bound to an
ILE *PGM is initialized when the ILE *PGM is called irrespective of whether the
ILE *PGM directly references the procedures in the service program or not.

Keep static storage in service program procedures to a minimum. Avoid storing
large arrays in service program procedures.

If you need to exchange variables between dynamically called ILE programs, and
the caller and callee procedures are RPG IV, then consider this approach as an
alternative to passing parameters as it is much cheaper in terms of system
resource cost:

• Using a service program only as a container for shared variables
• For RPG IV, code the variables as IMPORT in the RPG procedures in the

*PGMs, and code the variables as EXPORT in the RPG procedures in the
*SRVPGM.

Note that this approach is also valid if either the caller or callee procedure is in
ILE C/400.

9.4 Performance Benefits of ILE
You can see an additional performance benefit in ILE RPG/400 with bound
procedure calls. The performance of calls between bound procedures in an ILE
program is faster than the between programs through external calls. This fast
bound call makes it more practical to write AS/400 applications in a modular
fashion when using the ILE RPG/400 compiler.

Traditional OPM RPG/400 programs were designed to avoid external calls where
possible. Applications tended to be built with a few monolithic programs.
Programs were designed to contain as much function as they could, so they
would not have to pay the performance cost of external calls. These programs
grew to be large and became difficult to maintain. Making a small change to a

Chapter 9. Performance 159

program was a big effort. Making a significant change was a rewrite. With the
improved bound call in ILE RPG/400, writing smaller functions that call and are
called by other functions are done without the performance penalty associated
with external calls. You can build applications by collecting or binding smaller
functions, and realize the benefits of modular programming design.

In ILE, procedures are compiled into a module object. Module objects cannot be
executed. They are the building blocks of program or service program objects.
ILE applications are built by binding modules into programs or service programs.

As part of the suite of ILE languages, RPG modules can now bind with modules
written in different languages. Programmers can build modules in the language
most familiar to them. These modules are then bound into a program or service
program. You can also choose the best language for the function you are
building. For example, if a difficult calculation is better suited for a language
such as C, you can build an ILE C/400* module containing that algorithm.
Database I/O may be more efficient written in RPG as part of an ILE RPG/400
module. These two modules are then bound into one program object or service
program object. ILE lets you use the right language for the function and combine
those functions to create applications. This can help overall performance and
development time.

Service programs are bound with program objects to enable fast bound calls to
the procedures contained in the service program. You can use service
programs to build a function that is used by different applications or programs.
The service program are bound to each and any program that needs to call a
procedure in that service program. Writing a service program that is bound to
many programs simplifies code reuse . For example, the compiler runtime
support is packaged into service programs. These service programs are bound
to your compiled programs. When a compiler runtime function is called in your
program, it is called through a bound call.

Because modular design has smaller source units, you are building your
applications differently. You can build smaller building blocks for your
application by using modules or service programs. If you have to change a
function, you only need to compile that function and rebind. For example, with
service programs, you can separate high-use, frequently changed code, such as
tax routines. When you maintain this code in separate service programs, you
improve the efficiency of maintenance by avoiding recompiling and retesting the
main applications. In turn, the overall integrity of the application is improved.

The data in the next section is from measurements that were run using V1R1
level software. This section compares the results of the RPG II and RPG III
compilations and executions in the ABS product lines. Performance
comparisons were made between the AS/400 system, System/36, and System/38.
All jobs were run in batch mode and in a stand-alone environment.

160 Moving to ILE RPG

Chapter 10. E xception Handling

The purpose of this chapter is to describe the different exception and error
handling techniques available with ILE, focusing on those available for the ILE
RPG/400 and ILE CL programming languages. For more detailed descriptions of
the language-specific exception handling methods, you might want to refer to the
appropriate language publications.

Most programs benefit from the implementation of planned exception handling
because it can both minimize end-user frustration, and reduce the performance
overhead associated with the system handling the exception. In this chapter, we
see that in ILE applications it is more costly (in system resource) to allow system
default exception handling than it was in OPM applications.

The term exception handling is used within this chapter to refer to both exception
handing and error handing. However, for consistency with RPG terminology, the
term error is used in the context of error indicator or error handling subroutine.

10.1 What Is An Exception/Error?
There is a difference between exceptions and errors:

• An exception is a deviation from the normal events.
• An error is a mistake that should not have occurred.

There are two general types of exceptions that can occur:

• File exceptions:
For example, the file does not exist or is currently unavailable.

• Program exceptions:
For example, an invalid array index is used

Whenever a runtime error occurs, an exception message is generated.

Exception messages are associated with call stack (also known as invocation
stack) entries.

10.1.1 File Exceptions
In order to determine the cause of a file exception, there are two places where
file-related exception information is made available within RPG IV. These are:

 1. File Open Feedback Area

This is part of the ODP. The content is set during file open operations. It
contains information about file opening operations.

 2. File Input/Output Feedback Area

The contents are updated for every I/O operation performed in the program.
This is part of the ODP.

There are two facilities within RPG IV that enable us to handle file errors within
the application. These are:

 1. File Information Data Structure (INFDS)

 Copyright IBM Corp. 1995 161

This data structure comprises information from both the open feedback area
and the input/output feedback area. It is specified for every file in a
program. Should a file exception occur against a file with an INFDS coded,
the contents of the data structure are used by the application to determine
how processing should continue.

Note:

While ILE RPG/400 supports the use of 10 character file names and 10
character record format names, only 8 character names are
supported within the file information data structure.

The layout of the INFDS is fully described in ILE RPG/400 Reference,
SC09-1526-00.

 2. Information Status Subroutine (INFSR)

After a file exception has occurred, if an INFSR has been coded, it is given
control thus allowing the application to determine what action to take.

Note:

If you code a single file error handling subroutine for all files in a
program, then you must ensure that the first eight characters of all file
names and record format names to be processed by this procedure
are unique. This is because the file and record format names
contained in the INFDS are limited to eight characters.

10.1.2 Program Exceptions
These are exceptions that occur while running applications that are not file
exceptions. There are two related facilities within RPG IV that enable the
developer to handle program exceptions and they are:

 1. Program Status Data Structure (PSDS)

One PSDS may be coded for each ILE procedure within an ILE RPG/400
procedure within an ILE program. Thus, in ILE there are multiple program
status data structures within a program, with one or none for each RPG IV or
ILE CL procedure within the program.

 2. Program Error Subroutine (*PSSR)

The program error subroutine receives control when an unexpected program
exception occurs. To get control if a file exception occurs, code *PSSR on
the INFSR keyword on the file description specification.

First, however, it is necessary to review the differences between ILE and OPM
exception handling, assuming that there is NO error handling within an
application.

10.2 Exception Handling Architecture

Figure 94 on page 163 shows the error-handling components for both OPM and
ILE programs. Some portions of the exception handling mechanism are unique
between ILE and OPM programs, while other portions are common.

This mechanism consists of these components:

162 Moving to ILE RPG

• Exception Message Architecture

Exception generation is common to both OPM and ILE programs.

• Unhandled Exception Default Actions

The default actions taken for an unhandled exception differ between OPM
and ILE.

• HLL-Specific Handlers

Both OPM and ILE languages provide HLL-specific methods of handling
exceptions.

• ILE Direct Monitors

Some ILE languages provide the capability to more closely control exception
handling through a direct monitor.

• ILE Condition Handlers

ILE provides bindable APIs available to any ILE language to register
condition handlers, except for ILE CL.

┌──Original─Program─Model───────┐ ┌──Integrated─Language─Environment────────┐
│ (OPM) │ │ (ILE) │
│ ┌───────┐ ┌───────┐ ┌───────┐ │ │ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ CL │ │ RPG │ │ ... │ │ │ │ C/400 │ │ ILE RPG │ │ILE COBOL│ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ └───────┘ └───────┘ └───────┘ │ │ └─────────┘ └─────────┘ └─────────┘ │
│ │ │ │
└───────────────────────────────┘ └───┘
┌───────────────────────────────┐ ┌──────────────┐┌──────────┐┌─────────────┐
│ │ │ HLL-specific ││ Direct ││ ILE │
│ HLL-Specific Handlers │ │ handlers ││ Monitors ││ Conditions │
│ │ │ ││ ││ │
└───────────────────────────────┘ └──────────────┘└──────────┘└─────────────┘
┌───────────────────────────────┐ ┌───┐
│ │ │ │
│ Unhandled Exception Default │ │ Unhandled Exception Default Actions │
│ Actions │ │ │
│ │ │ │
└───────────────────────────────┘ └───┘
┌───┐
│ │
│ Exception Message Architecture │
│ │
└───┘

Figure 94. Error Handling Components for OPM and ILE

10.2.1 Job Message Queues and Call Stacks

The following resources are involved in the error handling process

Call stack entry
A call stack entry exists for each OPM program and for each ILE procedure in
a bound program that is active within the job.

Call stack entry message queue
A call stack entry message queue exists for each call stack entry to facilitate
sending and receiving messages between the programs and procedures
running on the call stack.

For further discussion on call stack, refer to 7.5, “The Call Stack” on page 92.

Chapter 10. Exception Handling 163

External message queue
An external message queue (*EXT) exists for each job to communicate
externally from the job. Messages sent to this message queue are used to
communicate information outside the job′s program call stack. Inquiry and
informational type messages sent to the external queue result in the Display
External Messages screen being shown to the interactive user. Inquiry
messages sent to the external queue from a batch job are automatically
replied to with the default reply. Status type messages sent to the external
queue in an interactive job result in the message being shown on line 24 of
the display screen.

Job message queue
A single job message queue object is used by OS/400 to contain all the call
message queues and the *EXT message queue for each job. The job
message queue is used to produce the job log when the job completes.

Figure 95 graphically depicts these terms.

┌───┐
│ An 0S/400 Job │
│ │
│ ┌───────────────────┐ ┌───────────────────────────┐ │
│ │ Job Message Queue │ │ Job Call Stack │ │
│ │ Object │ │ │ │
│ │ │ │ │ │
│ │ ┌───────────────┐ │ │ │ │
│ │ │ External │ │ �──Each job has │ │ │
│ │ │ Message Queue │ │ one external │ │ │
│ │ └───────────────┘ │ message queue │ │ │
│ │ │ │ │ │
│ │ ┌───────────────┐ │ │ ┌───────────────────────┐ │ │
│ │ │ PROGRAM_A │ │ �───────────────� │ │ PROGRAM_A │ │ │
│ │ │ call stack │ │ │ │ instructions │ │ │
│ │ │ entry msg │ │ │ │ ... │ │ │
│ │ │ queue │ │ │ │ ... │ │ │
│ │ └───────────────┘ │ │ │ CALL PROGRAM_B │ │ │
│ │ ┌───────────────┐ │ │ ├───────────────────────┤ │ │
│ │ │ _CX_PEP │ │ �───────────────� │ │ Procedure _CX_PEP in │ │ │
│ │ │ call stack │ │ │ │ PROGRAM_B │ │ │
│ │ │ entry msg │ │ Each call │ │ ... │ │ │
│ │ │ queue │ │ stack entry │ │ ... │ │ │
│ │ └───────────────┘ │ has an │ │ CALL procedure_C │ │ │
│ │ ┌───────────────┐ │ associated │ ├───────────────────────┤ │ │
│ │ │ procedure_C │ │ �──call stack───� │ │ procedure_C in │ │ │
│ │ │ call stack │ │ entry │ │ PROGRAM_B │ │ │
│ │ │ entry msg │ │ message │ │ instructions │ │ │
│ │ │ queue │ │ queue │ │ ... │ │ │
│ │ │ │ │ │ │ ... │ │ │
│ │ └───────────────┘ │ │ │ CALL PROGRAM_A │ │ │
│ │ ┌───────────────┐ │ │ ├───────────────────────┤ │ │
│ │ │ PROGRAM_A │ │ �───────────────� │ │ PROGRAM_A │ │ │
│ │ │ call stack │ │ │ │ instructions │ │ │
│ │ │ entry msg │ │ │ │ ... │ │ │
│ │ │ queue │ │ │ │ ... │ │ │
│ │ └───────────────┘ │ │ │ ... │ │ │
│ └───────────────────┘ │ └───────────────────────┘ │ │
│ └───────────────────────────┘ │
└───┘

Figure 95. Job Message Queue/Call Stack example

10.2.2 Terminology
The terms frequently used in the error handling environment and a short
explanation.

Control boundary
An ILE call stack entry is defined as a control boundary if either of the
following are true:

164 Moving to ILE RPG

• The immediately preceding call stack entry is in a different activation
group.

• The immediately preceding call stack entry is an OPM program.

ILE transfers control to the call stack entry preceding the control boundary
when an unhandled function check occurs, or when an HLL end verb is used.

For more information on control boundaries refer to 7.6, “Control Boundary”
on page 94. Figure 96 and Figure 97 on page 166 illustrate control
boundaries in both ILE and OPM.

┌OPM─────────┐
│ │
│Program A │
└───────┬────┘

│
│

┌Activation┼Group─A1┐ ┌Activation─Group─A2┐
│

│ ┌ILE────�─CB─┐ │ │ ┌ILE──────CB─┐ │
│ ├───────────────────� │

│ │Procedure P2│ │ │ │Procedure P3│ │
└────────────┘ └─────┬──────┘

│ │ │ │ │
│

│ │ │ ┌ILE──�──────┐ │
│ │

│ │ │ │Procedure P4│ │
└─────┬──────┘

│ │ │ │ │
│

│ ┌ILE──────CB─┐ │ │ ┌ILE──�──────┐ │
│ �───────────────────┤ │

│ │Procedure P6│ │ │ │Procedure P5│ │
└─────┬──────┘ └────────────┘

│ │ │ │ │
│

│ ┌ILE──�──────┐ │ │ │
│ │

│ │Procedure P7│ │ │ │
└────────────┘

└───────────────────┘ └───────────────────┘

CB = Control Boundary

Figure 96. Control Boundaries Due to Changing Activation Groups

Chapter 10. Exception Handling 165

┌───Default─Activation─Group────┐

 │ ┌OPM────────────────┐ │
│ Program A │

 │ └─────────┬─────────┘ │
│

 │ ┌ILE──────�─────────┐ │
CB │ Procedure P1 │

 │ └─────────┬─────────┘ │
│

 │ ┌ILE──────�─────────┐ │
│ Procedure P2 │

 │ └─────────┬─────────┘ │
│

 │ ┌OPM──────�─────────┐ │
│ Program B │

 │ └─────────┬─────────┘ │
│

 │ ┌ILE──────�─────────┐ │
CB │ Procedure P3 │

 │ └───────────────────┘ │

 └───────────────────────────────┘

CB = Control Boundary

Figure 97. Control Boundaries Within OPM Default Activation Group

Percolation
When an exception message remains unhandled after calling the active
exception handlers for the call stack entry, the exception message is
percolated to the previous call stack entry. The exception handlers for this
call stack entry are then called.

This percolation process continues until the exception has been percolated to
a control boundary. If the exception is not handled in the control boundary,
the default action for the exception message type is taken.

Handle cursor
During exception processing, successively lower priority handlers are called
until the exception is marked as handled. The handle cursor is a pointer that
keeps track of the next exception handler to be called to handle an exception.

If an exception is not handled by any of the exception handlers defined for a
call stack entry, the exception message is percolated to the previous call
stack entry. Percolation sets the handle cursor to the highest priority monitor
in the previous call stack entry.

Resume cursor
The resume cursor is a pointer that keeps track of the location where a
program can resume processing after handling an exception.

Normally, the system sets the resume cursor to the instruction following the
instruction that receives an exception. The resume cursor may be moved by
using the Move Resume Cursor (CEEMRCR) bindable API. When the resume
cursor is moved to an earlier call stack entry, it points to the next statement
following the call that suspended the program or procedure.

166 Moving to ILE RPG

10.2.3 Exception Messages
Exception Message Types

Error handling for ILE and OPM is based on exception message types. An
exception message is a message of one of these types:

Escape (*ESCAPE)
Indicates an error causing a program to end abnormally, without
completing its work. The sending call stack entry up to the target call
stack entry does not receive control after sending an escape exception
message.

Status (*STATUS)
Describes the status of work being done by a program. You may receive
control after sending a status exception message, depending on the way
the target program handles the status message.

Notify (*NOTIFY)
Describes a condition requiring corrective action or a reply from the
calling program. You may receive control after sending a notify exception
message, depending on the way the target program handles the notify
message.

Function Check
Function check is sent by the system as a part of the default action for an
unhandled *ESCAPE exception. In ILE, a function check exception is a
special exception message type that can only be sent by the system. In
OPM, a function check is an *ESCAPE exception type with a message ID of
CPF9999.

10.2.3.1 Sending an exception message
An exception message is sent in the following ways:

• Generated by the system

OS/400 (including any HLL) generates an exception message to indicate a
program error or status information.

• Message Handler API

The Send program message (QMHSNDPM) API is used to send an exception
(or informational) message.

• ILE API

The Signal a Condition (CEESGL) bindable API is used to raise an ILE
condition. This condition results in an escape or status exception message.

• Language-specific verbs

− For ILE C/400, the raise() function generates a C signal that is
represented as an exception message.

− In ILE CL, the SNDPGMMSG command is used to send an exception.
− RPG IV and ILE COBOL/400 do not have a similar function.

10.2.4 Types of Exception Handlers
As shown in Figure 94 on page 163, three types of exception handlers are
supported by OS/400:

• Direct monitors

− ILE C/400 #pragma exception_handler directive

Chapter 10. Exception Handling 167

− Neither RPG IV, ILE COBOL, ILE CL nor OPM languages allow this
capability.

• ILE condition handlers

ILE provides the Register a User-Written Condition Handler (CEEHDLR)
bindable API. This API allows you to identify a procedure at runtime that
should be given control when an exception occurs.

• HLL-specific handlers

Language-specific methods of handling exceptions.

− ILE C/400 signal function

− RPG IV *PSSR and INFSR subroutines

− ILE COBOL USE declarative for I/O error handling, imperatives in
statement-scoped condition phrases such as ON SIZE ERROR or AT
INVALID KEY

− CL MONMSG command

Please refer to the particular programming language manual for more
information.

10.2.5 Exception Handler Priority
Priority of the types of handlers becomes important if HLL-specific error handlers
are mixed with the additional ILE exception handler types in a single call stack
entry.

RPG IV

 1. Error indicator handling

 2. INFSR I/O error handling

 3. ILE condition handlers are called next

Note:

If multiple handlers have been registered, they are called in LIFO order

 4. *PSSR error subroutine

 5. RPG default handler (for unhandled exceptions)

ILE CL

 1. HLL specific handler

All exception handlers for a call stack entry are called before an exception is
percolated to the previous call stack entry and any active exception handlers on
this call level are called.

10.2.6 Default Actions for Unhandled Exceptions
If an exception message remains unhandled after calling the handlers enabled
for a control boundary call stack entry, the default action for the exception is
taken. This action depends on the exception message type:

• Escape

Put the escape message in the job log, and send a function check exception
to the call stack entry where the resume cursor points. Exception processing
now begins for the function check exception.

168 Moving to ILE RPG

• Status

Do not put the status message into the job log, and resume execution at the
next statement in the sending procedure.

• Notify

Keep the notify message in the job log, send the default reply to the notify
message, and resume execution at the next statement in the sending
procedure.

• Function check

Do not put the function check message into the job log, move the resume
cursor to the caller of the control boundary, and send the application failure
escape exception message (CEE9901) to the caller of the control boundary.

10.2.7 Handling an Exception
An exception must be marked handled to resume program processing. Different
methods apply, depending on handler type:

ILE C/400 direct monitors
Two methods:

• Control action specified on #pragma exception_handler statement
• QMHCHGEM API call inside exception handler

ILE condition handler
Refer to CEEHDLR API description in the System API Reference for the
appropriate values.

Set a return code value inside exception handler.

HLL-specific handler
Exception is marked handled by the system prior to calling the exception
handler.

10.2.8 Percolating an Exception
Some types of handlers have the option of being called to look at the exception,
but decide to take no action. Different methods apply, depending on handler
type:

ILE C/400 direct monitors
Do not use a control action on the #pragma exception_handler statement that
marks the exception handled prior to being called and return from the
handler without calling QMHCHGEM API to mark exception as handled.

ILE condition handler
Set a return code value inside exception handler.

Refer to CEEHDLR API description for the appropriate values.

HLL-specific handler
Exception is marked handled by the system prior to calling the exception
handler, not possible to percolate.

Chapter 10. Exception Handling 169

10.2.9 Promoting an Exception

Some exceptions are modified by a handler to a different exception message
type and message identifier. Different methods apply, depending on handler
type:

ILE C/400 direct monitors
The QMHPRMM API is used to promote an escape or status exception
message that has not yet been marked handled to a different escape or
status exception. Some control of placement of the handle cursor is also
available through this API. Refer to the QMHPRMM API documentation for
specifics.

ILE condition handler
Set a return code value inside exception handler.

Refer to CEEHDLR API description for the appropriate values.

HLL-specific handler
This function is not available to HLL-specific handlers.

10.3 Steps in Exception Handling
What necessary steps are taken when an exception occurs in a program?

 1. Exception is delivered.

 2. System calls active exception handlers for the call stack entry where the
exception was delivered.

 3. If none of those handlers mark the exception as handled, it is moved to the
callers call stack entry (percolation).

 4. If the exception percolates to the control boundary, the default action for the
exception message type is taken.

170 Moving to ILE RPG

10.3.1 Exception Handling Flow
┌───────────────────────┐

 │ Command Entry Screen │
 │ (QCMD) │
 │ │
 │ CALL ILEPROG │
 │ │
 └──────────┬────────────┘

│ �──Control Boundary
 ┌──────────�────────────┐
 │ procedure I1ERRCL │
 │ ILEPROG (ILE01) │
 │ statements │
 │ ... │
 │ CALLPRC I1PRERPG │
 │ ... │
 ├───────────────────────┤
 │ procedure I1PRERPG │
 │ ILEPROG (ILE01) │
 │ statements │
 │ ... │
│ CALLB I1SHWERR │
│ ... │
├───────────────────────┤

 | procedure I1SHWERR |
 │ ILEPROG (ILE01) │
 │ statements │
 │ ... │
 │ ... │
 │ ... │
 └───────────────────────┘

Figure 98. Exception Flow in Call Stack

In the previous call stack example, we call from the command entry screen an
ILE program ILE01. In ILE01 procedure I1ERRCL has called procedure I1PRERPG
that has called procedure I1SHWERR.

┌───────────────────────┐
 │ Command Entry Screen │
 │ (QCMD) │
 │ │
 │ CALL ILEPROG │
 │ │
 └───────────────────────┘

│ �──Control Boundary
 ┌───────────────────────┐
 │ procedure I1ERRCL │
 │ ILEPROG (ILE01) │
 │ statements │
 │ ... │
 │ CALLPRC I1PRERPG │
 │ ... │
 ├───────────────────────┤
 | procedure I1PRERPG |
 │ ILEPROG (ILE01) │
 │ statements │
 │ ... │
│ CALLB I1SHWERR │
│ ... │
├───────────────────────┤

 │ procedure I1SHWERR │
 │ ILEPROG (ILE01) │
 │ statements │
 │ ... │
 │ 003 SUBST │ �──*ESCAPE exception delivered (RNX0100) �1�
 │ 004 MOVE │ �──Resume Cursor �2�
 └───────────────────────┘

 ------- Procedure I1SHWERR ---
 D ARR1 S 10 DIM(5)
 C Z-ADD -1 N 5 0
 C N SUBST ′ Hello′ EXAMP 10
 C MOVE ARR1(N) ARR1(N)
 C SETON LR
 ****************** End of data ***

Figure 99. Exception Flow in Call Stack

Chapter 10. Exception Handling 171

Exception processing starts when an escape exception is sent and continues
until the exception is handled.

Procedure I1SHWERR in ILE bound program ILE01 receives an *ESCAPE
exception message (RNX0100) �1� when running the instruction SUBST.

When an exception is sent, the resume cursor is set to the instruction following
the statement that received the exception �2�, and the handle cursor is set to
the highest priority monitor in the call stack entry that received the exception.

┌───────────────────────┐
 │ Command Entry Screen │
 │ (QCMD) │
 │ │
 │ CALL ILEPROG │
 │ │
 └───────────────────────┘

│ �──Control Boundary
 ┌───────────────────────┐
 │ procedure I1ERRCL │ - no more handlers, *ESCAPE is unhandeled �4�
 │ ILEPROG (ILE01) │
 │ statements │
 │ ... │ �────────────────────┐
 │ CALLPRC I1PRERPG │ │
 │ ... │ │
 ├───────────────────────┤ │
 │ procedure I1PRERPG │ - no more handlers───┘�3�
 │ ILEPROG (ILE01) │
 │ statements │
 │ ... │ �────────────────────┐
│ CALLB I1SHWERR │ │
│ ... │ │
├───────────────────────┤ │

 │ procedure I1SHWERR │ - no more handlers───┘�3�
 │ ILEPROG (ILE01) │
 │ statements │
 │ ... │
 │ 003 SUBST │ �──*ESCAPE exception delivered (RNX0100) �1�
 │ 004 MOVE │ �──Resume Cursor �2�
 └───────────────────────┘

Figure 100. Exception Flow in Call Stack

�3�Since in none of the procedures, any error handling is provided, all depends
on the rules for the default HLL handlers.

�4�In our example the ILE RPG/400 default handler percolates the unhandled
*ESCAPE message up the call stack to the caller of the procedure.

This process continues until the control boundary is reached.

172 Moving to ILE RPG

┌───────────────────────┐
 │ Command Entry Screen │
 │ (QCMD) │
 │ │
 │ CALL ILEPROG │
 │ │
 └───────────────────────┘

│ �──Control Boundary
 ┌───────────────────────┐
 │ procedure I1ERRCL │ - no more handlers, *ESCAPE is unhandeled �5�
 │ ILEPROG (ILE01) │ │
 │ statements │ │
 │ ... │ │
 │ CALLPRC I1PRERPG │ │
 │ ... │ │
 ├───────────────────────┤ │
 │ procedure I1PRERPG │ │
 │ ILEPROG (ILE01) │ │
 │ statements │ │
 │ ... │ │
│ CALLB I1SHWERR │ │
│ ... │ │
├───────────────────────┤ │

 │ procedure I1SHWERR │ │
 │ ILEPROG (ILE01) │ │
 │ statements │ │
 │ ... │ │
 │ 003 SUBST │ �──Mark *ESCAPE exception handled �
 │ │ Function check exception delivered �5�
 │ 004 MOVE │ �──Resume Cursor �2�
 └───────────────────────┘

Figure 101. Exception Flow in Call Stack

�5� At the control boundary, the unhandled *ESCAPE message is turned into a
function check and delivered at the original starting point.

�6� The ILE RPG/400 default handler handles this function check and issues an
inquiry message RNQ0100. If you reply to the message with ″C″ (Cancel), the
call stack is ended and the function check is percolated to the caller.

�7� This process is repeated until we reach the control boundary. At the control
boundary, every unhandled function check results in an *ESCAPE exception
CEE9901 to the caller of the control boundary. See Figure 102.

┌───────────────────────┐
 │ Command Entry Screen │
 │ (QCMD) │
 │ │
 │ CALL ILEPROG │ �──CEE9901─escape────┐�7�
 │ │ exception delivered
 └───────────────────────┘ │

│ �──Control Boundary │
 ┌───────────────────────┐ │
 │ procedure I1ERRCL │ - no more handlers───┘
 │ ILEPROG (ILE01) │
 │ statements │
 │ ... │ �────────────────────┐
 │ CALLPRC I1PRERPG │ │
 │ ... │ │
 ├───────────────────────┤ │
 │ procedure I1PRERPG │ - no more handlers───┘�6�
 │ ILEPROG (ILE01) │
 │ statements │
 │ ... │ �────────────────────┐
│ CALLB I1SHWERR │ │
│ ... │ │
├───────────────────────┤ │

 │ procedure I1SHWERR │ - no more handlers───┘�6�
 │ ILEPROG (ILE01) │
 │ statements │
 │ ... │
 │ 003 SUBST │ �──*ESCAPE exception delivered (RNX0100) �1�
 │ 004 MOVE │ �──Resume Cursor �2�
 └───────────────────────┘

Figure 102. Exception Flow in Call Stack

Chapter 10. Exception Handling 173

10.3.1.1 Run an ILE Error Handling Example
You can run the example as described in 10.3.1, “Exception Handling Flow” on
page 171 by using the following commands:

• ADDLIBLE GG244358
• CALL ILE01

Notice that when you are prompted for the first error, it is not clear that the first
set of percolations have been done, since you are replying to a normal inquiry
message.

� �
Value used is out of range for the string operation (C G D F).

Type reply, press Enter.
Reply . . . ___� �

Take the SYSREQ option 3, and display the JOBLOG (option 10), you should have
the following information displayed:

� �
3 > call ile01
�1� Value used is out of range for the string operation.
�2� Function check. RNX0100 unmonitored by ILE01 at statement 0000000003,

instruction X′0000′ .
�3� Value used is out of range for the string operation (C G D F).� �

�1�This describes message RNX0100 the original *ESCAPE.

�2�This is the function check created by the control boundary after the unhandled
*ESCAPE message

�3�This is message RNQ0100, provided based on the function check by the ILE
RPG/400 default handler.

If you answer all of the other messages (or take the default), and display the
JOBLOG again, the function check has disappeared. This function check
CPF9999 and the whole percolation process is not visible in the JOBLOG after
the program has returned with the CEE9901 exception.

10.4 Comparing OPM and ILE Exception Handling
The major difference for the developer between OPM and ILE exception handling
is the change of the message IDs. In most cases, the four-digit message number
stays the same, while the three-character prefix changes, for example the
equivalent for RPG0100 in OPM is now RNX0100. For the different behavior of
both environments, checkout the following example provided on diskette in the
back of this publication:

 1. ADDLIBLE GG244358
 2. CALL OPM01 (runs the same code with dynamic CALLs as ILE01 with bound

calls)

174 Moving to ILE RPG

10.4.1 Performance Impact
It is obvious, although not completely visible that the percolation process in ILE
for unhandled errors requires more time then an unhandled error situation in
OPM. So it is more important then ever to use your own exception handling
where possible.

For RPG developers, the standard handling through the use of Error condition
indicators, the I/O INFSR subroutines and the *PSSR is still an excellent solution.

The same set of programs used in the previous examples also have a
counterpart with complete error handling capabilities implemented, they are
called OPM02 and ILE02. Run them if you want to and notice the difference.

The programs also write some status information to an ERRORLOG file that is
displayed at the end of the program.

10.4.2 ILE Condition Handler
Why should you use an ILE Condition handler if you run in a RPG IV and ILE CL
environment? For C language developers, no HLL-specific handlers exist, so for
the C environment this is the main solution, besides the use of direct monitors.
Two reasons for condition handlers could be:

 1. Language independent error handling interface

 2. One service program that handles all application errors

No need to change individual programs if changes in the error handling are
required.

When your application is converted from OPM to ILE, you should not start
eliminating all other means of error handling in your programs, since both
methods are used at the same time. However, you should investigate the impact
of the priority in which errors are handled when an ILE Condition handler and
INFSR subroutines and *PSSR are all present in the same program.

Chapter 10. Exception Handling 175

176 Moving to ILE RPG

Appendix A. Diskette Install Instructions

With this publication, there is a 3.5-inch diskette that contains the code for most
examples quoted.

This code is provided for your use without restriction, to use for demonstrations,
educational or as a framework to build your own application. Please understand
that the examples are not intended to be fully operational applications, but are
trying to show certain aspects of the new application development environment
ILE, RPG IV, migration and Application Development Manager/400.

The diskette holds a library called GG244358. Further instructions on installing
and prerequisites follow.

Prerequisites: In order to be able to compile the restore programs and the
examples in the library, the products required are:

• OS/400 5763-SS1 (V3R1)

• ILE RPG 5763-RG1 (V3R1)

To run the Application Development Manager/400 scenarios, you need:

• ADTS/400 5763-PW1 (V3R1)

• Feature J1 and J2

Installation: Follow the steps as described:

 1. Sign on as QSECOFR on a PS/2.

A user profile with equal rights as QSECOFR works as well.

 2. Create on the AS/400 system, a folder named GG244358 in the root directory.

 3. Make the folder available as a shared folder for the PC.

 4. Insert the diskette in drive A.

 5. Copy all of the files from the diskette into shared folder GG244358.

 6. Add a member to a source file (QCLSRC) in your own library:

ADDPFM FILE(yourlib/QCLSRC) MBR(CLP4358) SRCTYPE(CLP)

 7. Use the CPYFRMPCD to copy the install program source from the folder:

CPYFRMPCD FROMFLR(GG244358) TOFILE(yourlib/QCLSRC) +
FROMDOC(CLP4358.CLP) +
TOMBR(CLP4358)

As a result of the next action, you have a library installed called GG244358.
Verify before running the program that a library of that name does not
already exist on your system, otherwise, it is deleted.

 8. Create and run this CL program.

 9. Delete the following objects; they are of no further use:

• Folder: GG244358

• Source and program CLP4358 in yourlib

 Copyright IBM Corp. 1995 177

178 Moving to ILE RPG

Appendix B. RPG IV Coding Examples

B.1.1 Using Pointers in RPG IV
This example is in source file QPOINTER in library GG244358.

RTVPGMMOD the command specifications
/*--*/
/* Keyword information: */
/* */
/* FROMLIB - Specify the library that you want to have searched for */
/* ILE programs */
/* */
/* OUTFILE - Specify the File where you want to receive the information, */
/* if the file does not exist it is created with a record */
/* length of 508. */
/* If the file name exists, it is used to store the information */
/* */
/* MBROPT - Specify when an existing file is used, whether you want */
/* to replace or add the records to it. */
/* */
/* The program called by this command is RTVPGMMOD */
/* */
/* Author: ITSC (ILE Residency) */
/* Date : 05-27-94 */
/* */

CMD PROMPT(′ Retrieve PGM modules′)
PARM KWD(FROMLIB) TYPE(*NAME) LEN(10) MIN(1) +

PROMPT(′ From Library′)
PARM KWD(OUTFILE) TYPE(QUAL1) MIN(1) +

PROMPT(′ Outfile name′)
PARM KWD(MBROPT) TYPE(*CHAR) LEN(8) RSTD(*YES) +

DFT(*REPLACE) VALUES(*REPLACE *ADD) +
PROMPT(′ Replace or add records′)

QUAL1: QUAL TYPE(*NAME) LEN(10)
QUAL TYPE(*NAME) LEN(10) DFT(*CURLIB) SPCVAL(*CURLIB) +

PROMPT(′ Library name′)

 Copyright IBM Corp. 1995 179

RTVPGMMODC the CLLE program
/*--*/
/* This source is used to create the first module of the RTVPGMMOD program */
/* it will do all the checking and creating if necessary for the */
/* environment. */
/* */
/* The flow thru the program is described at the appropriate place. */
/* */
/* Author: ITSC (ILE Residency) */
/* Date : 05-27-94 */
/* */
/*--*/
/* RTVPGMMODC Retrieve Program module information into a File */
/* */

PGM PARM(&LIB &OUTFILLIB &REPLACE)
/*--*/
/* Input variables */
/*--*/

DCL VAR(&LIB) TYPE(*CHAR) LEN(10)
DCL &OUTFILLIB *CHAR LEN(20)
DCL VAR(&REPLACE) TYPE(*CHAR) LEN(8)

/*--*/
/* Program variables */
/*--*/

/* */
DCL &OFIL *CHAR LEN(10) /* Outfile Filename */
DCL &OLIB *CHAR LEN(10) /* Outfile Library */
DCL VAR(&CRTUSRSPC) TYPE(*CHAR) + /* Create USRSPC */

LEN(1) VALUE(′ N′) /* object the */
/* first time */

DCL &WS *CHAR LEN(10) /* Workstation name */
DCL &TXT *CHAR LEN(80) /* BRKMSG text */
DCLF FILE(QADSPOBJ) /* DSPOBJD outfile */
MONMSG MSGID(CPF0000) /* Catch all Errors */

/*--*/
/* Start the mainline of the program */
/* Establish the process environment */
/*--*/

DLTF FILE(QTEMP/##DSPOBJD) /* Delete DSPOBJD */
/* Outfile */

MONMSG MSGID(CPF2105) /* Ignore not found */
DSPOBJD OBJ(&LIB/*ALL) OBJTYPE(*PGM) + /* Display all PGMs */

OUTPUT(*OUTFILE) + /* in the library */
OUTFILE(QTEMP/##DSPOBJD)

OVRDBF FILE(QADSPOBJ) + /* Override the file*/
TOFILE(QTEMP/##DSPOBJD) + /* to DSPOBJD output*/
SECURE(*YES) /* file */

CHKOBJ OBJ(QTEMP/##MODLST) + /* Check existence */
OBJTYPE(*USRSPC) /* of Userspace */

MONMSG MSGID(CPF9801) + /* if NOT, set Yes */
EXEC(CHGVAR VAR(&CRTUSRSPC) + /* indication on */
VALUE(′ Y′))

CHGVAR VAR(&OLIB) + /* Assign outfile */
VALUE(%SST(&OUTFILLIB 11 10)) /* library */

CHGVAR VAR(&OFIL) + /* Assign outfile */
VALUE(%SST(&OUTFILLIB 1 10)) /* filename */

CHKOBJ OBJ(&OLIB/&OFIL) OBJTYPE(*FILE) /* Check existence */

180 Moving to ILE RPG

MONMSG MSGID(CPF9801) + /* If NOT, create */
EXEC(CRTPF FILE(&OLIB/&OFIL) + /* the Outfile */
RCDLEN(508) +
TEXT(′ PGM Module reference information′) +
SIZE(10000 10000 10))

IF COND(&REPLACE *EQ ′ *REPLACE′) + /* Clear the outfile*/
THEN(CLRPFM FILE(&OLIB/&OFIL)) /* if requested */

OVRDBF FILE(MODLST) TOFILE(&OLIB/&OFIL) /* Override the file*/
/* to the outfile */

/*--*/
/* Read and process the OBJD program records of the requested library */
/*--*/
 AGAIN: RCVF RCDFMT(QLIDOBJD) /* read a record */

MONMSG MSGID(CPF0864) + /* If End-Of-File */
EXEC(GOTO CMDLBL(END)) /* goto END */

IF COND((&ODOBAT *EQ ′ RPGLE ′) + /* If type is ILE */
*OR (&ODOBAT *EQ ′ CLLE ′) +
*OR (&ODOBAT *EQ ′ CBLLE ′) +
*OR (&ODOBAT *EQ ′ CLE ′) +

THEN(DO)
CALLPRC PRC(RTVPGMMODR) + /* Call the retrieve*/

PARM(&ODOBNM &ODLBNM &CRTUSRSPC) /* program with the */
/* API interface */

IF COND(&CRTUSRSPC *EQ ′ E′) + /* If an error */
THEN(GOTO CMDLBL(ERROR)) /* occurred, end the*/

/* command */
CHGVAR VAR(&CRTUSRSPC) VALUE(′ N′) /* Set create USRSPC*/

/* to No */
ENDDO

GOTO CMDLBL(AGAIN) /* Read another */
/* record */

/*--*/
/* Normal or Abnormal ending of the program */
/*--*/
ERROR:

RTVJOBA JOB(&WS) /* Retrieve the WSid*/
CHGVAR VAR(&TXT) + /* Build the error */

VALUE(&ODOBNM *bcat &ODLBNM + /* message text */
*bcat ′ An error has occured, +
the program has stopped, +
check the JOBLOG and try again′)

SNDBRKMSG MSG(&TXT) TOMSGQ(&WS) /* Send the errormsg*/
END:

ENDPGM /* End the program */

Appendix B. RPG IV Coding Examples 181

RTVPGMMODR the RPGLE program
/*--*/
/* This source is used to create the second module of the RTVPGMMOD program */
/* and will create a USRSPC if required. */
/* */
/* - The userspace will be filled with the information supplied by API */
/* QBNLPGMI, which will give a list of all modules in an ILE program */
/* using format PGML0100 */
/* */
/* - All module information is written to an outfile with recl = 508 */
/* */
/* - Check the API manual SC41-8223 for more information on the */
/* structure of list entries (Chapter 2) and specifics on QBNLPGMI */
/* */
/* Author: ITSC (ILE Residency) */
/* Date : 05-27-94 */
/* */
/*--*/
 * Example using POINTERS for access to user spaces
 *
FMODLST O A F 508 DISK Output file
DNAME S 20 INZ(′##MODLST QTEMP ′) Name/Lib userspace
D ATTRIBUTE S 10 INZ(′ REF′) Attribute usrspc
D INIT_SIZE S 9B 0 INZ(10000) Init size usrspc
D INIT_VALUE S 1 INZ(′ ′) Init value
D AUTHORITY S 10 INZ(′ *CHANGE′) Auth usrspc
D TEXT S 50 INZ(′ Temporary Space Created by + Text usrspc
D RTVPGMMOD′)
DPTR S * Pointer field
DSPACE DS BASED(PTR) Assign the start of
 * the userspace
D SP1 32767 First subfield in
 * the userspace
 * ARR is used with offset to set the pointer to array Re-align Usrspc with
DARR 1 OVERLAY(SP1) DIM(32767) 1 byte array
 * Offset is pointing to start of array Offset value for the
DOFFSET 9B 0 OVERLAY(SP1:125) start of the list
 * data section in
 * the userspace
 * Size has number of module names retrieved Number of list
DSIZE 9B 0 OVERLAY(SP1:133) entries
DMODPTR S * Pointer field
DMOD_ENTRYS C CONST(500) Initial Array length
DMODARR S 508 BASED(MODPTR) DIM(MOD_ENTRYS) Re-align the start
 * of list entries
 * in the userspace
DX S 11 0 Array index value
DMOD_INFO DS Re-define of ONE
 * list entry
D PGM_NAME 10
D PGM_LIB 10
D MOD_NAME 10
D MOD_LIB 10
D SRC_FILE 10
D SRC_LIB 10
D MEMBER 10
D MOD_ATTR 10
D 428 Filler

182 Moving to ILE RPG

 * Parameter fields for the QBNLPGMI Application Program Interface (API)
DFORMAT S 8 INZ(′ PGML0100′) API format name
DPGMLIB S 20 Program/Library
D LIB S 10 Library
D PGM S 10 Program
DCRTUSRSPC S 1 Y=Yes, N=No
DERROR DS Error code
D IN 9B 0 INZ(0) Bytes IN
D OUT 9B 0 INZ(0) Bytes OUT
D EXCEPTION 7 Message-id
D RESERVED 1
D EXCEP_DATA 40 Message data
 * End parameter fields
 *--
 * Receive program and library name you want to process
 * as well as a signal whether you want the Userspace to be created
 * a ′ Y′ means YES, every other value means NO
 *--
C *ENTRY PLIST
C PARM PGM
C PARM LIB
C PARM CRTUSRSPC
 *--
 * Create the Userspace if necessary
 *--
C IF CRTUSRSPC = ′ Y′
C CALL ′ QUSCRTUS′ 99
C PARM NAME
C PARM ATTRIBUTE
C PARM INIT_SIZE
C PARM INIT_VALUE
C PARM AUTHORITY
C PARM TEXT
C ENDIF
 *--
 * Get a pointer to the user-space
 *--
C CALL ′ QUSPTRUS′ Call API
C PARM NAME
C PARM PTR
 *--
 * Call the API to list the modules in the ILE program
 *--
C EVAL PGMLIB = PGM + LIB
C EVAL IN = %SIZE(ERROR) Move the field size
 * of ERROR field
C CALL ′ QBNLPGMI′ Call API
C PARM NAME
C PARM FORMAT
C PARM PGMLIB
C PARM ERROR
C SELECT
C WHEN EXCEPTION <> *BLANKS When error occurs
 * move information
 * to program input/
 * output parameters
C EVAL %SUBST(PGM:1:10) = *BLANKS Clear pgm field
C EVAL %SUBST(PGM:1:7) = EXCEPTION Return MSGID
C EVAL %SUBST(LIB:1:10) = EXCEP_DATA Return data

Appendix B. RPG IV Coding Examples 183

C EVAL CRTUSRSPC = ′ E′ Set Error
C GOTO END
C ENDSL
 *--
 * Set the based pointer for the module array
 *
 * 1. Field OFFSET contains the offset value of the start of the list data section
 * in the array. (in this example X′104′)
 * So the byte we want the address of is (104 + 1)
 * 2. The pointer value of that field is moved into pointer field MODPTR
 * 3. Automatically the start of the array MODARR is re-aligned to this pointer value
 * (see the definition of MODARR)
 *--
C EVAL MODPTR = %ADDR(ARR(OFFSET + 1))
 *--
 * Write the module information to the outfile
 *--
C EVAL X = 0 Set array index nbr
C IF SIZE > MOD_ENTRYS Limit the number of
C EVAL %SUBST(PGM:1:10) = ′ MOD ARRAY′ Set error condition
C EVAL %SUBST(LIB:1:10) = ′ TOO SMALL.′ message
C EVAL CRTUSRSPC = ′ E′ Set Error
C GOTO END
C ENDIF
 *
C DO SIZE Do as many times as
 * list entries avail.
C ADD 1 X Increase index nbr
C EVAL MOD_INFO = MODARR(X) Move array entry to
 * data structure
C WRITE MODLST MOD_INFO Write record
C ENDDO
 *--
 * End of the program
 *--
C END TAG
C RETURN

184 Moving to ILE RPG

RNM0501 • RNM0505

Appendix C. Migration Information

This appendix contains all kindsof migration-related information helpful in the process of going through
the migration exercise.

C.1.1.1 Warning/Error Messages during CVTRPGSRC Execution

The following list contains warning and error messages you could receive in the print conversion
report produced during the execution of CVTRPGSRC command. For further information about the
messages, refer to the message file QRPGLEMSG in library QRPGLE.

RNM0501 Unable to determine RPG specification type.

Explanation: This RPG specification can either be interpreted as one of: &P -- a data structure subfield &P -- a
program-described file field &P OR one of &P -- a rename of an externally-described data structure field &P -- a
rename of an externally-described file field

User Response: The CVTRPGSRC command cannot properly interpret the specification; a data structure is
assumed and a Definition specification is produced. A block of comments containing the corresponding Input
specification code is also produced. If Input specification code is required, delete the Definition specification code
and remove the comments from the corresponding Input specifications.

RNM0502 Comment has been truncated.

Explanation: The record length of the source physical file specified on the TOFILE parameter is not long enough
to contain the entire comment.

User Response: Increase the record length of the TOFILE source physical file and try the conversion again.

RNM0503 The corresponding File Description specification is missing.

Explanation: The Extension specifications or Line Counter specifications are not valid in RPG IV. New File
Description specification keywords (RAFDATA, FORMLEN and FORMOFL) are used to perform this function. The
File Description specification must be contained in this source member in order for these keywords to be
produced. The probable cause of this problem is that the File Description specification is contained in a /COPY
member.

User Response: Specify *YES for the EXPCPY parameter of the CVTRPGSRC command when converting the
primary RPG member to expand /COPY file member(s) into the converted source or manually add the RAFDATA,
FORMLEN or FORMOFL keywords to the File Description specification prior to compiling the converted source.

RNM0504 The corresponding Extension specification is missing.

Explanation: The Extension specification is not valid in RPG IV and a new File specification RAFDATA keyword
has been created to identify the file that contains the data records. The Extension specification must be contained
in this source member in order for the RAFDATA keyword to be produced. The probable cause of this problem is
that the Extension specification is contained in a /COPY member.

User Response: Specify *YES for the EXPCPY parameter of the CVTRPGSRC command when converting the
primary RPG member to expand /COPY file member(s) into the converted source or manually add the RAFDATA
keyword prior to compiling in RPG IV.

RNM0505 The corresponding Line counter specification is missing.

Explanation: The Line counter specification is not valid in RPG IV and new File specification keywords, FORMLEN
and FORMOFL, are used to identify the number of printing lines available and the overflow line. The Line
specification must be contained in this source member in order for the FORMLEN and FORMOFL keyword to be
produced. The probable cause of this problem is that the Line specification is contained in a /COPY member.

User Response: Specify *YES for the EXPCPY parameter of the CVTRPGSRC command when converting the
primary RPG member to expand /COPY file member(s) into the converted source or manually add the FORMLEN
and FORMOFL keywords prior to compiling in RPG IV.

 Copyright IBM Corp. 1995 185

RNM0506 • RNM0513

RNM0506 FREE operation code is not supported in RPG IV.

Explanation: The RPG III or RPG/400 program contains the FREE operation code which is not supported in RPG
IV.

User Response: Remove the FREE operation and replace it with alternative code so that the programming logic
is not affected prior to compiling the converted source.

RNM0507 RPG IV does not support the auto report feature.

Explanation: *AUTO is detected in the Output specification and the FROMFILE member type is not RPT or RPT38.
When an auto report source member type is detected in an RPG III or RPG/400 program, the CVTRPGSRC
command calls the CRTRPTPGM command to expand the source member prior to converting it.

User Response: Assign the correct source member type (RPT or RPT38) to the FROMFILE member and try the
conversion again.

RNM0508 /COPY compiler directive found.

Explanation: In order for this RPG IV source to compile correctly, ensure that all /COPY source members included
in this source member have also been converted to RPG IV.

User Response: Ensure that all /COPY source members are converted prior to compiling in RPG IV. In some
cases, problems may result when attempting to convert and compile source members that make use of the /COPY
compiler directive. If this situation results, specify *YES for the EXPCPY parameter on the CVTRPGSRC command
to expand the /COPY member(s) into the converted source. For further information see the ILE RPG/400
Programmers Guide.

RNM0509 The type of specification is not valid or is out of sequence.

Explanation: The member is either not an RPG source member or contains compilation errors.

User Response: Correct any compilation errors before attempting the conversion by first compiling the program
using the RPG/400 or RPG III compiler. Try the conversion again.

RNM0510 /TITLE compiler directive removed from compile-time data.

Explanation: In RPG/400 and RPG III the compiler directive /TITLE was allowed in the compile-time data section
(**) of the program. This is not allowed in RPG IV and the Conversion Aid has removed this compiler directive
from the converted code.

RNM0511 CALL operation code found.

Explanation: RPG specifications that contain CALL operation codes have been identified because the user may
wish to: &P -- change the CALL operation code to CALLB to take advantage of static binding &P -- convert all
programs in an application to RPG IV

RNM0512 Not enough compile-time data records found.

Explanation: The CVTRPGSRC command expects more groups of alternate collating sequence records, file
translation records and compile-time data records then were found in this source member. The converted source
member may contain errors.

User Response: Correct any compilation errors before attempting the conversion again by first compiling the
program using the RPG/400 or RPG III compiler.

RNM0513 The CVTRPGSRC command has detected more compile-time data records than expected.

Explanation: Either the Control Specification (which indicates the existence of file translation and alternate
collating sequence records) or some array definitions (Extension Specifications) are not contained within this
source member. Therefore the CVTRPGSRC command must try to interpret the type of compile-time data records
in order to convert them properly.

User Response: If the converted source member does not compile properly after the conversion process either:
&P -- use the listing generated by the ILE RPG compiler to help correct any errors that have been detected &P OR
&P -- specify *YES for the EXPCPY parameter of the CVTRPGSRC command when converting the primary RPG
member to expand /COPY file members into the converted source

186 Moving to ILE RPG

RNM0514 • RNM0518

RNM0514 More than 32764 lines added to converted source member.

Explanation: During the conversion process, more than 32764 source code records have been generated in the
converted source member.

User Response: The maximum number of records supported by the Source Entry Utility (SEU) is 32764. If you
wish to edit this converted source member an editor other than SEU must be used.

RNM0516 Program described file has packed field defined to be greater than 30 digits.

Explanation: RPG III or RPG/400 defaults a packed field of 16 bytes for a program described file to be of length 30
digits. RPG IV does not allow this default. Unless the program defines this field somewhere else with a length of
30 digits a compiler error will result.

User Response: If this field is not defined somewhere else in your program create a stand-alone Definition
specification with length 30 digits to bypass this problem. For your convenience a sample Definition specification
has been generated as a comment in your source code. If required remove the asterisk from position 7 and move
this line of source code into the Definition specification portion of the program.

RNM0517 DEBUG operation code is not supported in RPG IV.

Explanation: The RPG III or RPG/400 program contains the DEBUG operation code which is not supported in RPG
IV.

User Response: Remove the DEBUG operation code and replace it with alternative code so that the
programming logic is not affected prior to compiling the converted source.

RNM0518 Compile-time array definitions have been merged with a data structure subfield.

Explanation: An array has been defined on an Extension specification and on a data structure subfield in the
RPG/400 source member. The CVTRPGSRC command has merged these two definitions into a single Definition
specification in the converted source member. This merging process may have changed the order of the arrays
in the converted source member. If this has happened the compile-time array records must either be reordered
or named using the new **keyword syntax. However, the records cannot be ″named″ or reordered by the
CVTRPGSRC command as not all the array definitions are contained within this source member.

User Response: Specify *YES for the EXPCPY parameter of the CVTRPGSRC command when converting the
primary RPG member to expand /COPY file member(s) into the converted source or manually reorder the
compile-time data records prior to compiling the converted source.

Appendix C. Migration Information 187

188 Moving to ILE RPG

Appendix D. Development environment example code

D.1.1 ADM Setup
This is the code of the program CRTADMENV as mentioned in 8.2.2, “Setup of
the Application Development Manager/400 Environment” on page 129 in the
setup of ADM.

/*-CRTADMENV--*/
/* */
/* Create the ADM example environment and import the sources */
/* to be used from the example library source file */
/* */
/* Import the sources from the QMLGSRC file for the mailing */
/* application */
/* */
/*--*/

PGM
DCL VAR(&ADM) TYPE(*CHAR) LEN(4) VALUE(′ MLGI′)
DCL VAR(&ADMSRC) TYPE(*CHAR) LEN(10) +

VALUE(′ QMLGSRC ′)
DCL VAR(&XMPLIB) TYPE(*CHAR) LEN(10) +

VALUE(′ GG244358 ′)

/* Name......Name......Name......Name......*/
DCL VAR(&PF) TYPE(*CHAR) LEN(2000) +

VALUE(′ MLGREFP MLGMSTP +
′)

/* Name......Name......Name......Name......*/
DCL VAR(&LF) TYPE(*CHAR) LEN(2000) +

VALUE(′ MLGMSTL MLGMSTL2 MLGMSTL3 MLGNAML +
′)

/* Name......Name......Name......Name.....*/
DCL VAR(&DSPF) TYPE(*CHAR) LEN(2000) +

VALUE(′ MLGINQD MLGMNUD MLGMTND MLGNAMD +
′)

/* Name......Name......Name......Name.....*/
DCL VAR(&CLLE) TYPE(*CHAR) LEN(2000) +

VALUE(′ MLGMNUC MLGMTNC MLGRPTC MLGRPTC2 +
′)

/* Name......Name......Name......Name.....*/
DCL VAR(&RPGLE) TYPE(*CHAR) LEN(2000) +

VALUE(′ MLGINQR MLGNAMR MLGLBLR MLGLBLR2 +
MLGRPTR MLGMTNR +

′)
DCL VAR(&MBR) TYPE(*CHAR) LEN(10)
DCL VAR(&START) TYPE(*DEC) LEN(3 0) VALUE(1) /* +

Number of times that a library name is +
retrieved from the Library Table */

/*--*/
/* Create a project */

CRTPRJ PRJ(&ADM) SHORTPRJ(&ADM) TEXT(′ ADM ILE +
Mailing example project′)

/*--*/
/* Create the production environment */

 Copyright IBM Corp. 1995 189

CRTGRP PRJ(&ADM) GRP(PRD) SHORTGRP(PRD) +
PARENT(*NONE) NOTIFY(*DEVELOPER) +
TEXT(′ Production environment′)

/*--*/
/* Create the developers environment */

CRTGRP PRJ(&ADM) GRP(DEV) SHORTGRP(DEV) PARENT(PRD) +
NOTIFY(*DEVELOPER) TEXT(′ Development +
environment′)

/*==*/
/*--*/
/* Import the QDFT BLDOPT */

IMPPART OBJ(&XMPLIB/&ADMSRC) OBJTYPE(*SRC) MBR(QDFT) +
PRJ(&ADM) GRP(PRD) TYPE(BLDOPT) +
PART(QDFT) LANG(*NONE) SRCFILE(*TYPE) +
TEXT(′ Default Build Option ′)

/*--*/
/* Import the PF member parts */
/* */

CHGVAR VAR(&START) VALUE(1)
AGAIN1A:

CHGVAR VAR(&MBR) VALUE(%SST(&PF &START 10))
IF COND(&MBR *EQ ′ ′) THEN(GOTO +

CMDLBL(AGAIN2))
IMPPART OBJ(&XMPLIB/&ADMSRC) OBJTYPE(*SRC) MBR(&MBR) +

PRJ(&ADM) GRP(PRD) TYPE(DDSSRC) +
PART(&MBR) LANG(PF) SRCFILE(*TYPE) +
TEXT(*TEXT)

CHGVAR VAR(&START) VALUE(&START + 10)
GOTO CMDLBL(AGAIN1A)

/*--*/
/* Import the LF member parts */
/* */
AGAIN2: CHGVAR VAR(&START) VALUE(1)
AGAIN2A:

CHGVAR VAR(&MBR) VALUE(%SST(&LF &START 10))
IF COND(&MBR *EQ ′ ′) THEN(GOTO +

CMDLBL(AGAIN3))
IMPPART OBJ(&XMPLIB/&ADMSRC) OBJTYPE(*SRC) MBR(&MBR) +

PRJ(&ADM) GRP(PRD) TYPE(DDSSRC) +
PART(&MBR) LANG(LF) SRCFILE(*TYPE) +
TEXT(*TEXT)

CHGVAR VAR(&START) VALUE(&START + 10)
GOTO CMDLBL(AGAIN2A)

/*--*/
/* Import the DSPF member parts */
/* */
AGAIN3: CHGVAR VAR(&START) VALUE(1)
AGAIN3A:

CHGVAR VAR(&MBR) VALUE(%SST(&DSPF &START 10))
IF COND(&MBR *EQ ′ ′) THEN(GOTO +

CMDLBL(AGAIN4))
IMPPART OBJ(&XMPLIB/&ADMSRC) OBJTYPE(*SRC) MBR(&MBR) +

PRJ(&ADM) GRP(PRD) TYPE(DDSSRC) +
PART(&MBR) LANG(DSPF) SRCFILE(*TYPE) +
TEXT(*TEXT)

190 Moving to ILE RPG

CHGVAR VAR(&START) VALUE(&START + 10)
GOTO CMDLBL(AGAIN3A)

/*--*/
/* Import the CLLE member parts */
/* */
AGAIN4: CHGVAR VAR(&START) VALUE(1)
AGAIN4A:

CHGVAR VAR(&MBR) VALUE(%SST(&CLLE &START 10))
IF COND(&MBR *EQ ′ ′) THEN(GOTO +

CMDLBL(AGAIN5))
IMPPART OBJ(&XMPLIB/&ADMSRC) OBJTYPE(*SRC) MBR(&MBR) +

PRJ(&ADM) GRP(PRD) TYPE(CLLESRC) +
PART(&MBR) LANG(CLLE) SRCFILE(*TYPE) +
TEXT(*TEXT)

CHGVAR VAR(&START) VALUE(&START + 10)
GOTO CMDLBL(AGAIN4A)

/*--*/
/* Import the RPGLE member parts */
/* */
AGAIN5: CHGVAR VAR(&START) VALUE(1)
AGAIN5A:

CHGVAR VAR(&MBR) VALUE(%SST(&RPGLE &START 10))
IF COND(&MBR *EQ ′ ′) THEN(GOTO +

CMDLBL(END))
IMPPART OBJ(&XMPLIB/&ADMSRC) OBJTYPE(*SRC) MBR(&MBR) +

PRJ(&ADM) GRP(PRD) TYPE(RPGLESRC) +
PART(&MBR) LANG(RPGLE) SRCFILE(*TYPE) +
TEXT(*TEXT)

CHGVAR VAR(&START) VALUE(&START + 10)
GOTO CMDLBL(AGAIN5A)

END:
/*--*/
/* Import the Build option for PROGRAMS */

IMPPART OBJ(&XMPLIB/&ADMSRC) OBJTYPE(*SRC) +
MBR(PGMDFTBLD) PRJ(&ADM) GRP(PRD) +
TYPE(BLDOPT) PART(PGMDFTBLD) LANG(*NONE) +
SRCFILE(*TYPE) TEXT(′ Default Build options ′)

/*--*/
/* Import the Message file */

IMPPART OBJ(&XMPLIB/MLGMSGF) OBJTYPE(*MSGF) +
PRJ(&ADM) GRP(PRD) TYPE(MSGF) +
PART(MLGMSGF) LANG(*NONE) SRCFILE(*TYPE) +
TEXT(′ Message file ′)

/*--*/
ENDPGM

D.1.2 Copy Build Options

Appendix D. Development environment example code 191

/*-CPYBLDOPT--*/
/* */
/* Import all necessary build options for the programs */
/* */
/* Copy the data for MLGMSTP from GG244358 into MLGI.PRD */
/* */
/*--*/

PGM
DCL VAR(&ADM) TYPE(*CHAR) LEN(4) VALUE(′ MLGI′)
DCL VAR(&ADMBLD) TYPE(*CHAR) LEN(10) +

VALUE(′ QMLGBLDOPT′)
DCL VAR(&XMPLIB) TYPE(*CHAR) LEN(10) +

VALUE(′ GG244358 ′)
DCL VAR(&ADMPRD) TYPE(*CHAR) LEN(10) +

VALUE(′ MLGI.PRD ′)

 /* Name......Name......Name......Name.....*/
DCL VAR(&BLDOPT) TYPE(*CHAR) LEN(2000) +

VALUE(′ MLGMNUC MLGINQR MLGMTNC MLGRPTC +
MLGRPTC2 +

′)

DCL VAR(&MBR) TYPE(*CHAR) LEN(10)
DCL VAR(&START) TYPE(*DEC) LEN(3 0) VALUE(1) /* +

Number of times that a library name is +
retrieved from the Library Table */

/*--*/
/* Import the BLDOPT member parts */
/* */

CHGVAR VAR(&START) VALUE(1)
AGAIN1A:

CHGVAR VAR(&MBR) VALUE(%SST(&BLDOPT &START 10))
IF COND(&MBR *EQ ′ ′) THEN(GOTO +

CMDLBL(END))
IMPPART OBJ(&XMPLIB/&ADMBLD) OBJTYPE(*SRC) MBR(&MBR) +

PRJ(&ADM) GRP(PRD) TYPE(BLDOPT) +
PART(&MBR) LANG(*NONE) SRCFILE(*TYPE) +
TEXT(*TEXT)

CHGVAR VAR(&START) VALUE(&START + 10)
GOTO CMDLBL(AGAIN1A)

/*--*/

END:
/*--*/
/* Copy the MLGMSTP file */

CPYF FROMFILE(&XMPLIB/MLGMSTP) +
TOFILE(&ADMPRD/MLGMSTP) MBROPT(*REPLACE)

/*--*/
ENDPGM

192 Moving to ILE RPG

D.1.3 Check out PARTL parts
This is an example of how you can check out parts that are in a part list. A
user-defined option should be used to run this program.

As a suggestion,we used the option ″XP″, but you can use any other option if you
want. The interface should be:

XP call gg244358/chkoutprtl (&l &n &zt &zn &zp &zg)

/*---*/
/* Process the information from a PARTLIST and check out all */
/* the parts from that list */
/* */
/* If the part is not a PARTL then stop the program and send a */
/* message to the requester of this program. */
/* */
/* Parts that are already checked out are skipped and a message is */
/* send to the requester */
/* */
/* The program cannot handle generic parts found in a PARTL part */
/* (for example P*, P?, *ALL) */
/* */
/* If the PARTL part being processed lists another PARTL part, the */
/* program checks out the listed PARTL part and not the parts listed*/
/* inside. */
/* */
/*---*/

PGM PARM(&LIB &FILE &PARTTYPE &PARTNAME &PROJECT +
&GROUP)

DCL VAR(&LIB) TYPE(*CHAR) LEN(10)
DCL VAR(&FILE) TYPE(*CHAR) LEN(10)
DCL VAR(&PARTTYPE) TYPE(*CHAR) LEN(10)
DCL VAR(&PARTNAME) TYPE(*CHAR) LEN(10)
DCL VAR(&PROJECT) TYPE(*CHAR) LEN(32)
DCL VAR(&GROUP) TYPE(*CHAR) LEN(32)
DCL VAR(&WS) TYPE(*CHAR) LEN(10)
DCL VAR(&TEXT) TYPE(*CHAR) LEN(50)
DCLF FILE(MYPARTL)
MONMSG MSGID(CPF0000)

/* Retrieve the workstation name */

RTVJOBA JOB(&WS)

/* Check if the part that is supplied is a PARTL part */

IF COND(&PARTTYPE *NE ′ PARTL ′) THEN(DO)
CHGVAR VAR(&TEXT) VALUE(′ Part ′ *CAT &PARTNAME +

*cat ′ is not a Partlist′)
SNDBRKMSG MSG(&TEXT) TOMSGQ(&WS)
GOTO CMDLBL(END)
ENDDO

/* Override to the file of the PART list */

OVRDBF FILE(MYPARTL) TOFILE(&LIB/&FILE)

/* Read from the partlist file */

Appendix D. Development environment example code 193

AGAIN:
RCVF
MONMSG MSGID(CPF0864) EXEC(GOTO CMDLBL(END))
CHKOUTPART PRJ(&PROJECT) GRP(&GROUP) TYPE(&LITYPE) +

PART(&LIPART)
MONMSG MSGID(ADM1626) EXEC(DO)
CHKOUTPART PRJ(&PROJECT) GRP(&GROUP) TYPE(&LITYPE) +

PART(&LIPART) PRMCODE(*NONE)
MONMSG MSGID(ADM1672 ADM1602 ADM1617) EXEC(DO)
CHGVAR VAR(&TEXT) VALUE(′ Cannot check out part ′ +

*CAT &LIPART *CAT ′ - see JOBLOG.′)
SNDBRKMSG MSG(&TEXT) TOMSGQ(&WS)
ENDDO
ENDDO
MONMSG MSGID(ADM1672 ADM1602 ADM1617) EXEC(DO)
CHGVAR VAR(&TEXT) VALUE(′ Cannot check out part ′ +

*CAT &LIPART *CAT ′ - see JOBLOG.′)
SNDBRKMSG MSG(&TEXT) TOMSGQ(&WS)
ENDDO

/* Return to the reading process */

GOTO CMDLBL(AGAIN)

/* End the program */

END:
ENDPGM

D.2 Mailing List Application Description
We used the mailing list application, as described in Application Development by
Example, SC41-9852, as the base application for the development environment
chapter in this publication. The original source code of the application came
from the QUSRTOOL library shipped with each release of OS/400 and optionally
installed on a customer′s system. We modified the code somewhat to make it
more suitable for the ILE and RPG IV environment.

Although not an actual customer application, the mailing list application used is
defined in such a way that most readers should be able to associate its functions
to what any application must do. This theoretical application creates and
maintains a mailing list file (called the master file), prints mailing labels from the
file, and provides analysis of the file.

D.3 Functional Scenario
There are five main processes in the Mailing List Application; these are:

 1. Inquire into Mail ing List Master File
 2. Maintain Mail ing List Master File
 3. Submit mail ing by account number
 4. Submit special analysis report
 5. Query Mail ing List file

194 Moving to ILE RPG

To run the Mailing List Application, call program MLGMNUC and the Mailing List
Menu panel is shown.

Appendix D. Development environment example code 195

D.3.1 Inquire into the Mailing List Master File

� �
Mailing List Menu

System: RCHASM01
 Select one of the following

1. Inquire into Mailing List Master
2. Maintain Mailing List Master
3. Submit mailing by account number
4. Submit special analysis report
5. Query Mailing List file

 Selection
 ===>1
 F3=Exit� �

Figure 103. Mailing List Menu

Option 1 on the Mailing List Menu shows you the Mailing List Inquiry panel.

� �
Mailing List Inquiry

 Search field: ____________
or

 Account number: 15902

 F3=Exit� �
Figure 104. Mailing List Inquiry Panel

Now enter an existing Account number, for example, 15902, and press Enter; the
Mailing List Inquiry panel is now completed. You can also use a name search to
find the customer number using the same program as described with Figure 109
on page 198 and Figure 110 on page 198

� �
Mailing List Inquiry

 Account number: 15902
 Account type: 2
 Name: Joseph Jones
 Name search: JONES
 Address: 3008 Brook St
 City: Little Rock
 State: AR
 Zip code: 44877

 F3=Exit F16=Print label� �
Figure 105. Account Number Inquiry

You can use F=16 if you want to print one label of this customer.

196 Moving to ILE RPG

D.3.2 Maintain Mailing List Master File
Option 2 on the Mailing List Menu shows you the Maintain Mailing List Master
panel. From this panel you can:

• Display, change, add, or delete records in mailing list master file
• Display the greater or equal (GE) value
• Do a name search

For options 1 to 5, you have to enter an account number; for option 6, enter a
name in the Search Field.

� �
Maintain Mailing List Master

 Action: 1=Display 2=Change
3=Add 4=Delete
5=Display GE value
6=Name search

 Account number: Numeric 5.0
 Search field: Char

 For Options 1-5, enter an Account number
 For Option 6, enter a Search field

 F3=Exit� �
Figure 106. Maintain Mail ing List Master Panel

Following is an example panel to change the mailing list master file.

� �
Maintain Mailing List Master ACTION - Change

 Account number: 15902 Name
 Account type: 2 1=Bus 2=Gov 3=Org 4=Sch 5=Pvt

9=Oth
 Name: Joseph Jones Char
 Search name: JONES Char
 Address: 3008 Brook St Char
 City: Little Rock Char
 State: AR Valid state abbreviations
 Zip code: 44877 Numeric 5.0

 F3=Exit� �
Figure 107. Change Mail ing List Master Panel

Action 5 on the Maintain Mailing List Master panel allows you to search through
the file (one record at a time) either from the account number entered or from
the beginning of the file if no account number is entered. If no account number
is entered, the search begins by displaying the first record in the file. You may
page down to see the next record. If a value is entered, such as account
number 50000, the search starts with account number 50000. If the specified
account number does not exist, the first account number after 50000 is displayed.
You can page up or page down. If you see a record you want to change or
delete, function keys allow the display to be switched to change or delete mode.

Appendix D. Development environment example code 197

� �
Maintain Mailing List Master ACTION - GE value

 Account number: 15902 Name
 Account type: 2 1=Bus 2=Gov 3=Org 4=Sch 5=Pvt

9=Oth
 Name: Joseph Jones Char
 Search name: JONES Char
 Address: 3008 Brook St Char
 City: Little Rock Char
 State: AR Valid state abbreviations
 Zip code: 44877 Numeric 5.0

 F3=Exit F6=Change F11=Delete Rollup Rolldown� �
Figure 108. Display GE Value

Action 6 on the Maintain Mailing List Master panel allows a method of
determining the account number when only the account name is known. It
allows you a search by entering one or more characters in the search field. For
example, if you enter the name SMITH, all accounts with a search field of SMITH,
SMITHERMAN, SMITHE, and so on are shown. This is based on the search field
entered into every record.

� �
Maintain Mailing List Master

 Action: 6 1=Display 2=Change
3=Add 4=Delete
5=Display GE value
6=Name search

 Account number: Numeric 5.0
 Search field: JONES Char

 For Options 1-5, enter an Account number
 For Option 6, enter a Search field

 F3=Exit� �
Figure 109. Name Search

� �
Mailing List Name Search Search JONES

 Type options, press Enter
1=Display details 2=Return with Acct Number

 Opt Search Name St City Address Typ Account
2 JONES Joseph Jones AR Little Rock 3008 Brook St 2 15902

JONES Philip Jones CA San Diego 365 Parkway 9 28903
JONES Samuel Jones MN Minneapolis 220 4 Ave NW 1 10057
JONESA Maria Jonesa PA Philadelphia 559 9th Ave S 5 38724

 F3=Exit� �
Figure 110. Result JONES Search

198 Moving to ILE RPG

You can respond by requesting a return with a specific account number. After
the return, the record is displayed in display mode. You can press F6 to go into
change mode on the record.

� �
Maintain Mailing List Master ACTION - Display

 Account number: 15902 Name
 Account type: 2 1=Bus 2=Gov 3=Org 4=Sch 5=Pvt

9=Oth
 Name: Joseph Jones Char
 Search name: JONES Char
 Address: 3008 Brook St Char
 City: Little Rock Char
 State: AR Valid state abbreviations
 Zip code: 44877 Numeric 5.0

 F3=Exit F6=Change F11=Delete Rollup Rolldown� �
Figure 111. Return with Account Number

D.3.3 Submit Mailing by Account Number
Option 3 on the Mailing List menu produces a listing of all of the records in the
Mailing List Master file. See Figure 112 for an example.

 12/14/93 14:07:33 Customer listing Page 1
Number Name City State Zip Type Name search
15902 Joseph Jones Little Rock AR 44877 2 JONES
28903 Philip Jones San Diego CA 66903 9 JONES
10057 Samuel Jones Minneapolis MN 55454 1 JONES
14477 Charles Hanley Rochester MN 55920 4 HANLEY
18890 Carol Larson Rochester MN 55920 5 LARSON
11458 James Grover Trenton NJ 08690 1 GROVER
26640 Daniel Benson Syracuse NY 13212 1 BENSON
38724 Maria Jonesa Philadelphia PA 22809 5 JONESA
24882 Kathryn Donty Dallas TX 75248 1 DONTY

Count of records- 9

Figure 112. Example Report

D.3.4 Submit Special Analysis Report
Option 4 on the Mailing List menu produces a listing of all the records in the
Mailing List Master file with a zip code of 55920. See Figure 113 for an example.

 12/14/93 14:29:41 Customer listing Page 1
Number Name City State Zip Type Name search
14477 Charles Hanley Rochester MN 55920 4 HANLEY
18890 Carol Larson Rochester MN 55920 5 LARSON

Count of records- 2

Figure 113. Example Report Zip Code 55920

Appendix D. Development environment example code 199

D.3.5 Query Mailing List File
Option 5 on the Mailing List menu calls the STRQRY command and lets you
create your own query against the Mailing List Master file.

D.4 Parts Structure
The following objects (parts) are part of the Mailing List Application:

• MLGREFP (PF) mailing list field reference file
• MLGMSTP (PF) mailing master physical file
• MLGMSTL (LF) mailing list label printing logical
• MLGMSTL2 (LF) mailing list by state, city, name
• MLGMSTL3 (LF) general purpose LF for querying MLGMSTP
• MLGNAML (LF) mailing list logical file by name, state, city
• MLGINQD (DSPF) mailing list inquiry display
• MLGMTND (DSPF) mailing maintenance display file
• MLGMNUD (DSPF) mailing list menu display file
• MLGNAMD (DSPF) mailing list name search display file
• MLGRPTC (CLLE) print one liner with MLGMSTL2 LF
• MLGRPTC2 (CLLE) general purpose query of MLGMSTP
• MLGMTNC (CLLE) mailing list maintenance
• MLGMNUC (CLLE) mailing list menu program
• MLGLBLR (RPGLE) mailing list label printing
• MLGRPTR (RPGLE) mailing list one line report per name
• MLGINQR (RPGLE) mailing list inquiry
• MLGMTNR (RPGLE) mailing list master maintenance
• MLGNAMR (RPGLE) mailing list name search.

We added one more part to this base application:

MLGMSGF is the mailing list message file for the MSGCON and ERRMSGID
keywords in the display files. In this way we could easily create a National
Language version of the application.

Note: For ease of use, we only translated the message file and some RPG
source files. We did not translate the constants in the Field reference file.

For a detailed explanation of the Mailing List Application, please refer to the
publication Application Development By Examples, SC41-9852.

200 Moving to ILE RPG

Index

A
activation group

call stack 92
CALLER 85, 90
control boundary 94
default 89, 91
DFTACTGRP(*YES) 87
DSPJOB 92
ending an application 113
exception handling 91
NAMED 85
NEW 85
non-default 91
recommendations 91
run unit 114
scoping 91
system-named 90
termination 118
user-named 90

API
CEE4ABN 116, 118
CEEDATE 47
CEEDAYS 47
CEEHDLR 169
CEEMRCR 166
CEETREC 115, 118
ILE condition handlers 163
QIgConvertCase 74
QLGCNVCS 74

Application Development Manager/400 123
binding directory 126, 147
build report 130
export 140
import 140
part l ist 141
part relationships 126
service program 126
trigger relations 127

B
bind by copy 83
bind by reference 83
binding

program 98
service program 99

binding directory 86, 96, 125
with ADM/400 147

binding language 84, 144
binding source 125
build option 125

C
C specification 23

new layout 24
call bound procedure 79
call stack 92
CALLPRC 77, 79
case conversion

QIgConvertCase 74
QLGCNVCS 74

CCSID 59, 71
CEEDATE 47
CEEDAYS 47
circular references 103
COBOL 168
CODE/400 5
commitment control 116
compatibi l i ty mode 78, 87, 113

RCLRSC 121
compile options 152
constants

externalizing 72
control boundary 94, 115, 164

example 95
hard control boundary 95
soft control boundary 95

conversion
/COPY 61
arrays 62
correct manually 62
example 64
externally described data structure 63
QARNCVTLG 60
QRNCVTLG 60
QRPGLESRC 57
scanning tool 64

COPY 66
copyright 148
CRTBNDRPG 57
CRTRPGMOD 57
CVTRPGSRC 59, 128

D
D specification 12

ALT 14
ASCEND 14
BASED 14
CONST 14
CTDATA 14
DATFMT 14
DESCEND 14
DIM 14
DTAARA 14
examples 18

 Copyright IBM Corp. 1995 201

D specification (continued)
EXPORT 14
EXTFLD 14
EXTFMT 14
EXTNAME 14
FROMFILE 14
IMPORT 14
INZ 14
LIKE 14
NOOPT 14
OCCURS 15
OVERLAY 15
PACKEVEN 15
PERRCD 15
PREFIX 15
PROCPTR 15
TIMFMT 15
TOFILE 15

date
calculations 43
example 42

date and time formats 40
date data types 40

date and time APIs 47
external formats 41
initializing 41
move operations 46

DATEDIT 41
DBCS graphic data type 75

E
E specification 27
error handling 159
example

ADM/400 127
mailing list application 127

exception handlers
direct monitors 167
HLL-specific handlers 167
ILE condition handlers 167
prior i ty 167
types of 167

Exception Handling 161
architecture 162
comparing OPM 174
example 170
File Exceptions 161
handle cursor 166
HLL-specific handlers 163
ILE condition handlers 163
ILE direct monitors 163
resume cursor 166

export 16, 140, 159
circular references 103
data structure 51
example 51, 100
procedure 99
unresolved references 103

export (continued)
what is 97

external described files 10
externally described files 20

F
F specification 9

COMMIT 10
DATFMT 10
DEVID 10
EXTIND 10
FORMLEN 10
FORMOFL 10
IGNORE 10
INCLUDE 10
INFDS 10
INFSR 11
KEYLOC 11
MAXDEV 11
OFLIND 11
PASS 11
PGMNAME 11
PLIST 11
PREFIX 11
PRTCTL 11
RAFDATA 11
RECNO 11
RENAME 11
SAVEDS 11
SAVEIND 11
SFILE 11
SLN 11
TIMFMT 11
USROPN 11

file information data structure (INFDS) 161
file input/output feedback area 161
file open feedback area 161
file open scope 107

H
H Specification 8, 9

ALTSEQ 9
CURSYM 9
DATEDIT 9
DATFMT 9
DEBUG 9
DECEDIT 9
DFTNAME 9
FORMSALIGN 9
FTRANS 9
TIMFMT 9

I
I specification 20

field layout 21
record layout 21

202 Moving to ILE RPG

ILE 84, 161
activation groups 84
Application Development Manager/400 123
bind by copy 83
bind by reference 83
binding 96
binding directory 86
binding language 84
call stack 92
compile and bind 87
concepts 83
control boundary 94
copyright 148
creation commands 68
development process 123
ending an application 113
Exception Handling 161
modules 83
naming conventions 125
performance 151
procedures 83
program activation 85
program entry procedure 86
programs 83
run unit 114
service program 84, 87
static binding 83
transparency 110

ILE C/400 4
ILE CL 53

CALLPRC 77
CRTBNDCL 77
CRTCLMOD 77
parameter passing 80
source type CLLE 81

ILE COBOL/400 3
ILE program activation 85
ILE RPG/400 2
import 16, 140, 159

circular references 103
data structure 51
example 51, 100
procedure 99
unresolved references 103
what is 97

INFDS (file information data structure) 161
information status subroutine 162
INFSR 162, 168
init ial ization 99

J
job message queues 163
job trace 155

L
L specification 27

length
name 37

limits
changes 37
character field size 37
constant size 37
data structure name 37
data structure size 37
field/array name 37
file name 37
named constant 38
number of array elements 37
number of decimal places 37
number of files 37
number of subroutines 38
record format name 37
size of program 38

local data area 16

M
module 83, 125

binding directory 96
create 68

MONMSG 79, 168

N
national language support

case conversion 74
date fields 73
sort sequence 73
usage of characters 71

O
O specification 25, 26
observabil i ty 153
operation code 34

CALLB 33
EVAL 35
example 32
EXTRCT 32
TEST 32

Operation Codes 29, 30, 31
ADDDUR 30
Process Date and Time 30
Renamed 29
SUBDUR 31

override example 108
override rules 108
override scope 107
OVRDBF 107

P
percolation 166, 169
performance

activation groups 156

Index 203

performance (continued)
benefits 159
compile options 152
compile t ime 151
considerations 156
exception handling 175
runt ime 155
working memory requirements 153
working memory size 155

pointer
example 53

procedure 83
program 125

binding directory 96
compress observabil i ty 153
create 68
create bound 69
ending 112
init ial ization 99
object size 153
unresolved references 103
updating 105

program described fi les 10, 21
program entry procedure 93

for ILE C 86
for ILE CL 86
for ILE RPG/400 86

PRTCMDUSG 79
PSSR 168

Q
QARNCVTLG 60
QRNCVTLG 60

R
RCLACTGRP 116, 117
RCLRSC 78, 113, 121
RPG IV 2

%ADDR 38
%ELEM 39
%SIZE 39
%SUBST 39
%TRIM 39
%TRIML 39
%TRIMR 39
ALTSEQ 73
built-in functions 38
case conversion 74
compatibi l i ty mode 87
compile t ime 151
DBCS 75
example 53
national language support 71
pointers 53
sort sequence 73
usage of characters 71

RPG IV Specifications 7
RTVCLSRC 78
run unit 114

S
sample address monitor 155
scoping

activation group 91
file opens 106
overr ides 106
RCLRSC 113
resource 106
transparency 110

service program 84, 125, 132, 138, 159
binding directory 96
create 87
init ial ization 99
recommendations 105
signature 104
unresolved references 103
updating 105

signal 168
signature 138

current 104
mismatch 104
previous 104

SNDPGMMSG 79
software

copyright 148
sort sequence 73
Specification Sheets 7
static bind

bind by copy 83
bind by reference 83

static call
CALLB 33

symbolic names 36
name length 37

T
termination

example 118
TFRCTL 78
time data types 40

calculations 43
date and time APIS 47
example 42
external formats 41
initializing 41
move operations 46

timestamp data type 40, 50
timing and paging statistics 155
TPST 155
transparency 110

204 Moving to ILE RPG

U
unresolved references 103
UPDPGM 105, 126
UPDSRVPGM 105, 126
upper/lowercase 36

V
VRPG Client/2 5

Index 205

	Moving to Integrated Language Environment for RPG IV
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	How This Document Is Organized
	Related Publications
	International Technical Support Organization Publications
	Acknowledgments

	Chapter 1. Introduction to ILE RPG
	Integrated Language Environment (ILE)
	ILE Languages
	Application Development Environment

	Chapter 2. RPG Specification Sheets
	RPG IV Specifications Statements
	The Control (H) Specification Statement
	The File Description (F) Specification Statement
	The Definition (D) Specification Statement
	Examples for Declaring Data Items Using the Definition Specification
	The Input (I) Specification Statement
	The Calculation (C) Specification Statement
	The New Calculation Specification Layout
	The Output (O) Specification Statement
	The File Extension (E) Specification Statement
	The Line Counter (L) Specification Statement

	Chapter 3. RPG IV Functions and Features
	Operation Codes
	Renamed Operation Codes
	New Operation Codes to Process Date and Time Data Types
	New Operation Code for Static Call
	New Operation Codes for Structured Programming
	Symbolic Names
	Upper/ Lowercase
	Name Length
	Underscore
	Blank Lines
	Examples
	Changes in Limits
	Built- in Functions in RPG IV
	Using Date and Time Formats and Operations
	Initializing Date and Time Data Type Fields
	Example of Initializing Date and Time Data Type Fields
	Calculations with Date and Time Data Types
	Date and Time in MOVE Operations
	Using Date and Time APIs
	Timestamp
	Example Using Import/ Export Data Structure
	Example Using Pointers in RPG IV

	Chapter 4. Conversion Considerations
	CVTRPGSRC Conversion Command and Parameters
	CVTRPGSRC Parameters
	/COPY Considerations
	Conversion Problems
	Scanning Tool for Migrated Source Code
	Source Conversion Example
	Creation Commands
	Create RPG Module
	Create Program
	Create Bound RPG Program

	Chapter 5. National Language Support with RPG IV
	Recommended Usage of Characters in RPG IV
	Source File CCSID Considerations
	Externalizing Constants
	Date Fields
	Sort Sequence
	Case Conversion
	DBCS Graphic Data Type

	Chapter 6. CL and ILE CL
	ILE CL Functions
	Changes to Existing Interfaces
	CL Considerations with RPG IV in Compatibility Mode
	ILE CL Considerations
	The Call Bound Procedure Command
	Changing Source Type from CL to CLLE
	Should I Move CL to ILE CL?

	Chapter 7. ILE Design Considerations
	Overview of ILE Concepts
	ILE Compile and Bind Commands
	OPM Compatibility Mode
	Comparison of Compile/ Bind Commands
	Activation Groups
	Default activation group
	User- Named Activation Group
	Activation Group of Caller
	System- Named Activation Group (* NEW)
	Activation Group Recommendations
	Differences Between Default and Non- Default Activation Groups
	The Call Stack
	Control Boundary
	Control Boundary Example
	ILE Static Call Syntax
	Binding Considerations
	Exports and Imports
	RPG Initialization Considerations for an ILE *PGM or *SRVPGM
	Unresolved References
	Service Program Signature
	Service Program Recommendations
	Updating Programs without Re- binding
	Resource Scoping
	Overrides and File Opens
	Override Example
	Transparency
	Ending an ILE Program
	Ending an Application
	OPM RPG Application Example
	ILE RPG/ 400 Application Example
	Ways of Ending an ILE Application
	Use of RCLRSC

	Chapter 8. Development Environment
	Application Development Manager/ 400
	Naming Conventions
	Relationships
	Introduction of the Walk- Through Scenarios
	Setup of the Application Development Manager/ 400 Environment
	Enhance the Mailing Application (Service Programs)
	Enhance a Service Program (Signature Implications)
	Import/ Export Variables in ILE
	Use Binding Directories in Application Development Manager/ 400
	How to Manage Without Application Development Manager/ 400
	Copyright Your Software

	Chapter 9. Performance
	Compile Time
	Compile Options
	Program Object Size Comparisons
	Object Size Conversion Project
	Runtime Performance
	Working Memory Size for Runtime
	Choice of Tools
	Considerations
	Performance Benefits of ILE

	Chapter 10. Exception Handling
	What Is An Exception/Error?
	File Exceptions
	Program Exceptions
	Exception Handling Architecture
	Job Message Queues and Call Stacks
	Terminology
	Exception Messages
	Types of Exception Handlers
	Exception Handler Priority
	Default Actions for Unhandled Exceptions
	Handling an Exception
	Percolating an Exception
	Promoting an Exception
	Steps in Exception Handling
	Exception Handling Flow
	Comparing OPM and ILE Exception Handling
	Performance Impact
	ILE Condition Handler

	Appendix A. Diskette Install Instructions
	Appendix B. RPG IV Coding Examples
	B. 1.1 Using Pointers in RPG IV

	Appendix C. Migration Information
	Appendix D. Development environment example code
	D. 1.1 ADM Setup
	D. 1.2 Copy Build Options
	D.1.3 Check out PARTL parts
	D. 2 Mailing List Application Description
	D. 3 Functional Scenario
	D. 3.1 Inquire into the Mailing List Master File
	D. 3.2 Maintain Mailing List Master File
	D. 3.3 Submit Mailing by Account Number
	D. 3.4 Submit Special Analysis Report
	D. 3.5 Query Mailing List File
	D. 4 Parts Structure

	Index
	A C
	B
	D
	F
	E
	H
	I
	M
	N
	O
	J
	P L
	S
	Q
	R
	T
	U
	V

